RU2537511C2 - Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса - Google Patents
Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса Download PDFInfo
- Publication number
- RU2537511C2 RU2537511C2 RU2013113848/28A RU2013113848A RU2537511C2 RU 2537511 C2 RU2537511 C2 RU 2537511C2 RU 2013113848/28 A RU2013113848/28 A RU 2013113848/28A RU 2013113848 A RU2013113848 A RU 2013113848A RU 2537511 C2 RU2537511 C2 RU 2537511C2
- Authority
- RU
- Russia
- Prior art keywords
- pulses
- coefficient
- phase modulation
- pulse
- duration
- Prior art date
Links
- 230000000051 modifying Effects 0.000 title claims abstract description 41
- 230000003287 optical Effects 0.000 title claims abstract description 10
- 230000002452 interceptive Effects 0.000 claims abstract description 10
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract 1
- 230000003595 spectral Effects 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000002123 temporal effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000005305 interferometry Methods 0.000 description 3
- 210000004544 DC2 Anatomy 0.000 description 2
- 238000005311 autocorrelation function Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005684 electric field Effects 0.000 description 2
- 238000005755 formation reaction Methods 0.000 description 2
- 230000002530 ischemic preconditioning Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 1
- 230000000875 corresponding Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000001902 propagating Effects 0.000 description 1
Images
Abstract
Способ относится к лазерной технике и может быть использован для создания устройства прямого самореферентного определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса. Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса заключается в том, что исследуемый фазовомодулированный сверхкороткий импульс направляют на двухлучевой интерферометр, временной сдвиг между интерферирующими импульсами в интерферометре меньше их длительности, с помощью автокоррелятора регистрируют формируемую последовательность и по числу этих субимпульсов и длительности всей последовательности определяют искомый коэффициент квадратичной фазовой модуляции. Технический результат заключается в упрощении определения коэффициента квадратичной модуляции. 4 ил.
Description
Способ относится к лазерной технике и может быть использован для создания устройства прямого самореферентного определения коэффициента квадратичной фазовой модуляции.
Известен способ определения временной формы импульса, измерения его амплитуды и фазы - оптическое стробирование с разрешением по частоте, FROG (Frequency Resolved Optical Gating) / Патент США №8068230 от 29 ноября 2011 года, МПК G01D 3/036/, основанный на неколлинеарной генерации второй гармоники. Исследуемый сверхкороткий импульс делится светоделителем на две части, которые падают на нелинейный кристалл под небольшим углом. Естественно, что неколлинеарная генерация второй гармоники возникает только тогда, когда оба импульса пересекаются в пространстве и во времени, далее в ортогональной плоскости происходит спектральное разложение импульса спектрометром. В результате чего получается двумерное изображение исследуемого импульса, разложенного по длине волны и по времени. Для определения фазовых параметров используется специальный алгоритм FROG, который заключается в определении амплитуды, фазы и временной формы за счет преобразования двумерного массива от длины волны и от времени итерационным методом. Для чего происходит преобразования данных для определения поля сигнала путем сравнения предполагаемого поля с измеренным в эксперименте. Недостаток данного способа состоит в том, что он является итерационным, что значительно усложняет обработку данных.
Наиболее близким к заявленному способу является способ определения фазовых параметров - спектральная фазовая интерферометрия для прямой реконструкции электрического поля, SPIDER (Spectral Phase Interferometry for Direct Electric-field Reconstruction) / Патент США №6633386 от 14 октября 2003 года, МПК G01D 3/036/, основанный на спектральной интерферометрии фемтосекундных импульсов света. Исследуемый импульс делится на две части. Одна часть проходит дисперсионную задержу, которая может представлять собой как пару дифракционных решеток, так и протяженную диспергирующую среду, а другая часть проходит через двухлучевой интерферометр, формирующий два импульса с разностью хода такой, чтобы они заведомо не перекрывались во времени. Два импульса, разнесенных во времени и чирпированный импульс формируют в нелинейном кристалле неколлинеарную вторую гармонику, состоящую также из двух импульсов. Каждый из этих импульсов появляется в результате взаимодействия с разными частями (во времени) чирпированного импульса, которые имеют разный спектральный состав. Следовательно, генерируемые импульсы будут иметь спектральный сдвиг. В спектральной плоскости спектроанализатора спектры этих двух импульсов интерферируют, а результат интерференции выглядит таким образом, что фаза результирующей модуляции будет выглядеть так:
где ω - частота, δω - частотный сдвиг между двумя импульсами, Δτ - временной сдвиг между двумя импульсами. Таким образом, модуляция суммарного оптического спектра пропорциональна первой производной от спектральной фазы. Зная первую производную, легко получить частотную зависимость спектральной фазы с точностью до константы. Недостаток данного способа состоит в том, что метод определения коэффициентов фазовой модуляции зависит от использования исходного импульса и не определяет параметры впрямую на выходе из диспергирующей среды.
Задача, решаемая заявляемым способом - быстродействие и упрощение определения коэффициента квадратичной фазовой модуляции.
Поставленная задача решается следующим образом. Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса, заключающийся в том, что исследуемый импульс направляют на двухлучевой интерферометр и регистрируют совместную интерференцию сонаправленных сверхкоротких импульсов, с помощью автокоррелятора при временном сдвиге Δτ между интерферирующими импульсами, меньшем их длительности, регистрируют временную структуру суммарного поля, представляющую последовательность сверхкоротких импульсов, подсчитывают число этих импульсов Nсубимп и определяют коэффициент квадратичной фазовой модуляции α0 из следующего соотношения:
где ω0 - центральная частота лазерного излучения, τ - длительность исследуемого импульса, τпосп - длительность последовательности сверхкоротких субимпульсов, τпосл=τ+Δτ.
Заявляемый способ поясняется чертежами, где на фиг.1 показана экспериментальная схема для осуществления заявляемого способа, на фиг.2 представлена подробная схема автокоррелятора, фиг.3а демонстрирует результаты эксперимента измерения длительности фазовомодулированного сверхкороткого импульса, а фиг.3б - результат регистрации последовательности сверхкоротких импульсов автокоррелятором, на фиг.4 показаны результаты численного моделирования, проведенные для определения коэффициента квадратичной фазовой модуляции и сравнения его с экспериментальными данными. На фиг.4а представлена огибающая поля фемтосекундного фазомодулированного импульса на выходе из среды; на фиг.4б показана зависимость мгновенной частоты от времени (фаза чирпированного импульса).
Сущность заявляемого способа заключается в следующем. Авторами обнаружен эффект формирования последовательности фемтосекундных субимпульсов в результате интерференции двух фемтосекундных импульсов с квазилинейной частотной модуляцией, возникающей на этапе распространения в диспергирующих средах, при временном сдвиге, меньшем длительности интерферирующего импульса. В работе («Фазовая модуляция фемтосекундных световых импульсов, спектры которых сверхуширены в диэлектриках с нормальной групповой дисперсией», Оптический журнал, т.75, №10, 2008, сс.3-7) авторами теоретически показано, что в результате интерференции двух фемтосекундных импульсов с линейной частотной модуляцией, при временном сдвиге, меньшем длительности интерферирующего импульса, может образовываться последовательность сверхкоротких импульсов, центральная частота каждого из которых несколько отличается от частоты предыдущего. Указанная последовательность имеет квазидискретный спектр, при этом каждому компоненту спектра излучения соответствует конкретный импульс в последовательности. Частота следования фемтосекундных субимпульсов в последовательности зависит от временного сдвига при интерференции и от коэффициента квадратичной фазовой модуляции. В работе («Интерференция фемтосекундных спектральных суперконтинуумов с линейной фазовой модуляцией» Научно-технический Вестник НИУ ИТМО, вып.52, 2008, сс.3-10) авторами была теоретически изучена интерференция двух импульсов с линейной частотной модуляцией, когда временная задержка меньше длительности интерферирующих импульсов. Было показано, что при такой интерференции формируется последовательность сверхкоротких субимпульсов, а частота и длительность формируемых субимпульсов в последовательности зависит от временного сдвига между импульсами при интерференции и от коэффициента квадратичной фазовой модуляции, а также описывается следующим выражением суперпозиции полевых полей:
где t - время, E0 - амплитуда одного фемтосекундного фазовомодулированного импульса, T - длительность фемтосекундного фазовомодулированного импульса, ω0 - центральная частота фемтосекундного фазовомодулированного импульса, ωmod - частота модуляции последовательности сверхкоротких субимпульсов (φmod=α*Δτ*ω0), α0 - коэффициент квадратичной фазовой модуляции (квадратичная фазовая модуляция описывается следующим выражением: φ(t)=(φ0+At+αω0t2, α=α0*ω0), Δτ - временной сдвиг между двумя импульсами, φ0 - начальная фаза результирующего поля. Первый косинус этого выражения отвечает за фазовую модуляцию всей временной структуры, а второй отвечает за модуляцию структуры временной последовательности субимпульсов. Частота модуляции последовательности сверхкоротких субимпульсов зависит от временной задержки, центральной частоты фазовомодулированного импульса и коэффициента квадратичной фазовой модуляции. Из этого выражения, зная длительность субимпульсов, временную задержку и центральную частоту чирпированного импульса, можно определять коэффициент квадратичной фазовой модуляции. Авторами экспериментально установлен факт формирования при интерференции двух фемтосекундных импульсов с частотной модуляцией последовательности сверхкоротких субимпульсов, которой в спектральной области соответствует квазидискретный спектральный суперконтинуум. Интерференция двух фемтосекундных фазовомодулированных импульсов происходит с временным сдвигом между ними, меньшем их длительности. Продемонстрирована возможность управления длительностью и частотой повторения субимпульсов в последовательности временной задержки между интерферирующими импульсами. На фиг.3 представлен результат эксперимента. Автокорреляционная функция интерференции двух фазовомодулированных фемтосекундных импульсов I(Δτ), генерируемых в кварцевом стекле длиной 4 см для исходного импульса 20 фс и центральной части ω0=2π*с/λ0=2,415*1015 с-1 (λ0=780 нм), поступающего на вход автокоррелятора 5, при временном сдвиге между импульсами: 20 фс (фиг.3б).
Заявляемый способ может быть реализован с помощью устройства, представленного на фиг.1. На схеме изображены сверхкороткий фазовомодулированный исследуемый импульс 1, который поступает на разделитель пучка 2, после чего одна часть излучения попадает на неподвижный отражатель 3, а вторая - на отражатель 4, выполненный с возможностью перемещения вдоль оптической оси относительно разделителя пучка 2, формируя двухлучевой интерферометр, в котором временной сдвиг между интерферирующими импульсами контролируется с помощью блока управления и синхронизации 5, далее результат интерференции двух фазовомодулированных сверхкоротких импульсов регистрируется автокоррелятором 6. На фиг.2 представлена подробная схема автокоррелятора 6, включающая последовательно расположенные светоделительный кубик 7, сканирующее 8 и опорное 9 зеркала, генератор второй гармоники 10 и фотоприемник 11 для регистрации поступающего излучения.
Заявляемый способ осуществляется следующим образом. Для определения длительности фазомодулированного сверхкороткого исследуемого импульса 1 с помощью автокоррелятора 5 закрываем сканирующее плечо 4 в двухлучевом интерферометре. Далее блок управления и синхронизации 6, исходя из длительности чирпированного импульса 1, осуществляет выбор величины временного сдвига между интерферирующими импульсами в управляемой линии задержки. После определения временного сдвига в двухлучевом интерферометре сканирующее плечо 4 открывается. Фазовомодулированный импульс поступает на вход разделителя пучка 2 и разделяется на два равных импульса. Линия задержки, образованная отражателями 3 и 4, формирует на своем выходе два коллинеарно распространяющихся световых импульса, сдвинутых относительно друг друга во времени. Временной сдвиг между интерферирующими импульсами для данного способа должен быть меньше длительности самого импульса, что контролируется блоком управления и синхронизации 5. В результате интерференции двух фазовомодулированных импульсов формируется последовательность сверхкоротких субимпульсов, следующих друг за другом с частотой, определяемой величиной временного сдвига в линии задержки и коэффициентом квадратичной фазовой модуляции, которая поступает на вход автокоррелятора 6. На фиг.3 представлен результат эксперимента. Исходя из результатов экспериментальных данных можно определить длительность фазовомодулированного исследуемого сверхкороткого импульса при закрытии сканирующего плеча 4, которая равна τ=180 фс, фиг.3а. На фиг.3б представлена автокорреляционная функция интерференции двух фазовомодулированных сверхкоротких импульсов I(Δτ), генерируемых в кварцевом стекле длиной 4 см для исходного импульса 20 фс и центральной части ω0=2π*c/λ0=2,415*1015 с-1 (λ0=780 нм), поступающего на вход автокоррелятора 5, при временном сдвиге между импульсами: 20 фс. Определив количество субимпульсов по автокорреляционной картине Nсубимп, число субимпульсов равно количеству побочных максимумов в автокорреляционной функции плюс центральный максимум, и, зная временную задержку Δτ, можно определить частоту повторения сверхкоротких субимпульсов в последовательности, , где τпосл - длительность последовательности, τпосл=τ+Δ τ, τпосл=200 фс. Из формулы 2 частота модуляции последовательности ωmod=α*τ*ω0=α0*τ*ω0*ω0. ωпосл≈ωmod Следовательно , отсюда коэффициент квадратичной фазовой модуляции равен:
Коэффициент квадратичной фазовой модуляции в данном случае равен α0=1,47*10-4. Для сравнения мы привели результаты численного моделирования распространения импульса длительностью 20 фс, центральной длины волны 780 нм в кварцевом стекле длиной 4 см. На фиг.4 представлены результаты моделирования распространения в кварцевом стекле 4 см фемтосекундного импульса длительностью 20 фс и центральной частотой ω0=2π*c/λ0=2,415*1015 с-1 (λ0=780 нм), фиг.4а - пунктирная линия (огибающая поля). На фиг.4а представлена огибающая поля фемтосекундного фазомодулированного импульса на выходе из среды, а на фиг.4б показана зависимость мгновенной частоты от времени (фаза чирпированного импульса). Из результатов определено, что длительность фазомодулированного импульса на выходе из среды τ=180 фс, а коэффициент квадратичной фазовой модуляции α0 при аппроксимации линейной функцией φ(t)=φ0+At+α ω0t2, где α=α0*ω0, равен α0=1,43*10-4.
Таким образом, в заявляемом способе определение коэффициента квадратичной фазовой модуляции происходит прямым самореферентным способом за счет того, что исследуемый сверхкороткий импульс направляют на двухлучевой интерферометр, с помощью автокоррелятора регистрируют формируемую последовательность и по числу этих субимпульсов и длительности всей последовательности определяют искомый коэффициент, все это обеспечивает достижение технического результата, состоящего в упрощении и быстродействии определения коэффициента квадратичной фазовой модуляции.
Claims (1)
- Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса, заключающийся в том, что исследуемый импульс направляют на двухлучевой интерферометр и регистрируют совместную интерференцию сонаправленных сверхкоротких импульсов, отличающийся тем, что с помощью автокоррелятора при временном сдвиге Δτ между интерферирующими импульсами, меньшем их длительности, регистрируют временную структуру суммарного поля, представляющую последовательность сверхкоротких импульсов, подсчитывают число этих импульсов Nсубимп и определяют коэффициент квадратичной фазовой модуляции α0 из следующего соотношения:
где ω0 - центральная частота лазерного излучения, τ - длительность исследуемого импульса, τпосл - длительность последовательности сверхкоротких субимпульсов, τпосл=τ+Δτ.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013113848/28A RU2537511C2 (ru) | 2013-03-27 | 2013-03-27 | Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013113848/28A RU2537511C2 (ru) | 2013-03-27 | 2013-03-27 | Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2013113848A RU2013113848A (ru) | 2014-10-10 |
RU2537511C2 true RU2537511C2 (ru) | 2015-01-10 |
Family
ID=53288325
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013113848/28A RU2537511C2 (ru) | 2013-03-27 | 2013-03-27 | Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2537511C2 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2355086C1 (ru) * | 2007-10-23 | 2009-05-10 | Ооо "Авеста-Проект" | Способ частотного преобразования ультракоротких лазерных импульсов и устройство для его осуществления |
RU2393601C1 (ru) * | 2008-10-02 | 2010-06-27 | Ооо "Авеста-Проект" | Способ преобразования ультракоротких лазерных импульсов во вторую гармонику |
US20120106579A1 (en) * | 2009-04-29 | 2012-05-03 | Bridger Photonics, Inc | Precise Broadband Frequency Modulated Laser |
-
2013
- 2013-03-27 RU RU2013113848/28A patent/RU2537511C2/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2355086C1 (ru) * | 2007-10-23 | 2009-05-10 | Ооо "Авеста-Проект" | Способ частотного преобразования ультракоротких лазерных импульсов и устройство для его осуществления |
RU2393601C1 (ru) * | 2008-10-02 | 2010-06-27 | Ооо "Авеста-Проект" | Способ преобразования ультракоротких лазерных импульсов во вторую гармонику |
US20120106579A1 (en) * | 2009-04-29 | 2012-05-03 | Bridger Photonics, Inc | Precise Broadband Frequency Modulated Laser |
Also Published As
Publication number | Publication date |
---|---|
RU2013113848A (ru) | 2014-10-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sederberg et al. | Attosecond optoelectronic field measurement in solids | |
Tekavec et al. | Wave packet interferometry and quantum state reconstruction by acousto-optic phase modulation | |
Wyatt et al. | Attosecond sampling of arbitrary optical waveforms | |
CN102313605A (zh) | 自参考光谱干涉飞秒激光脉冲的实时测量方法和装置 | |
CN103887693A (zh) | 超短激光脉冲飞秒量级延时同步方法 | |
Trebino et al. | Measuring ultrashort laser pulses | |
RU2537511C2 (ru) | Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса | |
KR100337646B1 (ko) | 광 펄스 파형 측정 장치 | |
Schneider et al. | Influence of an ultrafast transient refractive-index grating on nonlinear optical phenomena | |
Seifert et al. | Unambiguous ultrashort pulse reconstruction from double spectrograms alone | |
Fan et al. | Single-shot measurement of the free-space time domain terahertz (THz) waveforms by iterative frequency-domain interferometry technology | |
Berger | Measurement of subpicosecond optical waveforms using a resonator-based phase modulator | |
JP3102811B2 (ja) | 超高速光波形測定法 | |
Närhi | Measurements of noise-seeded dynamics in nonlinear fiber optics | |
Arnold et al. | How can attosecond pulse train interferometry interrogate electron dynamics? | |
WO2023163018A1 (ja) | 光計測装置 | |
Yukich et al. | Observation of Ramsey interference in a one-dimensional continuum: Short-pulse photodetachment in a magnetic field | |
Keller | Pulse Duration Measurements | |
Nakajima | Ultrashort pulse reconstruction using a deterministic phase retrieval method with Gaussian-envelope gates | |
Bhattacharya et al. | Frequency comb based spectral interferometry and homodyne many-wavelength interferometry for distance measurements | |
Pan et al. | Self‐Referencing 3D Characterization of Ultrafast Optical‐Vortex Beams Using Tilted Interference TERMITES Technique | |
JP2022030729A (ja) | テラヘルツ波形検出装置、テラヘルツ波形の検出方法 | |
Kristensen et al. | Fourier transform second harmonic generation for high-resolution nonlinear spectroscopy | |
Shirai et al. | Self‐Referenced Measurement of Light Waves | |
Deng et al. | Optical second harmonic generation in LiB 3 O 5 modulated by intense femtosecond X-ray pulses |