RU2536101C1 - Многопроходное импульсное лазерное устройство - Google Patents

Многопроходное импульсное лазерное устройство Download PDF

Info

Publication number
RU2536101C1
RU2536101C1 RU2013120611/28A RU2013120611A RU2536101C1 RU 2536101 C1 RU2536101 C1 RU 2536101C1 RU 2013120611/28 A RU2013120611/28 A RU 2013120611/28A RU 2013120611 A RU2013120611 A RU 2013120611A RU 2536101 C1 RU2536101 C1 RU 2536101C1
Authority
RU
Russia
Prior art keywords
mirror
lens
optical axis
diaphragm assembly
holes
Prior art date
Application number
RU2013120611/28A
Other languages
English (en)
Other versions
RU2013120611A (ru
Inventor
Игорь Иванович Соломатин
Николай Васильевич Жидков
Original Assignee
Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом"
Федеральное Государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики-ФГУП "РФЯЦ-ВНИИЭФ"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом", Федеральное Государственное унитарное предприятие "Российский Федеральный ядерный центр-Всероссийский научно-исследовательский институт экспериментальной физики-ФГУП "РФЯЦ-ВНИИЭФ" filed Critical Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом"-Госкорпорация "Росатом"
Priority to RU2013120611/28A priority Critical patent/RU2536101C1/ru
Publication of RU2013120611A publication Critical patent/RU2013120611A/ru
Application granted granted Critical
Publication of RU2536101C1 publication Critical patent/RU2536101C1/ru

Links

Images

Landscapes

  • Lasers (AREA)

Abstract

Изобретение относится к лазерной технике. Многопроходное импульсное лазерное устройство включает импульсный задающий генератор, фокусирующую линзу, пространственный фильтр, состоящий из двух линз и размещенного между ними диафрагменного узла с несколькими отверстиями, одно из которых является первым и предназначено для заведения луча от задающего генератора, а другие отверстия предназначены для заведения отраженных лучей, заводящее зеркало, размещенное перед первым отверстием диафрагменного узла, отражатель лазерных лучей в виде первого глухого торцевого зеркала, которое установлено в фокальной плоскости линзы пространственного фильтра со стороны заводящего зеркала. При этом оптическая ось торцевого глухого зеркала и линзы сдвинута от центра симметрии диафрагменного узла в направлении, перпендикулярном направлению сдвига оптической оси системы отвода и возврата лучей на расстояние, равное половине расстояния между соседними отверстиями диафрагменного узла. Также устройство содержит систему отвода и возврата лучей, состоящую из отводящего и возвращающего зеркала, размещенного перед частью отверстий, предназначенных для заведения отраженных лучей, линзы и второго торцевого глухого зеркала, оптическая ось которых сдвинута на расстояние, равное половине расстояния между соседними отверстиями диафрагменного узла. На выходе устройства установлен дополнительный отражатель лазерных лучей в виде частично прозрачного зеркала, размещенного в фокальной плоскости другой линзы пространственного фильтра, оптическая ось которых проходит через центр симметрии диафрагменного узла. Технический результат заключается в обеспечении возможности получения на выходе устройства серии импульсов с изменяющимся направлением распространения. 2 з.п. ф-лы, 3 ил.

Description

Изобретение относится к лазерной технике, преимущественно к импульсным лазерным системам, и может быть использовано в системах, позволяющих создать серию импульсов с изменяющимся направлением распространения.
Проблема необходимости создания таких лазерных устройств стоит достаточно остро для целей зондирования, получения пространственных структур и обработки поверхностей.
Известно лазерное устройство, в котором активный элемент расположен между двумя сферическими зеркалами, обеспечивающими многократное прохождение усиливаемого излучения по активному элементу. Вход излучения в усилитель осуществляется через отверстие в центре одного из зеркал. Вывод излучения производится за счет изменения расходимости и за счет меньших размеров второго зеркала [МПК H01S 3/08, авт. свид. SU №1771026, 1990].
Недостатки такого технического решения заключаются в том, что усиленное излучение повторяет неоднородности коэффициента усиления среды активного элемента, поскольку для большинства сред активных элементов практически невозможно избежать вариаций инверсной заселенности в направлении, перпендикулярном направлению распространения излучения (оси-системы). Выходящее излучение по направлению совпадает с направлением распространения излучения на предшествующих последнему проходах, что приводит за счет дифракции на меньшем зеркале к попаданию этого излучения в выходное. Может происходить также и обратное - доля выходного излучения попадает в излучение предыдущих проходов, что делает устройство склонным к самовозбуждению. Дифракция на выходном зеркале приводит также к появлению неоднородностей в распределении выходного пучка. Направление выходного пучка весьма чувствительно к нестабильности положения зеркал.
Известно другое многопроходное импульсное лазерное устройство, выбранное в качестве прототипа, как наиболее близкое по количеству сходных признаков и решаемой задаче [Французская лазерная установка «Мегаджоуль» с четырехпроходным усилителем лазерного излучения. Laser megajoule project and impact on the inertial fusion program, Bettinger, A., Decroisette, M. Fusion Engineering and Design 46 (2-4), pp.457-460, 1999]. Известное устройство включает импульсный задающий генератор, фокусирующую линзу, пространственный фильтр, состоящий из двух линз и размещенного между ними диафрагменного узла с несколькими отверстиями, одно из которых является первым и предназначено для заведения луча от задающего генератора, а другие отверстия предназначены для заведения отраженных лучей, заводящее зеркало, размещенное перед первым отверстием диафрагменного узла, отражатель лазерных лучей в виде первого глухого торцевого зеркала, размещенного в фокальной плоскости одной из линз пространственного фильтра, систему отвода и возврата лучей, состоящую из отводящего и возвращающего зеркала, размещенного перед частью отверстий, предназначенных для заведения отраженных лучей, линзы и второго торцевого глухого зеркала, оптическая ось которых сдвинута на расстояние, равное половине расстояния между соседними отверстиями диафрагменного узла.
Известная конструкция позволяет из одиночного импульса задающего генератора создать серию импульсов с изменяющимся направлением распространения, но без вывода их из устройства и дальнейшего использования.
Техническим результатом заявляемого изобретения является расширение функциональных возможностей - получение на выходе серии импульсов с изменяющимся направлением распространения.
Указанный технический результат достигается за счет того, что в многопроходном импульсном лазерном устройстве, включающем импульсный задающий генератор, фокусирующую линзу, пространственный фильтр, состоящий из двух линз и размещенного между ними диафрагменного узла с несколькими отверстиями, одно из которых является первым и предназначено для заведения луча от задающего генератора, а другие отверстия предназначены для заведения отраженных лучей, заводящее зеркало, размещенное перед первым отверстием диафрагменного узла, отражатель лазерных лучей в виде первого глухого торцевого зеркала, размещенного в фокальной плоскости одной из линз пространственного фильтра, систему отвода и возврата лучей, состоящую из отводящего и возвращающего зеркала, размещенного перед частью отверстий, предназначенных для заведения отраженных лучей, линзы и второго торцевого глухого зеркала, оптическая ось которых сдвинута на расстояние, равное половине расстояния между соседними отверстиями диафрагменного узла,
первое торцевое глухое зеркало установлено в фокальной плоскости линзы пространственного фильтра со стороны заводящего зеркала, при этом оптическая ось торцевого глухого зеркала и линзы сдвинута от центра симметрии диафрагменного узла в направлении, перпендикулярном направлению сдвига оптической оси системы отвода и возврата лучей на расстояние, равное половине расстояния между соседними отверстиями диафрагменного узла, а на выходе устройства установлен дополнительный отражатель лазерных лучей в виде частично прозрачного зеркала, размещенного в фокальной плоскости другой линзы пространственного фильтра, оптическая ось которых проходит через центр симметрии диафрагменного узла.
Отводящее и возвращающее зеркало может быть установлено перед отверстиями диафрагменного узла, размещенными в одном ряду с первым отверстием.
Диафрагменный узел может быть выполнен в виде решетки, с количеством отверстий, превышающим 4, при этом они выполнены с постоянным шагом.
Установка первого торцевого глухого зеркала в фокальной плоскости линзы пространственного фильтра со стороны заводящего зеркала необходима для осуществления сканирования лазерных пучков в горизонтальном направлении при реализации схемы построения многопроходных систем лазерных импульсов с пространственным разделением пучков в дальней зоне.
Сдвиг оптической оси торцевого глухого зеркала и линзы от центра симметрии диафрагменного узла в направлении, перпендикулярном направлению сдвига оптической оси системы отвода и возврата лучей на расстояние, равное половине расстояния между соседними отверстиями диафрагменного узла, необходим для формирования последовательности импульсов с необходимым угловым сканированием и временной задержкой.
Установка на выходе устройства дополнительного отражателя лазерных лучей в виде частично прозрачного зеркала, размещенного в фокальной плоскости другой линзы пространственного фильтра, оптическая ось которых проходит через центр симметрии диафрагменного узла, необходима для отражения и вывода лучей из устройства при реализации схемы построения многопроходных систем лазерных импульсов с пространственным разделением пучков в дальней зоне.
Установка отводящего и возвращающего зеркала перед отверстиями диафрагменного узла, размещенными в одном ряду с первым отверстием, позволяет упростить оптическую схему при ее функционировании как размножителя.
Выполнение диафрагменного узла в виде решетки, с количеством отверстий, превышающим 4, при этом они выполнены с постоянным шагом, позволяет реализовать на выходе лазера как организацию последовательности импульсов из одиночного импульса задающего генератора, так и их пространственную ориентацию.
На фиг.1 представлена схема заявляемого устройства; на фиг.2 - схема распространения лазерного излучения для последовательности 9-ти импульсов в плоскости диафрагмы; на фиг.3 - для последовательности 100 импульсов.
Примером конкретного выполнения заявляемого многопроходного импульсного лазерного устройства может служить оптическая мультиплексная система, установленная на выходе твердотельного лазера и позволяющая из одиночного импульса задающего генератора создать серию импульсов малой энергии, распространяющихся под небольшим углом относительно друг друга и задержанных по времени. Основным преимуществом этой системы является возможность ее работы с малыми апертурами и при относительно слабых энергетических нагрузках. Предлагаемая система позволяет далее усилить набор разнонаправленных импульсов в силовом усилителе большой апертуры и реализовать на выходе лазера последовательности мощных разнонаправленных импульсов.
Усилительный тракт усиливает «сноп» разнонаправленных лазерных импульсов («сноп» рассматривается как матрица углов распространения лазерных пучков, например, размерностью 5×20 из 100 импульсов).
Для прохождения «снопа» лазерных импульсов по тракту усиления оптическая схема лазера реализуется по принципу периодической трансляции изображения.
При рассмотрении вариантов системы сканирования предполагается, что лазерный пучок имеет расходимость 5 дифракционных размеров, скорость сканирования или угловое расстояние между соседними во времени идущими лазерными импульсами также составляет 5 дифракционных размеров.
Основой мультиплексной системы является схема построения многопроходных систем усиления лазерных импульсов с пространственным разделением пучков в дальней зоне. Для простоты понимания работы рассмотрена система с размножением на девять проходов. Схема размножения лазерных пучков на большее количество строится по аналогичному принципу.
Система состоит из зеркал М1-М5, линз L1-L4, диафрагменного узла D и усилителя (активной среды) А. Зеркала М1-M3 расположены на расстоянии 1,5 м и предназначены для формирования последовательности импульсов с необходимым угловым сканированием и временной задержкой. Вывод излучения из системы осуществляется через частично прозрачное зеркало M1. С помощью зеркала М4 осуществляется ввод излучения в систему, а М5 служит для вывода и ввода излучения в реверсор (узел отвода и возврата излучения). Зеркало М2 осуществляет сканирование лазерных пучков в горизонтальном направлении. Зеркало реверсора M3 осуществляет сканирование лазерных пучков в вертикальном направлении. Линзы L1-L4 с фокусным расстоянием 38 см осуществляют фокусировку пучков в зоне диафрагмы и трансляцию изображения пучков в плоскостях М1-M3. Назначение усилителя А - компенсация потерь энергии в последовательности лазерных импульсов при выводе излучения из устройства.
Работа заявляемого устройства заключается в следующем.
На вход устройства подается одиночный импульс задающего генератора, который фокусируется линзой L4 и с помощью зеркала М4 направляется в отверстие 1 диафрагмы. Пройдя диафрагму, пучок расширяется и падает на полупрозрачное зеркало M1. Пучок, прошедший зеркало, является первым выходным пучком. Отраженный пучок, пройдя линзу L1, направляется в отверстие 9 диафрагмы (D9), коллимируется линзой L2, отражается от зеркала М2 и направляется сквозь линзу L2 на отверстие 2 диафрагмы (D2). Затем пучок коллимируется линзой L1 и направляется на полупрозрачное выходное зеркало M1. Часть излучения, прошедшего выходное зеркало, образует второй выходной пучок. Отраженная часть пучка проделывает путь, аналогичный пути пучка после первого отражения от зеркала M1, но при этом проходит последовательно путь: L1 - отверстие 8(D8) - L2 - М2 - L2 - отверстие 3(D3) - L1 - M1. Таким образом, сформирован третий лазерный пучок и организована «строчка» лазерных пучков с изменяющимся направлением распространения. При этом угловое расстояние между пучками будет определяться взаимной ориентацией зеркал. Далее в качестве примера рассмотрено устройство с размножением пучков на 3×3. В этом случае отраженный от M1 пучок направляется на отверстие 7 диафрагмы и выводится с помощью зеркала М5 в реверсор. Из реверсора пучок направляется на отверстие 4(D4). Здесь процесс формирования направлений распространения пучков повторяется для второй «строчки».
На символьном языке трассировка пучков будет выглядеть следующим образом:
→L4→М4→
→D1→L1→M1→L1→D9→L2→>М2→L2→
→D2→L1→M1→L1→D8→L2→М2→L2→
→D3→L1→M1→L1→D7→М5→L3→M3→L3→М5→
→D4→L1→M1→L1→D6→L2→М2→L2→
→D5→L1→M1→L1→D5→L2→М2→L2→
→D6→L1→M1→L1→D4→М5→L3→M3→L3→М5→
→D7→L1→M1→L1→D3→L2→М2→L2→
→D8→L1→M1→L1→D2→L2→М2→L2→
→D9→L1→M1→L1→D1→
→М4→L4→
Усилительный тракт лазера должен быть рассчитан на усиление лазерных пучков, идущих под углом к оси усилителя. Размеры усилителя вносят ограничения на угловые параметры в случае их работы со «снопом» лазерных импульсов. Характерная длина силовых усилителей ограничивает угловой раствор пучков. Это значит то, что без виньетирования пучков через усилитель может пройти «сноп» из импульсов с определенным угловым раствором в вертикальном и горизонтальном направлениях при условии, что вершина или точка, в которой возникает «сноп», находится непосредственно в центре усилителя.
Для получения пространственно-временных структур требуемой геометрии наиболее оптимально организовать «сноп» из 100 импульсов в виде матрицы размерностью 5×20 при требуемом угле между соседними лазерными пучками и их эквидистантном позиционировании.
В этом случае карта распространения пучков в мультиплексоре представлена на рисунке 3.
Т.о. реализована возможность создания серии разнонаправленных мощных лазерных импульсов, создающих пространственно-временную структуру.
Данное заявляемое устройство является пассивным, т.е. не требует применения мощных высокочастотных электрических генераторов.

Claims (3)

1. Многопроходное импульсное лазерное устройство, включающее импульсный задающий генератор, фокусирующую линзу, пространственный фильтр, состоящий из двух линз и размещенного между ними диафрагменного узла с несколькими отверстиями, одно из которых является первым и предназначено для заведения луча от задающего генератора, а другие отверстия предназначены для заведения отраженных лучей, заводящее зеркало, размещенное перед первым отверстием диафрагменного узла, отражатель лазерных лучей в виде первого глухого торцевого зеркала, размещенного в фокальной плоскости одной из линз пространственного фильтра, систему отвода и возврата лучей, состоящую из отводящего и возвращающего зеркала, размещенного перед частью отверстий, предназначенных для заведения отраженных лучей, линзы и второго торцевого глухого зеркала, оптическая ось которых сдвинута на расстояние, равное половине расстояния между соседними отверстиями диафрагменного узла, отличающееся тем, что первое торцевое глухое зеркало установлено в фокальной плоскости линзы пространственного фильтра со стороны заводящего зеркала, при этом оптическая ось торцевого глухого зеркала и линзы сдвинута от центра симметрии диафрагменного узла в направлении, перпендикулярном направлению сдвига оптической оси системы отвода и возврата лучей на расстояние, равное половине расстояния между соседними отверстиями диафрагменного узла, а на выходе устройства установлен дополнительный отражатель лазерных лучей в виде частично прозрачного зеркала, размещенного в фокальной плоскости другой линзы пространственного фильтра, оптическая ось которых проходит через центр симметрии диафрагменного узла.
2. Устройство по п.1, отличающееся тем, что отводящее и возвращающее зеркало установлено перед отверстиями диафрагменного узла, размещенными в одном ряду с первым отверстием.
3. Устройство по п.1. отличающееся тем, что диафрагменный узел выполнен в виде решетки, с количеством отверстий, превышающим 4, при этом они выполнены с постоянным шагом.
RU2013120611/28A 2013-05-06 2013-05-06 Многопроходное импульсное лазерное устройство RU2536101C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013120611/28A RU2536101C1 (ru) 2013-05-06 2013-05-06 Многопроходное импульсное лазерное устройство

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013120611/28A RU2536101C1 (ru) 2013-05-06 2013-05-06 Многопроходное импульсное лазерное устройство

Publications (2)

Publication Number Publication Date
RU2013120611A RU2013120611A (ru) 2014-11-20
RU2536101C1 true RU2536101C1 (ru) 2014-12-20

Family

ID=53286245

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013120611/28A RU2536101C1 (ru) 2013-05-06 2013-05-06 Многопроходное импульсное лазерное устройство

Country Status (1)

Country Link
RU (1) RU2536101C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2231879C1 (ru) * 2002-10-11 2004-06-27 Закрытое акционерное общество Научно-производственное акционерное общество "ЭПОЛАР" Многопроходный усилитель лазерного излучения
US20060268947A1 (en) * 2005-05-24 2006-11-30 Itt Manufacturing Enterprises, Inc. Multi-line tunable laser system
RU2315582C1 (ru) * 2006-07-31 2008-01-27 Общество с ограниченной ответственностью "Лазерные Технологии в Медицине" (ООО "Л.Т.М.") Лазерная установка
WO2011022209A1 (en) * 2009-08-20 2011-02-24 Lawrence Livermore National Security, Llc Spatial filters for high average power lasers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2231879C1 (ru) * 2002-10-11 2004-06-27 Закрытое акционерное общество Научно-производственное акционерное общество "ЭПОЛАР" Многопроходный усилитель лазерного излучения
US20060268947A1 (en) * 2005-05-24 2006-11-30 Itt Manufacturing Enterprises, Inc. Multi-line tunable laser system
RU2315582C1 (ru) * 2006-07-31 2008-01-27 Общество с ограниченной ответственностью "Лазерные Технологии в Медицине" (ООО "Л.Т.М.") Лазерная установка
WO2011022209A1 (en) * 2009-08-20 2011-02-24 Lawrence Livermore National Security, Llc Spatial filters for high average power lasers

Also Published As

Publication number Publication date
RU2013120611A (ru) 2014-11-20

Similar Documents

Publication Publication Date Title
Krushelnick et al. Plasma channel formation and guiding during high intensity short pulse laser plasma experiments
US6385228B1 (en) Coherent beam combiner for a high power laser
US5003543A (en) Laser plasma X-ray source
US6621639B2 (en) Device for converting the intensity distribution of a laser beam and a device and method for generating a laser beam with an intensity which falls constantly along an axis from one side of the beam to the other
CN105103390A (zh) 用于激光射束定位系统的相位阵列操纵
US20190067894A1 (en) Spatially-distributed gain element self-phase-locked, laser apparatus and method
US9036251B2 (en) Slab amplification device, laser apparatus, and extreme ultraviolet light generation system
Hooker et al. Guiding of high-intensity picosecond laser pulses in a discharge-ablated capillary waveguide
CN108054623B (zh) 一种使用“飞行聚焦”产生太赫兹波的系统和方法
Aniculaesei et al. The acceleration of a high-charge electron bunch to 10 GeV in a 10-cm nanoparticle-assisted wakefield accelerator
CN107611755B (zh) 间距可调的双等离子体产生高强度太赫兹波的系统和方法
RU2536101C1 (ru) Многопроходное импульсное лазерное устройство
Zemlyanov et al. Diffraction optics of a light filament generated during self-focusing of a femtosecond laser pulse in air
Sherniyozov et al. Solar pumped lasers: high-efficiency multi-pass side pumping scheme with Fresnel lens
RU2477553C1 (ru) Источник импульсного лазерного излучения
JP2001133600A (ja) X線発生装置
RU101277U1 (ru) Оптическая система для формирования лазерных импульсов пико- и наносекундной длительности
Mašlárová et al. Generation of a static plasma electron grating
CN104020626A (zh) 涡旋光束布里渊放大方法及实现该方法的系统
Lutz et al. Shortwave infrared laser range-gated viewing based on accumulation mode
KR101457516B1 (ko) 광 분할 장치
KR101868295B1 (ko) 레이저 최대출력 증폭장치 및 방법
Wolford et al. Repetition-rate angularly multiplexed krypton fluoride laser system
US3452296A (en) Laser system for generating coherent light
Kim et al. Laser wakefield electron acceleration with PW lasers and future applications