RU2537466C2 - Способ изготовления материала газового сенсора селективного детектирования н2s и его производных - Google Patents

Способ изготовления материала газового сенсора селективного детектирования н2s и его производных Download PDF

Info

Publication number
RU2537466C2
RU2537466C2 RU2013121266/28A RU2013121266A RU2537466C2 RU 2537466 C2 RU2537466 C2 RU 2537466C2 RU 2013121266/28 A RU2013121266/28 A RU 2013121266/28A RU 2013121266 A RU2013121266 A RU 2013121266A RU 2537466 C2 RU2537466 C2 RU 2537466C2
Authority
RU
Russia
Prior art keywords
sno
air
sensor
derivatives
zno
Prior art date
Application number
RU2013121266/28A
Other languages
English (en)
Other versions
RU2013121266A (ru
Inventor
Александр Михайлович Гаськов
Марина Николаевна РУМЯНЦЕВА
Наталия Андреевна Воробьева
Валерий Владимирович Кривецкий
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет имени М.В. Ломоносова" (МГУ)
Priority to RU2013121266/28A priority Critical patent/RU2537466C2/ru
Publication of RU2013121266A publication Critical patent/RU2013121266A/ru
Application granted granted Critical
Publication of RU2537466C2 publication Critical patent/RU2537466C2/ru

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

Изобретение относится к области нанотехнологии сенсорных материалов и может быть использовано для создания полупроводниковых газовых сенсоров, селективных к содержанию в воздухе сероводорода и его производных. Сущность изобретения состоит в создании наногетерогенного материала на основе нитевидных кристаллов оксидов n-типа проводимости SnO2, ZnO, In2О3 и иммобилизованных на их поверхности нанокластеров оксидов p-типа проводимости CuO, NiO, Со3O4. Способ изготовления включает получение нитевидных кристаллов из пара и пропитку кристаллов растворами солей с последующим отжигом для формирования р-n гетероконтактов. Изобретение обеспечивает повышение чувствительности газового сенсора селективно к H2S и его производным в воздухе.2 з.п. ф-лы, 2 пр.

Description

Область техники, к которой относится изобретение
Изобретение относится к газовым сенсорам, конкретно к устройствам, детектирующим сероводород и его производные в воздухе. Сероводород H2S является продуктом распада органических и биологических веществ, представляет собой газ с неприятным резким запахом, является одним из наиболее токсичных загрязнителей воздуха с широким спектром отравляющего воздействия на человека и животных. На уровне концентраций 170 мг/м3 сероводород полностью парализует обоняние человека за время от 30 до 50 секунд, при более высоких концентрациях сероводород блокирует легкие и вызывает летальный исход. Предельно допустимая концентрация (ПДК) сероводорода в воздухе рабочей зоны составляет 10 мг/м3 (7.1 ppm).
Уровень техники
Для детектирования токсичных газов в воздухе на уровне ПДК широко используются полупроводниковые сенсоры резистивного типа. Наиболее широкое распространение получили сенсорные устройства на основе толстых пленок нанокристаллических диоксида олова SnO2 и оксида цинка ZnO. Механизм действия подобных устройств основан на изменении электропроводности сенсорного слоя в ходе происходящих на его поверхности химических превращений, например взаимодействия сероводорода с хемосорбированным кислородом. Сенсоры на основе SnO2 и ZnO характеризуются высокой чувствительностью, невысокой стоимостью, хорошей скоростью отклика и рядом других преимуществ. В то же время их типичными недостатками являются низкая селективность и недостаточная стабильность. Основной причиной низкой селективности является наличие на поверхности оксидов SnO2 и ZnO активных центров различной природы, которые вызывают отклик чувствительного материала на различные газы в атмосфере. Невысокая стабильность отклика сенсоров при длительном использовании вызвана, в первую очередь, деградацией материала, ростом зерен нанокристаллических оксидов при температуре детектирования. С целью повышения селективности в сенсорных устройствах используются модификаторы на основе металлов платиновой группы, которые в виде кластеров наносят на поверхность зерен полупроводникового оксида. Стабильность сенсоров может быть улучшена путем замены структуры чувствительного слоя с поликристаллической на монокристаллическую структуру нитевидных кристаллов SnO2 или ZnO (И.А.Мясников, В.Л.Сухрев, Л.Ю.Куприянов, С.А.Завьялов. Полупроводниковые сенсоры в физико-химических исследованиях, М.: Наука, 1991).
Известно сенсорное устройство (Патент США №3,901,067, 1975) для индикации сероводорода, включающее изолирующую подложку с измерительными электродами, чувствительный слой поликристаллического оксида олова, легированного алюминием, толщиной 4000 Ǻ и нагревательный элемент. Указанное устройство обеспечивает чувствительность к концентрации сероводорода 1 ppm в воздухе при умеренной температуре нагревательного элемента (130°С). Недостатками предложенного устройства являются значительное время возврата в исходное состояние, обычно несколько минут. Для улучшения динамических свойств сенсора повышают рабочую температуру до 400°С, что приводит к невоспроизводимости измерений и существенно сокращает время гарантированной работы сенсора.
Описано сенсорное устройство для индикации сероводорода на основе множества отдельных нитевидных кристаллов ZnO диаметром до 30 нм, закрепленных на подложке и объединенных между собой двумя электрическими контактами на противоположных концах нанонитей (Патент США №8030185, В2, 2011). Способ заключается в нанесении на нити одновременно множества островков диаметром 10-50 нм различных металлов: платины (Pt), палладия (Pd), никеля (Ni) и кобальта (Со). Использование массива нитевидных нанокристаллов позволяет избежать деградации структуры и существенно повысить величину удельной поверхности чувствительного слоя. Наличие одновременно на поверхности нитевидных кристаллов островков разных по своей природе каталитических металлов существенно повышает чувствительность материала к токсичным газам и позволяет детектировать суммарно низкие концентрации вредных примесей в воздухе. Способ относится к газовым сенсорам, в которых измеряется сопротивление массива нитевидных кристаллов с нанесенными островками металлов в воздухе, содержащем газообразные примеси. Недостатком метода является существенное ограничение в селективности сенсора особенно при детектировании газов-восстановителей СО, H2S, NH3. Несмотря на высокую чувствительность невозможно в сигнале сенсора выделить вклад той или иной группы веществ, например, серосодержащих молекул, что является серьезным недостатком, особенно при мониторинге качества воздуха в крупных городах, в местах массового скопления людей, вблизи химических предприятий и заводов по переработке нефти и газа.
Наиболее близким по технической сущности и достигаемому эффекту является способ создания сенсорного материала (Патент США №20120097917 А1, 2012), в котором в качестве активного компонента используется множество (система) нанонитей оксида цинка ZnO или оксида олова SnO2, с нанесенными кластерами благородных металлов Au, Pt, Pd. Нити вертикально закреплены на изолирующей подложке с контактами. Преимуществом устройства являются высокая чувствительность к сероводороду с концентрацией на уровне ppb и низкая (комнатная) рабочая температура. Чувствительный слой характеризуется также высокой стабильностью структуры. Существенным недостатком устройства является его низкая селективность, сенсор реагирует на присутствие в воздухе не только H2S, но и других газов-восстановителей СО, NH3, Н2 и газа-окислителя NO2. Для повышения селективности предлагается анализировать время отклика сенсора одновременно с изменением электропроводности. Однако в случае смеси газов выделить вклад того или иного загрязнителя не представляется возможным.
Раскрытие изобретения
Техническим эффектом настоящего изобретения является улучшение селективности полупроводниковых сенсорных материалов при детектировании сероводорода и его производных в воздухе при обеспечении высокой чувствительности и стабильности структуры чувствительного слоя сенсора.
Поставленная задача была решена настоящим изобретением. Способ изготовления материала газового сенсора для селективного детектирования H2S и его производных осуществляют согласно изобретению получением нитевидных кристаллов SnO2, ZnO, In2O3 проводимости n-типа, пропиткой этих кристаллов растворами солей Cu, Ni, Со с последующим отжигом до формирования оксидов CuO, NiO, Cо3O4 проводимости р-типа и образования р-n гетероконтактов. Полученный материал предпочтительно наносят на изолирующую подложку из поликристаллического оксида алюминия с платиновыми измерительными электродами на лицевой стороне и платиновым тонкопленочным нагревателем на обратной стороне. Полученный материал также предпочтительно наносят в виде пасты со связующим, в качестве которого используют раствор а-терпинеола в спирте, после чего производят нагревание пасты при температуре 450°С -500°С в течение 6 часов для удаления связующего.
Осуществление изобретения
В предпочтительном варианте осуществления изобретения нитевидные кристаллы SnO2, In2O3 или ZnO получают из пара на подложке поликристаллического Al2O3 в горизонтальном проточном реакторе при температуре конденсации 950°С-1030°С в атмосфере инертного газа с содержанием кислорода 0.05-0.1 об.%. Нанесение на поверхность нитевидных кристаллов кластеров оксидов меди, никеля и кобальта проводят методом пропитки множества нитевидных кристаллов растворами ацетатов или нитратов металлов с последующей сушкой при температуре 100°С и отжигом в атмосфере кислорода при температуре 250°С в течение 24 часов. После окончания отжига нитевидные кристаллы отделяют механически от подложки.
Возможно получение нанонитей SnO2, In2Oз или ZnO и нанесение кластеров оксидов меди, никеля и кобальта на их поверхность методом химического осаждения из пара (CVD) в вакуумном реакторе с использованием алкоголятов и комплексных соединений в качестве прекурсоров. В качестве исходных веществ используют летучие алкоголяты и комплексные соединения, такие как ди- и тетра трет-бутилаты олова: Sn(OtBu)2 и Sn(OtBu)4, ацетилацетонаты и др. Синтез нанонитей проводится в условиях высокого вакуума (10-6 мбар). Температура испарения металл органического прекурсора составляет 50-200°С, температура конденсации 500-800°С.
В результате синтеза получают наногетерогенные материалы, состоящие из нитевидных кристаллов полупроводниковых оксидов n-типа проводимости с иммобилизованными на их поверхности кластерами оксидов металлов p-типа проводимости. Содержание оксидов p-типа проводимости в наногетерогенных материалах составляет 0.6-0.8 мол.%.
В зависимости от состава могут быть получены различные сенсорные материалы: SnO2/CuO, SnO2/NiO, SnO2/Co3O4, ZnO/Co3O4, ZnO/CuO, ZnO/NiO, In2O3/Co3O4, In2O3/CuO, In2O3/NiO.
Полученные настоящим способом материалы характеризуются наличием на поверхности нитевидного кристалла системы р-n гетероконтактов, которые формируют энергетические барьеры для транспорта электронов. Следствием образования р-n переходов является существенное повышение электрического сопротивления нитевидных кристаллов в атмосфере чистого воздуха. В присутствии следовых концентраций сероводорода в воздухе на поверхности нитей при температуре 150-350°С происходит селективная химическая реакция взаимодействия кластеров оксидов p-типа проводимости CuO, NiO, Co3O4 с сероводородом, которая приводит к образованию хорошо проводящих электрический ток сульфидов металлов. Результатом этой реакции является снятие р-n переходов и связанных с ними энергетических барьеров для транспорта электронов и как следствие резкое уменьшение сопротивления нитей. На воздухе в отсутствие сероводорода электрические свойства нитевидных кристаллов возвращаются в начальное состояние в результате обратной реакции взаимодействия сульфидов металлов с кислородом с образованием оксидов CuO, NiO, Co3O4 p-типа проводимости. Многократное циклирование состава атмосферы: чистый воздух/10 ppm H2S свидетельствует о полной обратимости эффекта изменения электрического сопротивления. Установлено, что нитевидные кристаллы n-типа проводимости SnO2, ln2O3, ZnO в условиях следовой концентрации сероводорода и температуры 150-350°С не вступают в реакции с сероводородом с образованием сульфидов.
Полученные сенсорные материалы использовали для изготовления и тестирования газовых сенсоров, для этого материалы наносили на микроэлектронный чип, включающий в себя в качестве основных элементов изолирующую подложку из поликристаллического A12O3 с платиновыми измерительными электродами на лицевой стороне и платиновым тонкопленочным нагревателем на обратной стороне. Чувствительный слой на основе нитевидных кристаллов наносили между измерительными электродами. Сенсорные свойства определяли измерением сопротивления чувствительного слоя в зависимости от содержания в воздухе сероводорода.
Сигнал сенсора рассчитывали как отношение проводимости сенсора в присутствии сероводорода в воздухе к проводимости сенсора на воздухе. Установлено, что предложенные настоящим изобретением материалы проявляют высокую чувствительность к содержанию в воздухе сероводорода и его производных на уровне предельно допустимых концентраций рабочей зоны.
Пример 1. Детектирование H2S нитевидными кристаллами SnO2 и наногетерогенными материалами SnO2/CuO, SnO2/NiO, SnO2/Co3O4
Сенсоры на основе массива нитевидных кристаллов SnO2 и наногетерогенных материалов SnO2/CuO, SnO2/NiO, SnO2/Co3O4, подключенные к прибору для одновременного измерения электропроводности 4 сенсоров, помещали в ячейку, в которую пропускали чистый воздух и затем газовую смесь, содержащую 2 ppm H2S в воздухе. Так как H2S газ-восстановитель, то в присутствии сероводорода электропроводность чувствительного слоя n-типа проводимости увеличивалась, а в атмосфере чистого воздуха уменьшалась. Детектирование H2S проводили при температуре 300°С. Исследование сенсорных свойств проводили при циклическом изменении потока воздуха и потока газовой смеси, содержащей H2S. Суммарный поток газа над сенсором оставался постоянным и составлял 100 мл/мин.
В результате эксперимента установлено, что сенсорный сигнал, рассчитанный как описано выше, на 2 ppm H2S при нанесении на поверхность нитей n-SnO2 кластеров р-CuO увеличивается в 21 раз, при нанесении кластеров р-NiO - в 13 раз и при нанесении кластеров р-Co3O4 - в 28 раз.
Пример 2. Детектирование газов восстановителей СО и NH3 и газа окислителя NO2 нитевидными кристаллами SnO2 и наногетерогенными материалами SnO2/Co3O4
Сенсоры на основе массива нитевидных кристаллов SnO2 и наногетерогенных материалов 8nO2/Co3O4, подключенные к прибору для измерения электропроводности, помещали в ячейку, в которую последовательно пропускали чистый воздух и затем газовые смеси, содержащие 21 ppm NH3 в воздухе, 14.1 ppm СО в воздухе или 1.7 ppm NO2 в воздухе. Время экспозиции сенсоров в атмосфере загрязнителей составляло 5 минут, в чистом воздухе 15 минут. Так как NH3 и СО газы-восстановители, то их присутствие в воздухе приводит к повышению величины электропроводности чувствительного слоя n-типа проводимости по сравнению с электропроводностью в чистом воздухе, в то время как присутствие в воздухе газа-окислителя NO2 приводит к понижению величины электропроводности. Детектирование проводили при температуре 300°С. Суммарный поток газа над сенсором оставался постоянным и составлял 100 мл/мин.
В результате эксперимента было установлено, во всех случаях при нанесении на поверхность нитей n-SnO2 кластеров р-Co3O4 сенсорный сигнал уменьшается: при детектировании СО в 10 раз, при детектировании NH3 в 1.2 раза и при детектировании NO2 в 80 раз.

Claims (3)

1. Способ изготовления материала газового сенсора для селективного детектирования H2S и его производных в воздухе, включающий получение нитевидных кристаллов проводимости n-типа на основе SnO2, ZnO, In2О3, пропитку этих кристаллов растворами солей Cu, Ni, Со с последующим отжигом до формирования оксидов проводимости р-типа CuO, NiO, Сo3О4 и образованием р-n гетероконтактов.
2. Способ по п.1, отличающийся тем, что полученный материал дополнительно наносят на изолирующую подложку из поликристаллического оксида алюминия с платиновыми измерительными электродами на лицевой стороне и платиновым тонкопленочным нагревателем на обратной стороне.
3. Способ по п.1, отличающийся тем, что полученный материал наносят в виде пасты со связующим, в качестве которого используют раствор а-терпинеола в спирте, после чего производят нагревание пасты при температуре 450°С в течение 6 часов для удаления связующего.
RU2013121266/28A 2013-05-08 2013-05-08 Способ изготовления материала газового сенсора селективного детектирования н2s и его производных RU2537466C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013121266/28A RU2537466C2 (ru) 2013-05-08 2013-05-08 Способ изготовления материала газового сенсора селективного детектирования н2s и его производных

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013121266/28A RU2537466C2 (ru) 2013-05-08 2013-05-08 Способ изготовления материала газового сенсора селективного детектирования н2s и его производных

Publications (2)

Publication Number Publication Date
RU2013121266A RU2013121266A (ru) 2014-11-20
RU2537466C2 true RU2537466C2 (ru) 2015-01-10

Family

ID=53288321

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013121266/28A RU2537466C2 (ru) 2013-05-08 2013-05-08 Способ изготовления материала газового сенсора селективного детектирования н2s и его производных

Country Status (1)

Country Link
RU (1) RU2537466C2 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132282A (zh) * 2017-12-20 2018-06-08 上海纳米技术及应用国家工程研究中心有限公司 连续双面异质结夹层结构的制备方法及其产品和应用
RU2682575C1 (ru) * 2018-05-07 2019-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ изготовления хеморезистора на основе наноструктур оксида никеля электрохимическим методом
RU2684423C1 (ru) * 2018-05-21 2019-04-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ изготовления хеморезистора на основе наноструктур оксида цинка электрохимическим методом
CN109632893A (zh) * 2019-01-11 2019-04-16 东北大学 一种基于p-n异质结结构NiO-In2O3复合纳米球的气体传感器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398464A (zh) * 2018-03-10 2018-08-14 吉林大学 一种基于中空球结构La掺杂氧化铟纳米敏感材料的H2S传感器及其制备方法
CN113277551A (zh) * 2021-05-19 2021-08-20 郑州大学 一种复合钛酸锂镧材料、制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2006845C1 (ru) * 1991-06-26 1994-01-30 Алексей Вячеславович Махин Способ изготовления чувствительного элемента газовых датчиков
SU1508751A1 (ru) * 1987-07-24 1995-12-20 Ереванский государственный университет Материал чувствительного элемента датчика газов на основе керамики
RU2008142447A (ru) * 2008-10-28 2010-05-10 Государственное учебно-научное учреждение химический факультет Московского государственного университета имени М.В. Ломоносова (RU) Способ приготовления материала газового сенсора на основе диоксида олова
US8236569B2 (en) * 2007-08-07 2012-08-07 University Of South Carolina Multi-dimensional integrated detection and analysis system (MIDAS) based on microcantilvers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1508751A1 (ru) * 1987-07-24 1995-12-20 Ереванский государственный университет Материал чувствительного элемента датчика газов на основе керамики
RU2006845C1 (ru) * 1991-06-26 1994-01-30 Алексей Вячеславович Махин Способ изготовления чувствительного элемента газовых датчиков
US8236569B2 (en) * 2007-08-07 2012-08-07 University Of South Carolina Multi-dimensional integrated detection and analysis system (MIDAS) based on microcantilvers
RU2008142447A (ru) * 2008-10-28 2010-05-10 Государственное учебно-научное учреждение химический факультет Московского государственного университета имени М.В. Ломоносова (RU) Способ приготовления материала газового сенсора на основе диоксида олова

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108132282A (zh) * 2017-12-20 2018-06-08 上海纳米技术及应用国家工程研究中心有限公司 连续双面异质结夹层结构的制备方法及其产品和应用
CN108132282B (zh) * 2017-12-20 2020-09-18 上海纳米技术及应用国家工程研究中心有限公司 连续双面异质结夹层结构的制备方法及其产品和应用
RU2682575C1 (ru) * 2018-05-07 2019-03-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ изготовления хеморезистора на основе наноструктур оксида никеля электрохимическим методом
EA034568B1 (ru) * 2018-05-07 2020-02-20 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." Способ изготовления хеморезистора на основе наноструктур оксида никеля электрохимическим методом
RU2684423C1 (ru) * 2018-05-21 2019-04-09 Федеральное государственное бюджетное образовательное учреждение высшего образования "Саратовский государственный технический университет имени Гагарина Ю.А." (СГТУ имени Гагарина Ю.А.) Способ изготовления хеморезистора на основе наноструктур оксида цинка электрохимическим методом
CN109632893A (zh) * 2019-01-11 2019-04-16 东北大学 一种基于p-n异质结结构NiO-In2O3复合纳米球的气体传感器
CN109632893B (zh) * 2019-01-11 2022-02-25 东北大学 一种基于p-n异质结结构NiO-In2O3复合纳米球的气体传感器

Also Published As

Publication number Publication date
RU2013121266A (ru) 2014-11-20

Similar Documents

Publication Publication Date Title
RU2537466C2 (ru) Способ изготовления материала газового сенсора селективного детектирования н2s и его производных
Liu et al. A high-response formaldehyde sensor based on fibrous Ag-ZnO/In2O3 with multi-level heterojunctions
Öztürk et al. Fabrication of ZnO nanorods for NO2 sensor applications: effect of dimensions and electrode position
Cao et al. Ethanol sensing behavior of Pd-nanoparticles decorated ZnO-nanorod based chemiresistive gas sensors
Chen et al. In-situ growth of ZnO nanowire arrays on the sensing electrode via a facile hydrothermal route for high-performance NO2 sensor
Hosseini et al. Room temperature H2S gas sensor based on rather aligned ZnO nanorods with flower-like structures
Liu et al. Improved selective acetone sensing properties of Co-doped ZnO nanofibers by electrospinning
Comini et al. Tin oxide nanobelts electrical and sensing properties
Pawar et al. Synthesis of multi-dimensional ZnO nanostructures in aqueous medium for the application of gas sensor
Ruhland et al. Gas-kinetic interactions of nitrous oxides with SnO2 surfaces
Abdullah et al. High performance room temperature GaN-nanowires hydrogen gas sensor fabricated by chemical vapor deposition (CVD) technique
Cao et al. Preparation and gas-sensing properties of pure and Nd-doped ZnO nanorods by low-heating solid-state chemical reaction
Salunkhe et al. Liquefied petroleum gas (LPG) sensing properties of nanocrystalline CdO thin films prepared by chemical route: effect of molarities of precursor solution
Tian et al. A low temperature gas sensor based on Pd-functionalized mesoporous SnO 2 fibers for detecting trace formaldehyde
Punetha et al. Ultrasensitive NH 3 gas sensor based on Au/ZnO/n-Si heterojunction Schottky diode
RU2464554C1 (ru) Газовый сенсор для индикации оксидов углерода и азота
Khan et al. Reliable anatase-titania nanoclusters functionalized GaN sensor devices for UV assisted NO2 gas-sensing in ppb level
Wang et al. Room-Temperature Chemiresistive Effect of ${\rm TiO} _ {2}\!-\!{\rm B} $ Nanowires to Nitroaromatic and Nitroamine Explosives
Hu et al. Batch fabrication of formaldehyde sensors based on LaFeO3 thin film with ppb-level detection limit
Patil et al. Room temperature ammonia gas sensing using MnO 2-modified ZnO thick film resistors
Samerjai et al. NO2 gas sensing of flame-made Pt-loaded WO3 thick films
Ramgir et al. NO2 sensor based on Al modified ZnO nanowires
Zhu et al. High-performance ethanol sensor based on In2O3 nanospheres grown on silicon nanoporous pillar array
Hikku et al. Al-Sn doped ZnO thin film nanosensor for monitoring NO2 concentration
Ferro et al. Gas-sensing properties of sprayed films of (CdO)/sub x/(ZnO)/sub 1-x/mixed oxide