RU2533178C1 - Система контроля механических нагрузок на протяженные элементы воздушной линии электропередачи - Google Patents
Система контроля механических нагрузок на протяженные элементы воздушной линии электропередачи Download PDFInfo
- Publication number
- RU2533178C1 RU2533178C1 RU2013143871/07A RU2013143871A RU2533178C1 RU 2533178 C1 RU2533178 C1 RU 2533178C1 RU 2013143871/07 A RU2013143871/07 A RU 2013143871/07A RU 2013143871 A RU2013143871 A RU 2013143871A RU 2533178 C1 RU2533178 C1 RU 2533178C1
- Authority
- RU
- Russia
- Prior art keywords
- wind
- sensors
- cable
- wire
- sensor
- Prior art date
Links
Images
Landscapes
- Force Measurement Appropriate To Specific Purposes (AREA)
Abstract
Изобретение относится к электроэнергетике и может быть использовано для дистанционного контроля механических нагрузок на провод, грозозащитный трос и/или кабель воздушной линии электропередачи (ВЛ), подвешенные на ее опорах. Система содержит, по меньшей мере, один датчик тяжения (5), размещенный на элементе сцепной линейной арматуры, и, по меньшей мере, один датчик ветра (6), установленный на опоре, которые связаны с наземным терминалом (17). Датчики выполнены на основе оптоволокон с нанесенными брэгговскими решетками, воспринимающими деформацию. Оптоволокна датчиков встроены в оптоволоконную линию (18) связи с наземным терминалом (17). Брэгговские решетки датчиков отражают излучение, несовпадающее с отраженными излучениями других датчиков, встроенных в то же волокно линии связи. Терминал (17) содержит подключенные к программируемому блоку (20) обработки данных лазерный источник излучения (21) и фотоприемник (22), к которым через циркулятор или направленный ответвитель (23) подведена линия (18). Технический результат изобретения - обеспечение раздельного контроля вертикальной и ветровой составляющих тяжения провода, грозозащитного троса или кабеля, подвешенного на опорах ВЛ, что повышает надежность функционирования системы контроля, упрощает ее монтаж и эксплуатацию. 6 з.п. ф-лы, 4 ил.
Description
Область техники
Изобретение относится к электроэнергетике и может быть использовано для дистанционного контроля механических нагрузок (в том числе гололедной и ветровой) на провод, грозозащитный трос и/или кабель воздушной линии электропередачи (ВЛ), подвешенные на ее опорах.
Уровень техники
На провод (изложенное ниже относится также грозозащитному тросу или кабелю, подвешенным на опорах ВЛ) совместно действуют вертикальная нагрузка от суммы собственного веса и веса гололедных отложений и горизонтальные нагрузки: продольная (фиксированное монтажное натяжение) и поперечная (ветровая). Векторная сумма этих нагрузок образует тяжение - силу, растягивающую провод [А.Д. Бошнякович. Механический расчет проводов и тросов линий электропередачи. Изд. второе, переработанное. «Энергия» Ленинградское отделение, 1971].
Основная проблема контроля механических нагрузок на провод ВЛ, состоит в раздельном определении двух переменных составляющих тяжения: вертикальной составляющей, меняющейся от веса гололедных отложений, и поперечной горизонтальной составляющей, зависящей от ветрового напора поперек провода. Раздельный контроль этих составляющих тяжения позволяет оператору наземного терминала (диспетчеру энергосистемы) отслеживать такие явления, как гололедообразования на проводах, их галопирование, эоловая вибрация, и принимать адекватные меры по предотвращению аварийных ситуаций (включая разгрузку или отключение линии, начало или окончание плавки гололеда и т.п.).
Известны устройства, предназначенные для контроля механических нагрузок на провода и/или грозозащитные тросы (грозотросы) ВЛ и имеющие средства (конструктивные и/или средства обработки данных) для раздельного определения вертикальной и ветровой нагрузок.
Устройство для измерения гололедной и ветровой нагрузок на воздушных линиях электропередачи [RU 2145758] содержит магнитоупругий датчик силы, подвешенный между траверсой опоры и гирляндой изоляторов с фазным проводом, два магнитных датчика тока в проводе линии, выходное напряжение одного из которых зависит, а другого не зависит от отклонения провода под действием ветровой нагрузки, и размещенную на верхней части опоры схему обработки сигналов датчиков, к которой через каналы телепередачи подключены два наземных измерительных прибора, один из которых показывает гололедную составляющую нагрузки, а другой - ветровую.
Недостаток этого устройства - при отсутствии тока в проводе линии оно не определяет ветровую нагрузку на провод линии.
Известно устройство для обнаружения отложений на проводе промежуточного пролета воздушной линии электропередачи [RU 2291536], содержащее измеритель относительного направления ветра, измеритель скорости ветра и два силоизмерительных датчика, каждый из которых подвешен подвижно между траверсой опоры и соответствующей гирляндой изоляторов, которые через четырехканальное средство телепередачи соединены со схемой обработки. При этом для крепления силоизмерительных датчиков используются две гирлянды изоляторов, концы которых соединяются между собой шарнирно, образуя V-образную подвеску, к которой прикреплен провод. Верхние концы датчиков крепятся к траверсе опоры на расстоянии друг от друга, равном длине гирлянды изоляторов с датчиком, образуя с V-образной подвеской равносторонний треугольник.
Общий недостаток обоих вышеуказанных аналогов - сложность монтажа из-за необходимости внесения значительных изменений в стандартизированную конструкцию изолирующей подвески проводов и неприменимость таких устройств для контроля механической нагрузки на грозотросы ВЛ.
Известно устройство автоматизированного контроля высоковольтных электрических сетей, которое содержит датчик тяжения, установленный между траверсой опоры и изолирующей подвеской провода и/или грозозащитного троса, и датчик ветра (т.е. его скорости и направления), установленный на опоре. Датчики связаны с наземным терминалом, имеющим блок обработки данных, способный определять по показаниям датчиков вертикальную (в частности, гололедную) и ветровую нагрузки на провод или грозозащитный трос [RU 114565].
Это устройство выбрано в качестве прототипа.
В прототипе каждый датчик содержит преобразователь интерфейса и микроконтроллер и подключен через двухпроводную шину интерфейса к контроллеру обмена, а именно к его преобразователю интерфейса, соединенному с приемопередающим модемом. Контроллер обмена через эфир соединен с пунктом приема, в котором тоже имеется приемопередающий модем, соединенный через компьютер с наземным терминалом отображения информации о гололедной и ветровой нагрузках.
Необходимость размещения в верхней части ВЛ не только самих датчиков тяжения и ветра, но и средств первичной обработки информации и беспроводной передачи данных наземному терминалу, т.е. сложного электронного оборудования, требующего электропитания (от провода ВЛ или от аккумулятора), повышает вероятность отказов системы, усложняет ее монтаж и обслуживание и, следовательно, снижает надежность контроля.
Этим же недостатком обладают все другие рассмотренные выше аналоги - устройства для контроля механических нагрузок на провода и/или грозозащитные тросы ВЛ.
Раскрытие изобретения
Предметом изобретения является система контроля механических нагрузок на провод, грозозащитный трос или кабель, закрепленный на опоре воздушной линии электропередачи с помощью сцепной линейной арматуры, содержащая, по меньшей мере, один датчик тяжения, размещенный на элементе сцепной линейной арматуры, и, по меньшей мере, один датчик ветра, установленный на опоре, которые связаны с наземным терминалом, способным по сигналам датчиков раздельно определять вертикальную и ветровую нагрузки на провод, грозозащитный трос или кабель, отличающаяся тем, что датчик тяжения выполнен в виде отрезка оптоволокна с нанесенными брэгговскими решетками, закрепленного на указанном элементе сцепной арматуры с возможностью восприятия его продольной деформации, а датчик ветра - в виде жестко закрепленного на опоре стержня, снабженного ветроприемным наконечником, и, по меньшей мере, двух отрезков оптоволокна с нанесенными брэгговскими решетками, установленными с возможностью восприятия изгибной деформации стержня, при этом каждый указанный отрезок оптоволокна встроен в оптоволоконную линию связи с наземным терминалом и отражает излучение, несовпадающее с отраженными излучениями других датчиков, встроенных в то же волокно линии связи, а наземный терминал содержит подключенные к программируемому блоку обработки данных лазерный источник излучения и фотоприемник, к которым через циркулятор или направленный ответвитель подведена указанная оптоволоконная линия, и выполнен с возможностью измерения спектральных сдвигов излучения, отраженного брэгговскими решетками указанных датчиков, и расчета вертикальной и ветровой нагрузок на соответствующий провод, грозозащитный трос или кабель по результатам такого измерения.
Технический результат изобретения - обеспечение раздельного контроля вертикальной и ветровой составляющих тяжения провода, грозозащитного троса или кабеля, подвешенного на опорах ВЛ, без высотного размещения (на опорах или на других элементах ВЛ) сложного электронного оборудования и средств его электропитания. Это повышает надежность функционирования системы контроля, упрощает ее монтаж и эксплуатацию.
Заявляемое изобретение использует известный из уровня техники принцип измерения деформации/температуры в нескольких точках контролируемого объекта с помощью не требующих электропитания датчиков деформации/температуры на оптических волокнах с брэгговскими решетками [см. например, патент RU 2319988], однако для достижения вышеуказанного технического результата заявляемого изобретения необходима вся совокупность его отличительных признаков, которая неизвестна из уровня техники.
Изобретение имеет развития, относящиеся к частным случаям его осуществления и состоящие в следующем.
Возможны, по меньшей мере, две конструкции, обеспечивающие восприятие изгибной деформации стержня датчика ветра: в первом случае стержень имеет прямоугольное сечение, а отрезки оптоволокна закреплены вдоль стержня на его пересекающихся поверхностях, а во втором случае отрезки оптоволокна датчика ветра закреплены на деформируемых подложках, установленных под углом друг к другу враспор между стержнем и охватывающим его кожухом, жестко закрепленным на опоре.
В случае использования нескольких волокон в оптоволоконной линии связи с наземным терминалом система должна быть снабжена оптическим переключателем, поочередно связывающим лазерный источник и фотоприемник с несколькими волокнами оптоволоконной линии, в каждое из которых встроен, по меньшей мере, один из указанных отрезков оптоволокна.
Если температурная деформация используемых отрезков оптоволокна с брэгговскими решетками соизмерима с их механической деформацией, то система должна содержать, по меньшей мере, один датчик температуры, выполненный в виде отрезка оптоволокна с нанесенными брэгговскими решетками, встроенного в оптоволоконную линию связи с наземным терминалом. Такой датчик может быть конструктивно совмещен с датчиком тяжения - размещен на том же элементе сцепной линейной арматуры так, чтобы не воспринимать продольную деформацию этого звена.
Краткое описание фигур
На фиг.1 показано размещение элементов системы на опоре контролируемой ВЛ. На фиг.2 и 3 представлено конструктивное выполнение датчиков тяжения и ветра соответственно, входящих в состав заявляемой системы. На фиг.4 представлена схема, иллюстрирующая устройство и работу заявляемой системы.
Осуществление изобретения с учетом его развитии
Осуществление изобретения описывается на примере контроля механической нагрузки на провод ВЛ. Контроль механической нагрузки на грозозащитный трос или кабель, подвешенные на опорах ВЛ, требует введения в систему соответствующих датчиков тяжения и осуществляется аналогично.
На фиг.1 показан фрагмент ВЛ: анкерная или анкерно-угловая опора 1 и закрепленный на ней провод 2. Провод 2 закреплен на траверсе 3 опоры 1 через гирлянду изоляторов 4 и датчик 5 тяжения. Датчик 6 скорости и направления ветра размещен на опоре 1.
ВЛ снабжена оптическим кабелем связи, не изображенным на фиг.1. Он может быть встроенным в грозозащитный трос или провод или самонесущим. В последнем случае оптический кабель, так же как провод и грозозащитный трос, может быть объектом контроля механических нагрузок.
На фиг.2 и 3 показаны возможные конструкции датчиков 5 и 6.
Датчик 5 (см. фиг.2) выполнен в виде отрезка 7 оптоволокна с нанесенными брэгговскими решетками, закрепленного на элементе 8 сцепной линейной арматуры с возможностью восприятия его продольной деформации. В качестве элемента 8 может использоваться, например, стандартное промежуточное звено сцепной линейной арматуры типа ПР, имеющее вид плоской пластины с двумя присоединительными отверстиями.
Датчик 6 (см. фиг.3) выполнен в виде жестко закрепленного на опоре 1 стержня 9, снабженного ветроприемным наконечником 10, и, по меньшей мере, двух отрезков 11 и 12 оптоволокна с нанесенными брэгговскими решетками. Отрезки 11 и 12 установлены с возможностью восприятия изгибной деформации стержня 9. Эта возможность в частном случае может быть реализована конструкцией датчика 6, представленной на фиг.3. В этой конструкции стержень 9, по меньшей мере, частично охвачен кожухом 13, который, как и стержень 9, жестко закреплен на опоре 1. Отрезки 11 и 12 закреплены на деформируемых подложках 14, которые установлены поперек стержня 9 враспор между ним и охватывающим его кожухом 13. Отрезки 11 и 12 установлены под углом друг к другу. Предпочтительное значение этого угла 90°.
Другой частный случай конструкции датчика 6, обеспечивающей восприятие отрезками 11 и 12 изгибной деформации стержня 9, не требует использования кожуха 13. В этом случае стержень 9 имеет многоугольное, например прямоугольное, сечение, а отрезки 11 и 12 закреплены не поперек, а вдоль стержня 9 на его поверхностях, расположенных в пересекающихся плоскостях.
Система может содержать один или несколько датчиков 15 температуры, каждый из которых выполнен в виде отрезка 16 оптоволокна с нанесенными брэгговскими решетками (см. фиг.2). Отрезки 16 могут располагаться на элементах конструкции других датчиков или непосредственно на опоре 1 так, чтобы исключить восприятие ими других факторов, деформирующих оптоволокно, кроме температуры (например, если поперечная деформация звена 8 пренебрежимо мала по сравнению с продольной, то отрезок 16 может крепиться поперек звена 8, как показано на фиг.2).
Датчики 5, 6 и 15 связаны с наземным терминалом 17 своими отрезками 7, 11, 12 и 16, встроенными в одно или несколько волокон оптоволоконной линии 18, образованной частью волокон оптического кабеля связи, которым снабжена ВЛ.
Встраивание каждого из отрезков 7, 11, 12 и 16 в одно из волокон линии 18 может осуществляться с помощью показанных на фиг.4 подвесных оптических муфт 19, которые размещаются на опорах 1.
Терминал 17 выполнен с возможностью измерения спектральных сдвигов излучения, отраженного брэгговскими решетками, и расчета вертикальной и ветровой нагрузок по результатам этого измерения. Для этого в составе терминала 17 имеется программируемый блок 20 цифровой обработки данных, к которому входом и выходом подключены лазерный источник 21 и фотоприемник 22 соответственно. Аналого-цифровой преобразователь сигналов фотоприемника 22 может входить в его состав или в состав блока 20 и на фиг.4 условно не показан. Оптоволоконная линия 18 подведена к выходу источника 21 и входу фотоприемника 22 через циркулятор (или направленный ответвитель) 23, а также (в случае использования в ней нескольких оптических волокон) через оптический переключатель 24.
Система работает следующим образом.
Переключатель 24 под управлением блока 20 поочередно связывает циркулятор 23 с волокнами линии 18, в каждое из которых встроен, по меньшей мере, один из отрезков 7, 11, 12 или 16.
Брэгговские решетки, нанесенные на отрезки 7, 11, 12 и 16, встроенные в одно волокно линии 18, имеют различные (несовпадающие) значения брэгговской длины волны.
Лазерный источник 21 под управлением блока 20 излучает широкополосное излучение, которое через циркулятор 23 поступает в очередное волокно линии 18, подключенное переключателем 24.
Далее это излучение через муфты 19 проходит вдоль контролируемой ВЛ по всем встроенным в данное волокно отрезкам 7, 11, 12 и 16 датчиков 5, 6 и 15. Отраженное брэгговскими решетками каждого датчика излучение возвращается обратно и через переключатель 24 поступает на циркулятор 23, который препятствует попаданию в источник 21 отраженного излучения и ответвляет его на фотоприемник 22.
Каждый отрезок 7, 11, 12 и 16 отражает излучение на своей брэгговской длине волны, несовпадающее по частоте с отраженными излучениями других отрезков. Излучения на других длинах волн проходят через каждый отрезок с нанесенными брэгговскими решетками, не отражаясь. Деформация отрезков оптоволокна изменяет брэгговскую длину их решеток и тем самым сдвигает длину волны (и, соответственно, частоту) отражаемого ими излучения.
Отрезок 7 (см. фиг.2) датчика 5 воспринимает продольную деформацию звена 8, которая пропорциональна воздействующим на него растягивающим усилиям (т.е. тяжению провода), а брэгговские решетки, отрезка 7, соответственно сдвигают спектр отражаемого излучения.
Датчик 6 измеряет скорость и направление ветра следующим образом (см. фиг.2). Под действием ветра, воздействующего на ветроприемный наконечник 10, например, шарообразной формы, стержень 9 изгибается. При изгибной деформации стержня 9, закрепленные на нем отрезки 11 и 12 испытывают продольные деформации, зависящие от скорости и направления ветра.
Кроме того, отрезки 7, 11 и 12 датчиков 5 и 6 деформируется от изменений температуры, что вносит соответствующую температурную погрешность в величину спектрального сдвига. Отрезки 16 датчиков 15 температуры деформируются от температуры аналогично отрезкам 7, 11 и 12, но на них не воздействует деформация какого-либо элемента конструкции.
Спектр отраженного излучения, принимаемого фотоприемником 22 имеет пики мощности на частотах, отражаемых брэгговскими решетками всех отрезков 7, 11, 12 и 16, встроенных в одно волокно линии 18. Блок 20 принимает и оцифровывает выходной сигнал фотоприемника 22, соответствующий суммарному отраженному спектру всех датчиков, и, используя метод частотного разделения, выделяет спектральные пики, излучения, отраженные брэгговскими решетками каждого из отрезков всех датчиков, связанных с терминалом 17. Затем блок 20 определяет частотный сдвиг для каждого из выделенных спектральных пиков, вызванный деформацией брегговских решеток.
Для компенсации температурной составляющей деформации датчиков 5 и 6 частотный сдвиг отрезка 16 датчика 15 температуры вычитается из частотных сдвигов отрезков 7, 11, 12 датчиков, расположенных в той же температурной области. Оставшиеся значения частотных сдвигов датчиков тяжения и ветра вызваны деформациями соответствующих конструктивных элементов. По этим деформациям блок 20 вычисляет тяжение провода, грозотроса или кабеля, а также величину и направление изгиба стержня 9, характеризующие скорость и направление ветра, воздействующего на шарообразный наконечник 10.
Совместный анализ этих силовых воздействий позволяет вычислительному блоку 20 раздельно вычислять вертикальную (включающую вес гололедных отложений) и ветровую составляющие нагрузки на указанные элементы ВЛ, используя соотношения, известные, например, из вышеприведенной монографии А.Д. Бошняковича.
С использованием приведенных там же соотношений и вычисленного значения вертикальной составляющей соответствующей нагрузки блок 20 терминала 17 может рассчитать стрелу провеса провода, грозозащитного троса или кабеля. Увеличение стрелы провеса ограничивает токовую нагрузку на соответствующий элемент ВЛ, как в рабочем режим, так и при плавке гололеда. Результаты расчета стрел провеса позволяют оперативно определять и учитывать эти ограничения.
Как видно из изложенного, применение изобретения позволяет обеспечить раздельный контроль вертикальной и ветровой (поперечной) составляющих тяжения подвешенного на опорах ВЛ провода, грозозащитного троса или кабеля без высотного размещения (на опорах или на других элементах ВЛ) сложного электронного оборудования и средств его электропитания. Единственный источник электропитания, необходимый для осуществления заявляемой системы контроля ВЛ, питает наземный терминал 17.
Claims (7)
1. Система контроля механических нагрузок на провод, грозозащитный трос или кабель, закрепленный на опоре воздушной линии электропередачи с помощью сцепной линейной арматуры, содержащая, по меньшей мере, один датчик тяжения, размещенный на элементе сцепной линейной арматуры, и, по меньшей мере, один датчик ветра, установленный на опоре, которые связаны с наземным терминалом, способным по сигналам датчиков раздельно определять вертикальную и ветровую нагрузки на провод, грозозащитный трос или кабель, отличающаяся тем, что датчик тяжения выполнен в виде отрезка оптоволокна с нанесенными брэгговскими решетками, закрепленного на указанном элементе сцепной арматуры с возможностью восприятия его продольной деформации, а датчик ветра - в виде жестко закрепленного на опоре стержня, снабженного ветроприемным наконечником, и, по меньшей мере, двух отрезков оптоволокна с нанесенными брэгговскими решетками, установленными с возможностью восприятия изгибной деформации стержня, при этом каждый указанный отрезок оптоволокна встроен в оптоволоконную линию связи с наземным терминалом и отражает излучение, несовпадающее с отраженными излучениями других датчиков, встроенных в то же волокно линии связи, а наземный терминал содержит подключенные к программируемому блоку обработки данных лазерный источник излучения и фотоприемник, к которым через циркулятор или направленный ответвитель подведена указанная оптоволоконная линия, и выполнен с возможностью измерения спектральных сдвигов излучения, отраженного брэгговскими решетками указанных датчиков, и расчета вертикальной и ветровой нагрузок на соответствующий провод, грозозащитный трос или кабель по результатам такого измерения.
2. Система по п.1, отличающаяся тем, что стержень датчика ветра имеет прямоугольное сечение, а отрезки оптоволокна закреплены вдоль стержня на его пересекающихся поверхностях.
3. Система по п.1, отличающаяся тем, что отрезки оптоволокна датчика ветра закреплены на деформируемых подложках, установленных под углом друг к другу враспор между стержнем и охватывающим его кожухом, жестко закрепленным на опоре.
4. Система по п.1, отличающаяся тем, что она снабжена оптическим переключателем, поочередно связывающим лазерный источник и фотоприемник с несколькими волокнами оптоволоконной линии, в каждое из которых встроен, по меньшей мере, один из указанных отрезков оптоволокна.
5. Система по п.1, отличающаяся тем, что она содержит, по меньшей мере, один датчик температуры, выполненный в виде отрезка оптоволокна с нанесенными брэгговскими решетками, встроенного в указанную оптоволоконную линию.
6. Система по п.5, отличающаяся тем, что датчик температуры размещен на указанном звене сцепной линейной арматуры с возможностью невосприятия его продольной деформации.
7. Система по п.1, отличающаяся тем, что наземный терминал выполнен с возможностью рассчитывать стрелу провеса провода, грозозащитного троса или кабеля по вычисленному значению соответствующей вертикальной нагрузки.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013143871/07A RU2533178C1 (ru) | 2013-09-30 | 2013-09-30 | Система контроля механических нагрузок на протяженные элементы воздушной линии электропередачи |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013143871/07A RU2533178C1 (ru) | 2013-09-30 | 2013-09-30 | Система контроля механических нагрузок на протяженные элементы воздушной линии электропередачи |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2533178C1 true RU2533178C1 (ru) | 2014-11-20 |
Family
ID=53382621
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013143871/07A RU2533178C1 (ru) | 2013-09-30 | 2013-09-30 | Система контроля механических нагрузок на протяженные элементы воздушной линии электропередачи |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2533178C1 (ru) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113949164A (zh) * | 2021-10-27 | 2022-01-18 | 国网山东省电力公司日照供电公司 | 一种电网停电风险预警系统及方法 |
CN114067539A (zh) * | 2021-11-05 | 2022-02-18 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 电力设备监测系统及其电线监测装置 |
CN117804405A (zh) * | 2024-02-28 | 2024-04-02 | 广州煜能电气有限公司 | 一种输电线路杆塔形变监测方法及系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2672443A1 (fr) * | 1991-02-06 | 1992-08-07 | Deschamps Pierre | Support de cable aerien assurant le deneigement automatique dudit cable. |
RU2145758C1 (ru) * | 1998-08-17 | 2000-02-20 | Новочеркасский государственный технический университет | Устройство для измерения гололедной и ветровой нагрузок на воздушных линиях электропередачи |
US20040258373A1 (en) * | 2003-05-12 | 2004-12-23 | Andreassen Jon Steinar | Monitoring cable |
RU2291536C2 (ru) * | 2005-02-15 | 2007-01-10 | Виталий Яковлевич Башкевич | Устройство обнаружения отложений на проводе промежуточного пролета воздушной линии электропередачи |
RU2319988C2 (ru) * | 2005-10-31 | 2008-03-20 | Общество с ограниченной ответственностью "Инверсия-Сенсор" | Оптоволоконная мультисенсорная система, датчик температуры/деформации для оптоволоконной мультисенсорной системы, способ записи датчика (варианты) |
RU114565U1 (ru) * | 2011-08-10 | 2012-03-27 | ООО "Специальное конструкторское бюро приборов и систем автоматизации" | Устройство автоматизированного контроля гололедной и ветровой нагрузок на воздушных линиях электропередачи |
RU2478247C1 (ru) * | 2011-12-27 | 2013-03-27 | Борис Иосифович Механошин | Система дистанционного контроля воздушной линии электропередачи, снабженной оптоволоконным кабелем |
-
2013
- 2013-09-30 RU RU2013143871/07A patent/RU2533178C1/ru active IP Right Revival
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2672443A1 (fr) * | 1991-02-06 | 1992-08-07 | Deschamps Pierre | Support de cable aerien assurant le deneigement automatique dudit cable. |
RU2145758C1 (ru) * | 1998-08-17 | 2000-02-20 | Новочеркасский государственный технический университет | Устройство для измерения гололедной и ветровой нагрузок на воздушных линиях электропередачи |
US20040258373A1 (en) * | 2003-05-12 | 2004-12-23 | Andreassen Jon Steinar | Monitoring cable |
RU2291536C2 (ru) * | 2005-02-15 | 2007-01-10 | Виталий Яковлевич Башкевич | Устройство обнаружения отложений на проводе промежуточного пролета воздушной линии электропередачи |
RU2319988C2 (ru) * | 2005-10-31 | 2008-03-20 | Общество с ограниченной ответственностью "Инверсия-Сенсор" | Оптоволоконная мультисенсорная система, датчик температуры/деформации для оптоволоконной мультисенсорной системы, способ записи датчика (варианты) |
RU114565U1 (ru) * | 2011-08-10 | 2012-03-27 | ООО "Специальное конструкторское бюро приборов и систем автоматизации" | Устройство автоматизированного контроля гололедной и ветровой нагрузок на воздушных линиях электропередачи |
RU2478247C1 (ru) * | 2011-12-27 | 2013-03-27 | Борис Иосифович Механошин | Система дистанционного контроля воздушной линии электропередачи, снабженной оптоволоконным кабелем |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113949164A (zh) * | 2021-10-27 | 2022-01-18 | 国网山东省电力公司日照供电公司 | 一种电网停电风险预警系统及方法 |
CN113949164B (zh) * | 2021-10-27 | 2024-05-17 | 国网山东省电力公司日照供电公司 | 一种电网停电风险预警系统及方法 |
CN114067539A (zh) * | 2021-11-05 | 2022-02-18 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 电力设备监测系统及其电线监测装置 |
CN117804405A (zh) * | 2024-02-28 | 2024-04-02 | 广州煜能电气有限公司 | 一种输电线路杆塔形变监测方法及系统 |
CN117804405B (zh) * | 2024-02-28 | 2024-05-07 | 广州煜能电气有限公司 | 一种输电线路杆塔形变监测方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3832254B1 (en) | Cable, cable shape sensing system, sensing system, and method for sensing cable shape | |
CN203310540U (zh) | 一种融合光纤复合相线的温度与应变在线监测装置 | |
CN101874194B (zh) | 用于测量风力发电设备形变的光纤传感器 | |
CN102564322B (zh) | 一种架空线弧垂实时监测系统 | |
US20220146563A1 (en) | Overhead electrical cable interrogation systems and methods | |
US6784983B1 (en) | System for monitoring cables | |
RU2533178C1 (ru) | Система контроля механических нагрузок на протяженные элементы воздушной линии электропередачи | |
CN102507042A (zh) | 智能电网电力电缆嵌入光纤传感器的方法及装置 | |
CN104535220B (zh) | 一种电力架空光缆分布式在线监测装置 | |
CN103259609B (zh) | 一种准分布式高压输电线路光纤监测网络 | |
CN202494537U (zh) | 一种用于实时监测架空线弧垂的监测装置 | |
RU2478247C1 (ru) | Система дистанционного контроля воздушной линии электропередачи, снабженной оптоволоконным кабелем | |
CN207850564U (zh) | 基于botda的输电线路导线温度分布式监测装置 | |
Mao et al. | The online monitoring system of transmission lines weight based on fiber sensing technology | |
RU115583U1 (ru) | Устройство дистанционного контроля воздушной линии электропередачи, снабженной оптоволоконным кабелем | |
CN204963894U (zh) | 光纤分布式海底电缆监测系统 | |
CN204359461U (zh) | 一种电力架空光缆分布式在线监测装置 | |
CN106940228A (zh) | 一种智能电缆在线监测系统及监测方法 | |
Urakseev et al. | Fiber-optical sensor with an acousto-optical filter for monitoring the status of overhead power lines | |
RU135198U1 (ru) | Волоконно-оптический измеритель тяжения, устройство контроля состояния элементов воздушной линии электропередачи с таким измерителем тяжения и воздушная линия электропередачи, оснащенная таким устройством контроля | |
CN106959173A (zh) | 一种光纤复合地铁电缆在线监测系统及监测方法 | |
CN205722958U (zh) | 一种复合型电力电缆 | |
CN104567995A (zh) | 一种电力架空光缆温度应变分布式在线监测装置 | |
JPH1164176A (ja) | 構造部材のモニタリング装置 | |
CN205352467U (zh) | 一种输电线路的覆冰积雪监测系统 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20171001 |
|
TK4A | Correction to the publication in the bulletin (patent) |
Free format text: CORRECTION TO CHAPTER -MM4A- IN JOURNAL 19-2018 |
|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20181001 |
|
NF4A | Reinstatement of patent |
Effective date: 20190909 |
|
PD4A | Correction of name of patent owner |