RU2393601C1 - Способ преобразования ультракоротких лазерных импульсов во вторую гармонику - Google Patents

Способ преобразования ультракоротких лазерных импульсов во вторую гармонику Download PDF

Info

Publication number
RU2393601C1
RU2393601C1 RU2008139197/28A RU2008139197A RU2393601C1 RU 2393601 C1 RU2393601 C1 RU 2393601C1 RU 2008139197/28 A RU2008139197/28 A RU 2008139197/28A RU 2008139197 A RU2008139197 A RU 2008139197A RU 2393601 C1 RU2393601 C1 RU 2393601C1
Authority
RU
Russia
Prior art keywords
pulse
harmonic
duration
spectrum
chirped
Prior art date
Application number
RU2008139197/28A
Other languages
English (en)
Other versions
RU2008139197A (ru
Inventor
Александр Викторович Конященко (RU)
Александр Викторович Конященко
Леонид Леонидович Лосев (RU)
Леонид Леонидович Лосев
Original Assignee
Ооо "Авеста-Проект"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ооо "Авеста-Проект" filed Critical Ооо "Авеста-Проект"
Priority to RU2008139197/28A priority Critical patent/RU2393601C1/ru
Publication of RU2008139197A publication Critical patent/RU2008139197A/ru
Application granted granted Critical
Publication of RU2393601C1 publication Critical patent/RU2393601C1/ru

Links

Images

Landscapes

  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

Способ преобразования ультракоротких лазерных импульсов во вторую гармонику включает пропускание лазерного импульса через нелинейный кристалл преобразователя. Перед подачей на кристалл лазерный импульс чирпируют по частоте, а полученный импульс второй гармоники компрессируют во времени. При этом длительность импульсов второй гармоники после компрессора определяется из соотношения
Figure 00000008
где τ - длительность импульса на основной частоте, a τch - длительность чирпированного импульса. Технический результат заключается в сокращении в два раза длительности импульса второй гармоники по отношению к исходному фемтосекундному лазерному импульсу с длительностью короче 100 фс с высокой эффективностью преобразования. 3 ил.

Description

Изобретение относится к нелинейным преобразователям частоты лазерного излучения и касается вопросов преобразования ультракоротких лазерных импульсов во вторую гармонику.
Известен способ преобразования лазерных импульсов с длительностью короче 100 фс во вторую гармонику при прохождении излучения через нецентросимметричный кристалл. К недостаткам этого способа преобразования излучения во вторую гармонику относится снижение эффективности преобразования и увеличение длительности импульса второй гармоники (по отношению к исходному лазерному импульсу) при сокращении длительности лазерного импульса [К.Mori, Y.Tamaki, M.Obara, К.Midorikawa "Second-harmonic generation of femtosecond high-intensity Ti:sapphire laser pulses". Journal of Applied Physics, v. 83, pp.2915-2919 (1998)). Основная причина этого заключается в различии групповых скоростей импульсов на основной частоте и второй гармоники и, как следствие, сокращении эффективной длины взаимодействия.
Наиболее близким к заявляемому является способ временной компрессии импульса второй гармоники (сокращение длительности импульса второй гармоники по отношению к импульсу накачки в режиме истощения накачки) при ее генерации в кристаллах по второму типу синхронизма ое-е. Компрессия в такой схеме реализуется за счет различия групповых скоростей импульсов накачки и второй гармоники. При этом групповая скорость необыкновенного импульса второй гармоники должна быть равна среднему арифметическому групповых скоростей обыкновенного и необыкновенного импульсов накачки [Y.Wang, В.Luther-Davies, "Frequency-doubling pulse compressor for picosecond high-power neodymium laser pulses". Opt. Lett., v. 17, pp.1459-1461 (1992)]. Такая схема хорошо работает для импульсов пикосекундной длительности. Для импульсов длительностью короче 100 фс эффективность процесса компрессии снижается в результате воздействия таких эффектов, как дисперсия групповых скоростей, фазовая самомодуляция и чирп импульса. Лишь численными расчетами показано, что при оптимальных параметрах (задержка между импульсами, длина кристалла, угол синхронизма, интенсивность излучения) возможно сжатие импульса с длительностью 50 фс на основной частоте в импульс второй гармоники с длительностью 27 фс [Т.Harimoto, M.Aoyama, К.Yamakawa. "Numerical simulation of self-compression second-harmonic generation in type II potassium dihydrogen phosphate with a time predelay for Yb-doped solid-state lasers", Optics Express, v. 15, pp.17530-17535 (2007)]. Однако эти теоретические расчеты пока не подтверждены экспериментально.
Задача, решаемая изобретением, - сокращение в два раза длительности импульса второй гармоники по отношению к исходному фемтосекундному лазерному импульсу с длительностью короче 100 фс с высокой эффективностью преобразования (в режиме истощения накачки).
Для решения поставленной задачи предложен способ, заключающийся в следующем. Изначально спектрально-ограниченный импульс на основной частоте с длительностью τ пропускается через дисперсионный элемент. Таким способом генерируется импульс с частотным чирпом и длительностью τch, превышающей длительность исходного импульса. Рассмотрим для наглядности (без потери общности) импульс гауссовой формы с линейным чирпом. При таком приближении импульс на основной частоте ω можно представить в виде:
Figure 00000001
,
где: Еω - амплитуда световой волны, А0 - пиковая амплитуда, ω0 - центральная частота и а - частотный чирп.
Тогда после преобразования во вторую гармонику с высокой эффективностью в режиме истощения накачки, когда амплитуда и длительность импульса второй гармоники близка к амплитуде и длительности импульса на основной частоте, импульс второй гармоники описывается выражением:
Figure 00000002
(Здесь мы не рассматриваем процесс преобразования с низкой энергетической эффективностью, при котором длительность импульса второй гармоники меньше длительности импульса накачки в
Figure 00000003
раз.) Отсюда видно, что величина чирпа второй гармоники превосходит чирп на основной частоте в два раза. Это означает уширение спектра импульса второй гармоники по сравнению с накачкой. Используя аналитические выражения для ширины спектра чирпированного гауссова импульса [Jean-Claude Diels, Wolfgang Rudolph. "Ultrashort laser pulse phenomena", Academic Press (2006)], легко показать, что отношение ширины спектра импульса второй гармоники Δν к ширине спектра импульса на основной частоте Δνω составляет
Figure 00000004
В случае, когда длительность чирпированного импульса много больше длительности соответствующего спектрально-ограниченного импульса или, другими словами, когда ширина спектра импульса определяется в основном фазовой модуляцией, спектр чирпированного импульса второй гармоники будет в два раза шире спектра импульса на основной частоте. В результате после компрессора, компенсирующего частотный чирп, импульс становится спектрально-ограниченным с длительностью, обратно-пропорциональной ширине его спектра [Jean-Claude Diels, Wolfgang Rudolph. "Ultrashort laser pulse phenomena", Academic Press (2006)]. Следовательно, длительность спектрально-ограниченного импульса второй гармоники будет связана с длительностью исходного импульса на основной частоте соотношением:
Figure 00000005
В предельном случае, когда длительность чирпированного импульса много больше длительности исходного импульса τch>>τ, длительность компрессированного импульса второй гармоники в два раза короче длительности импульса на основной частоте
Figure 00000006
Схема преобразования импульса во вторую гармонику, реализующая данный способ, показана на Фиг.1.
Она включает:
1. Фемтосекундный лазер
2. Дисперсионный элемент - стретчер
3. Нелинейный кристалл преобразователя
4. Компрессор
Было проведено исследование данного способа преобразования лазерного импульса во вторую гармонику. Эксперименты проводились с использованием фемтосекундной лазерной системы на титанате сапфира. Длительность спектрально-ограниченного лазерного импульса на выходе лазерной системы, построенной по схеме усиления чирпированного импульса, составляла 49 фс (Фиг.2а) при ширине спектра 332 см-1 (Фиг.2б). (Здесь и далее величина длительности импульса и ширина спектра измерены по уровню половины интенсивности). Энергия импульса достигала 100 мкДж.
Исследовалось преобразование во вторую гармонику чирпированного импульса длительностью 600 фс. В данном случае вместо пропускания спектрально-ограниченного импульса через дисперсионный элемент чирп вводился посредством изменения расстояния между решетками компрессора на выходе лазерной системы. Интенсивность накачки на входе кристаллов достигала 50 ГВт/см2. Преобразование во вторую гармонику происходило в режиме насыщения.
Эксперименты, выполненные с использованием в качестве преобразователя одного кристалла ВВО толщиной 200 мкм, показали, что спектральная ширина синхронизма такого кристалла недостаточна для эффективного преобразования всего спектра чирпированного импульса. Для преобразования всего спектра импульса накачки и, соответственно, достижения максимальной ширины спектра излучения второй гармоники была использована многокристальная схема [М.Brown. "Increased spectral bandwidths in nonlinear conversion processes by use of multicrystal designs". Opt. Lett., v. 23, pp.1591-1593 (1998)]. В область фокусировки накачки было последовательно установлено два одинаковых кристалла ВВО с толщиной по 200 мкм. Кристаллы были ориентированы таким образом, чтобы один из них обеспечивал преобразования высокочастотной, а другой - низкочастотной части спектра чирпированного импульса накачки.
На Фиг.3а показан спектр второй гармоники с максимальной шириной, полученной в эксперименте. В данном случае ширина спектра более чем в два раза превышает спектр импульса на основной частоте и составляет величину 920 см-1. Максимальная ширина спектра получена за счет того, что кристаллы были настроены так, чтобы наибольшая эффективность преобразования достигалась на краях спектра импульса накачки. Вследствие этого наблюдается провал в центре спектра второй гармоники. При сужении спектра второй гармоники, что достигалось путем уменьшения угла между оптическими осями кристаллов, форма спектра становилась более близкой к колоколообразной и глубина провала в центре уменьшалась. При максимальной ширине спектра второй гармоники энергетическая эффективность преобразования достигала 40%.
Компрессор чирпированного импульса второй гармоники был изготовлен с помощью двух дифракционных решеток, каждая по 400 штр/мм.
Измеренная с помощью SPIDERa форма компрессированного импульса второй гармоники с максимально широким спектром (Фиг.3а) представлена на Фиг.3б (сплошная линия). Его длительность составила 26 фс. На фиг.3б также показана рассчитанная форма импульса (пунктирная линия) с наименьшей возможной длительностью, соответствующая измеренному спектру второй гармоники (Фиг.3а). Длительность рассчитанного импульса составила 25 фс. Данный импульс получен в предположении равенства фаз всех компонент спектра второй гармоники. Видно, что длительности измеренного и рассчитанного импульсов отличаются на 1 фс. Близки также и формы импульсов. На основании этого можно сделать вывод об отсутствии фазовой модуляции импульса второй гармоники и достижении максимальной степени компрессии.

Claims (1)

  1. Способ преобразования ультракоротких лазерных импульсов во вторую гармонику путем пропускания лазерного импульса через нелинейный кристалл преобразователя, отличающийся тем, что перед подачей на кристалл лазерный импульс чирпируют по частоте, а полученный импульс второй гармоники компрессируют во времени, при этом длительность импульсов второй гармоники после компрессора определяется из соотношения
    Figure 00000007
    ,
    где τ - длительность импульса на основной частоте, a τch - длительность чирпированного импульса.
RU2008139197/28A 2008-10-02 2008-10-02 Способ преобразования ультракоротких лазерных импульсов во вторую гармонику RU2393601C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2008139197/28A RU2393601C1 (ru) 2008-10-02 2008-10-02 Способ преобразования ультракоротких лазерных импульсов во вторую гармонику

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2008139197/28A RU2393601C1 (ru) 2008-10-02 2008-10-02 Способ преобразования ультракоротких лазерных импульсов во вторую гармонику

Publications (2)

Publication Number Publication Date
RU2008139197A RU2008139197A (ru) 2010-04-10
RU2393601C1 true RU2393601C1 (ru) 2010-06-27

Family

ID=42670905

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2008139197/28A RU2393601C1 (ru) 2008-10-02 2008-10-02 Способ преобразования ультракоротких лазерных импульсов во вторую гармонику

Country Status (1)

Country Link
RU (1) RU2393601C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2537511C2 (ru) * 2013-03-27 2015-01-10 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса
EP3182531A1 (en) 2015-12-14 2017-06-21 Uab "Ekspla" Method for generation of ultrashort light pulses
RU2819751C1 (ru) * 2024-02-08 2024-05-23 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ измерения углов настройки кристалла преобразователя частоты лазерного излучения во вторую гармонику для обеспечения фазового синхронизма

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2537511C2 (ru) * 2013-03-27 2015-01-10 федеральное государственное автономное образовательное учреждение высшего образования "Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики" (Университет ИТМО) Способ определения коэффициента квадратичной фазовой модуляции сверхкороткого оптического импульса
EP3182531A1 (en) 2015-12-14 2017-06-21 Uab "Ekspla" Method for generation of ultrashort light pulses
LT6425B (lt) 2015-12-14 2017-07-10 Uab "Ekspla" Ultratrumpųjų šviesos impulsų generavimo būdas ir lazerinis šaltinis
RU2819751C1 (ru) * 2024-02-08 2024-05-23 Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" (Госкорпорация "Росатом") Способ измерения углов настройки кристалла преобразователя частоты лазерного излучения во вторую гармонику для обеспечения фазового синхронизма

Also Published As

Publication number Publication date
RU2008139197A (ru) 2010-04-10

Similar Documents

Publication Publication Date Title
CN112366504B (zh) 一种对偏振不敏感的径向偏振光光参量放大器及放大方法
US9366939B2 (en) Method for generating ultrashort femtosecond pulses in optical parametric oscillator pumped by long pulses
RU2393601C1 (ru) Способ преобразования ультракоротких лазерных импульсов во вторую гармонику
JP2001083558A (ja) 超広帯域光パルス発生方法
EP3182531A1 (en) Method for generation of ultrashort light pulses
Guo et al. Chirped pulse Raman amplification in Ba (NO3) 2 crystals
Didenko et al. Femtosecond pulse compression based on second harmonic generation from a frequency chirped pulse
Gao et al. Optical Parametric Oscillator Based on Silicon Nitride Waveguides
Wang et al. Direct ultrafast parametric amplification pumped by a picosecond thin-disk laser
Marangoni et al. Tunable narrow-bandwidth picosecond pulses by spectral compression of femtosecond pulses in second-order nonlinear crystals
RU2355086C1 (ru) Способ частотного преобразования ультракоротких лазерных импульсов и устройство для его осуществления
EP3913751B1 (en) Laser for nonlinear microscopy comprising a raman wavelength converter
Fu et al. Generation of high-energy mid-infrared pulses at 3.3 μm by dual-chirped optical parametric amplification
Takahashi High Power Mid-Infrared Laser by DC-OPA
Krogen et al. Tunable Few-Cycle Mid-IR Pulses towards Single-Cycle Duration by Adiabatic Frequency Conversion
Didenko et al. Second harmonic generation of spectrally broadened femtosecond ytterbium laser radiation in a gas-filled capillary
Hädrich et al. Peak power scaling towards ultrashort pulses at high repetition rates
Cankaya et al. Adiabatic sum-frequency generation in the visible region
Xu et al. Energy scaling of the single-cycle pulse generation based on DC-OPA
Mackonis et al. Signal-to-idler Energy Conversion from 1.9 to 2.3 µm by Transient Stimulated Raman Chirped-Pulse Amplification
Tóth et al. Design study of two-cycle bandwidth, single-color pumped OPCPA chain
Kessel et al. Generation and optical parametric amplification of near-IR, few-cycle light pulses
Ghotbi et al. Generation of Tunable, Ultrashort Pulses in the near-IR with an OPA System Based on BIBO
Mayer et al. Sub-4-Cycle Laser Pulses from a High-Repetition-Rate, Mid-Infrared OPCPA at 3.4 μm
Mücke et al. Multimillijoule Optically Synchronized and Carrier-Envelope-Phase-Stable Chirped Parametric Amplification at 1.5 µm

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20171003