RU2532032C1 - Твердофазный способ получения водорастворимого биоактивного нанокомпозита на основе модифицированной меланином соли гиалуроновой кислоты и наночастиц золота - Google Patents

Твердофазный способ получения водорастворимого биоактивного нанокомпозита на основе модифицированной меланином соли гиалуроновой кислоты и наночастиц золота Download PDF

Info

Publication number
RU2532032C1
RU2532032C1 RU2013112628/13A RU2013112628A RU2532032C1 RU 2532032 C1 RU2532032 C1 RU 2532032C1 RU 2013112628/13 A RU2013112628/13 A RU 2013112628/13A RU 2013112628 A RU2013112628 A RU 2013112628A RU 2532032 C1 RU2532032 C1 RU 2532032C1
Authority
RU
Russia
Prior art keywords
salt
gold
hyaluronic acid
melanins
range
Prior art date
Application number
RU2013112628/13A
Other languages
English (en)
Other versions
RU2013112628A (ru
Inventor
Сергей Алексеевич Успенский
Владимир Николаевич Хабаров
Михаил Анатольевич Селянин
Original Assignee
Сергей Алексеевич Успенский
Владимир Николаевич Хабаров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сергей Алексеевич Успенский, Владимир Николаевич Хабаров filed Critical Сергей Алексеевич Успенский
Priority to RU2013112628/13A priority Critical patent/RU2532032C1/ru
Publication of RU2013112628A publication Critical patent/RU2013112628A/ru
Application granted granted Critical
Publication of RU2532032C1 publication Critical patent/RU2532032C1/ru

Links

Abstract

Изобретение относится к природным полимерам полисахаридов и может быть использовано в медицине. Получаемый водорастворимый биоактивный нанокомпозит включает модифицированную соединением из ряда меланинов соль гиалуроновой кислоты в качестве матрицы и наночастицы золота как наполнитель. Способ предусматривает химическое взаимодействие твердофазных порошков соли гиалуроновой кислоты, соединения из ряда меланинов, золотохлористоводородной кислоты или соли золота в условиях одновременного воздействия давления в пределах от 50 до 1000 МПа и деформации сдвига в механохимическом реакторе при температуре от -18° до 110°С. Изобретение позволяет получать водорастворимый биоактивный нанокомпозит с высоким выходом целевого продукта и высоким содержанием золота в нем. 13 з.п. ф-лы, 18 пр.

Description

Изобретение относится к природным полимерам из класса полисахаридов, а именно к твердофазному способу получения биоактивного нанокомпозита на основе соли гиалуроновой кислоты (ГК), меланина и наночастиц золота, который может найти применение в медицине, в частности фотон захватной терапии (ФЗТ), фототермической терапии, фото- и радиосенсибилизации, химиотерапии, лечение ревматоидного артрита, антиВИЧ терапии, косметологии, эстетической дерматологии и пластической хирургии.
Известен способ синтеза наночастиц гадалиния, железа, никеля, меди, эрбия, европия, празеодимия, диспрозия, гольмия, хрома или марганца на основе меланина в растворе [патент US 5310539, 1994, Melanin-based agents for image enhancement].
Известен способ получения наночастиц благородных металлов и изготовления материалов и устройств, содержащих наночастицы (патент RU 2233791, Губин С.П. и др., публ. 2004.08.10). Данный способ получения наночастиц включает формирование двухфазной системы - молекулярного слоя на поверхности водной фазы, содержащего водонерастворимые металлоорганические молекулы прекурсора (использовались соединения -ацетат палладия, Au(P(C6H5)3)Cl), и проведение процессов синтеза наночастиц металла в результате химических превращений исходных реагентов-предшественников под действием химических воздействий или химических и физических воздействий, или их комбинаций в мономолекулярном слое на поверхности жидкой фазы. При этом восстановитель (борогидрид натрия) вводили в водную фазу. Способ изготовления материалов, содержащих наночастицы, заключается во введении указанных выше частиц в состав материала.
Известен твердофазный способ получения биоактивного нанокомпозита [патент RU 2416389, опубл. в 2011 г.]. К недостаткам способа относятся: предварительная стадия получения сшитой соли гиалуроновой кислоты в виде пленки с использованием ряда сшивающих агентов из класса эфиров; способ совмещает получение модифицированной ГК в твердом теле с напылением НЧ благородного металла в газовой фазе; заявленный способ позволяет получить композит со степенью наполнения 3·10-2 до 10-1 мас.%, с недостаточной для решения проблем фото- и радиосенсибилизации, химиотерапии, лечение ревматоидного артрита, антиВИЧ терапии.
Из уровня техники не известен способ получения водорастворимого биоактивного нанокомпозита на основе химически модифицированной соединениями из ряда меланинов соли ГК и наночастиц золота.
Задачей предлагаемого изобретения является создание экологически безопасного, принципиально нового способа получения водорастворимого биоактивного нанокомпозита на основе химически модифицированной соединениями из ряда меланинов соли ГК и наночастиц золота в одностадийном технологическом режиме в отсутствии жидкой среды, без больших энерго-, трудо- и водозатрат, и получение при этом целевых продуктов с высоким выходом и высоким содержанием золота.
Поставленная задача решается тем, что создан принципиально новый экологически безопасный способ получения водорастворимого биоактивного нанокомпозита, включающего модифицированную соединением из ряда меланинов соль гиалуроновой кислоты в качестве матрицы и наночастицы золота как наполнитель, который заключается в том, что осуществляют химическое взаимодействие твердофазных порошков соли гиалуроновой кислоты, соединения из ряда меланинов, золотохлористоводородной кислоты (ЗХВК) или соли золота в условиях одновременного воздействия давления в пределах от 50 до 1000 МПа и деформации сдвига в механохимическом реакторе при температуре от -18° до 110°C. Причем степень наполнения композита золотом (со степенью окисления 0, +2, +3) составляет от 5·10-6-5·10-1 мас.% - до 80 мас.%. Наночастицы имеют размер от 1 до 50 нм.
В качестве соли гиалуроновой кислоты используют соль, выбранную из ряда: тетраалкиламмониевая, литиевая, натриевая, калиевая, кальциевая, магниевая, бариевая, цинковая, алюминиевая, медная, золотая или смешанная соль гиалуроновой кислоты из вышеуказанного ряда или гидросоль гиалуроновой кислоты.
В частности, солью гиалуроновой кислоты является натриевая соль или смешанная соль или гидронатриевая соль.
В качестве соединения из ряда меланинов используют водорастворимый или нерастворимый феомеланин, эумеланин, алломеланин, синтетический или получаемый из природных источников. Отличительная особенность меланизированных структур является интенсивное парамагнитное поглощение в районе g-фактора свободного электрона с концентрацией неспаренных электронов больше 1017 спин на 1 г сухого вещества.
В качестве золотосодержащих реагентов используют золотохлористоводородную кислоту (HAuCl4·nH2O, где n=3 или 4), и соли золота - аураты: золотойодистоводородный калий (K[Aul4] ·nH2O, n=3 или 4), тетрахлораурат(III) калия (K[AuCl4], содержит 52% золота), тетрахлороаурат(III) аммония (NH4[AuCl4], содержит 52% золота), тетрахлороаурат(III) натрия (Na[AuCl4]·n H2O, содержит 49% золота), тетрабромоаурат(III) натрия (Na[AuBr4], содержит 33% золота), дицианоаурат калия (K[Au(CN)4], содержит 68,2% золота), тетрацианоаурат(III) калия (K[Au(CN)4], содержит 58% золота), дисульфитоаурат(I) аммония ((NH4)3[Au(SO3)]2, содержит 10% золота), бис(тиосульфато)аурат(I) натрия (Na3[Au(S2O3)2]·H2O, содержит 37%), хлоро(трифенилфосфан)золота(I) ([AuCl(PPh3)], содержит 39% золота).
Мольное соотношение: соль гиалуроновой кислоты к соединению из ряда меланинов находится в пределах от 100:1 до 1:100.
Мольное соотношение золотохлористоводородной кислоты к соединению из ряда меланинов находится в пределах от 1:1000 до 1:4 соответственно.
Мольное соотношение золотойодистоводородного калия к соединению из ряда меланинов находится в пределах от 1:1000 до 1:8 соответственно.
Продолжительность воздействия давления и деформации сдвига, в частности, находится в пределах от 0,1 до 30 минут, в частности 6 минут при давлении 500 МПа. В качестве механохимического реактора можно использовать, в частности, наковальни Бриджмена или аппарат шнекового типа.
В случае осуществления процесса, где механохимическим реактором являются наковальни Бриджмена, реакционную смесь подвергают деформации сдвига путем изменения угла поворота нижней наковальни, в частности, в пределах от 50 до 350 градусов. При этом для лучшей реализации способа предпочтительно исходные реагенты предварительно гомогенизировать в смесителе при температуре от -18 до 5°C до получения однородной порошкообразной смеси. В данном случае можно использовать в качестве смесителя мельницу или смеситель шнекового типа, например двухшнековый экструдер.
В частности, механохимическим реактором является аппарат шнекового типа, например, выбранный из ряда: двухшнековый экструдер с однонаправленным вращением шнеков, двухшнековый экструдер с противоположно направленным вращением шнеков, двухшнековый экструдер с набором кулачков различного типа, например транспортные, запирающие, перетирающие.
Способ может быть реализован последовательно, например, сначала осуществляют химическое взаимодействие соли гиалуроновой кислоты вместе с соединением из ряда меланинов, после чего продукт подвергают взаимодействию с ЗХВК. При этом мольное соотношение: ГК к соединению из ряда меланинов или к сумме модифицируемых агентов находится в пределах от 100:1 до 1:100, а соотношение ЗХВК к соединению из ряда меланинов, находится в пределах от 1:1000 до 1:8 соответственно.
В реакционную смесь дополнительно можно вводить, по крайней мере, одну стабилизирующую добавку. В качестве стабилизирующей добавки используют вещество, выбранное из группы: карбоксиметилцеллюлоза (КМЦ), тетраалкиламмониевая, литиевая, натриевая, калиевая, кальциевая, магниевая, бариевая, цинковая, алюминиевая, медная, золотая или смешанная соль КМЦ из вышеуказанного ряда или гидросоль КМЦ, гидроксиэтилцеллюлоза, гидроксипропилцеллюлоза. Причем мольное соотношение: соль гиалуроновой кислоты к стабилизирующей добавке в пределах от 100:1 до 1:1.
Условия, при которых реализуется предлагаемый способ, позволяют осуществить одновременно или последовательно химическое взаимодействие исходных реагентов, а именно ЗХВК или соли золота, восстановленных в ходе синтеза до наноразмерного золота (0,+2,+3), с одной стороны, с гидроксильными группами соли (солей) ГК с образованием эфиров ГК и с другой стороны - с карбоксильными, амино-, о-гидрохинонновыми, о-хинонновыми и семихинонновыми, индолхиноновыми группами соединения из ряда меланинов - с образованием стабильных хелатных поликомплексов меланин-золото-ГК, меланин-ГК-золото, меланин-золото, ГК-золото и их смесей.
Такие поликомплексы по стабильности в целом не уступают ковалентно связанным системам, так как содержат периодически повторяющиеся полихелатные фрагменты, распределенные по макроцепям макрокомплекса.
О количественном выходе целевых продуктов судили по данным ИК-Фурье спектрального анализа исходных реагентов и продуктов реакции. Установлено, что в спектрах этих продуктов полосы в области 1650-1590 см-1 подтверждают наличие большого количества сопряженных систем в исследуемых препаратах меланина, а изменения характера полос в области в 3430-3370 см-1 соответствующие колебаниям -ОН групп в сторону 418, 441, 445 см-1 соответствующие колебаниям Au-0. Размер наночастиц благородных металлов оценивался по положению максимума поглощения разбавленных коллоидных растворов (гидрогелей) в УФ-спектрах [Л.А. Дыкман, В.А. Богатырев, С.Ю. Щеголев, Н.Г. Хлебцов. ЗОЛОТЫЕ НАНОЧАСТИЦЫ. Синтез, свойства, биомедицинское применение. М., Наука. 2008, стр.46].
Изобретение может быть проиллюстрировано следующими примерами.
Пример 1. 6,0 г (15·10-3 моля) порошкообразной натриевой соли ГК, 1,0 г (1·10-2 моля) феомеланина и 2,0 г (5·10-3 моля) золотохлористоводородной кислоты (ЗХВК) гомогенизируют в мельнице при -18°C в течение 10-15 мин. Затем однородную порошкообразную смесь подают в зону питания двухшнекового экструдера, где материал захватывают транспортирующие элементы и перемещают его по длине цилиндра при вращении. Во второй и третьей зоне материал подвергается деформации сдвига, благодаря смесительным элементам, состоящим из кулачков, набранных по пять штук с углом поворота между кулачками 45°, 90° и 45° (обратный). Размещение элементов под разными углами способствует образованию запоров в движении материала и вследствие этого его лучшему перемешиванию и большим физическим воздействиям.
Экструдер имеет измеритель скорости вращения шнеков, показания которого пропорциональны величине потребляемого напряжения, и измерителем нагрузки на шнеках, показывающим величину постоянного тока привода.
Процесс проводится при автоматической загрузке материала в токе азота, скорость подачи реакционной смеси поддерживалась такой, чтобы удерживать заданный уровень нагрузки на шнеках. Скорости вращения шнеков выбирали в пределе от 20 до 200 об·мин-1. Нагрузка (по току) без нагрузки - 5 А, а в режиме твердотельного реакционного смешения оптимально поддерживается 10÷25 А. Температура в первой зоне 5°C, во второй 110°C, в третьей зоне 5°C. Продолжительность процесса составляет 3 минуты при давлении 100 МПа. Выход продукта составляет 8,8 г (98,0%). Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,4 мас.%.
Пример 2. 6,0 г (15·10-3 моля) порошкообразной натриевой соли ГК, 1,0 г (1·10-2 моля) эумеланина и 2,0 г (25·10-4 моля) золотойодистоводородного калия (K[AuI4]·nH2O, n=3 или 4) гомогенизируют в мельнице при -5°C в течение 10-15 мин. Затем однородную порошкообразную смесь подают в зону питания двухшнекового экструдера, где материал захватывают транспортирующие элементы и перемещают его по длине цилиндра при вращении. Во второй и третьей зоне материал подвергается деформации сдвига, благодаря смесительным элементам, состоящим из кулачков, набранных по пять штук с углом поворота между кулачками 45°, 90° и 45° (обратный). Размещение элементов под разными углами способствует образованию запоров в движении материала и вследствие этого его лучшему перемешиванию и большим физическим воздействиям.
Экструдер имеет измеритель скорости вращения шнеков, показания которого пропорциональны величине потребляемого напряжения, и измерителем нагрузки на шнеках, показывающим величину постоянного тока привода.
Процесс проводится при автоматической загрузке материала в токе азота, скорость подачи реакционной смеси поддерживалась такой, чтобы удерживать заданный уровень нагрузки на шнеках. Скорости вращения шнеков выбирали в пределе от 20 до 200 об·мин-1. Нагрузка (по току) без нагрузки - 5 А, а в режиме твердотельного реакционного смешения оптимально поддерживается 30-40 А. Температура в первой зоне 0°C, во второй 110°C, в третьей зоне 5°C. Продолжительность процесса составляет 3 минуты при давлении 200 МПа. Выход продукта составляет 8,8 г (98,0%). Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,4 мас.%.
Пример 3. Выполнен аналогично примеру 1, однако в отличие от него берут алломеланин в количестве 2,0 г (2·10-2 моля), а ЗХВК берут в количестве 2,0 г (5·10-3 моля). Выход продукта составляет 3,76 г (94%). Максимум поглощения составляет 522 нм, что соответствует величине 12 нм для размера частиц золота. Степень наполнения композита золотом составляет 26,5 мас.%.
Пример 4. Выполнен аналогично примеру 2, однако в отличие от него вместо натриевой соли ГК взята смешанная натриево-кальциевая соль при мольном соотношении натрий:кальций =2:1. Выход продукта составляет 8,8 г (98,0%). Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,4 мас.%.
Пример 5. Выполнен аналогично примеру 1, однако в отличие от него вместо натриевой соли ГК взята смешанная натриевая-алюминиевая соль при мольном соотношении натрий:алюминий =3:1. Выход продукта составляет 8,6 г (95,0%). Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,6 мас.%.
Пример 6. Выполнен аналогично примеру 2, однако в отличие от него вместо натриевой соли ГК взята смешанная натриевая-цинковая соль при мольном соотношении натрий:цинк =2:1. Выход продукта составляет 8,8 г (97,0%). Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,4 мас.%.
Пример 7. Выполнен аналогично примеру 2, однако в отличие от него вместо натриевой соли ГК взята смешанная натриевая-медная соль при мольном соотношении натрий:медь =2:1. Выход продукта составляет 8,6 г (96,0%), Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,6 мас.%.
Пример 8. Выполнен аналогично примеру 2, однако в отличие от него вместо натриевой соли ГК взята гидронатриевая соль при мольном соотношении натрий:водород =1:1. Выход продукта составляет 8,8 г (98,0%). Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,4 мас.%.
Пример 9. Выполнен аналогично примеру 1, однако в отличие от него вместо натриевой соли ГК взята смешанная натриевая-золотая соль при мольном соотношении натрий : золото =3:1. Композицию гомогенизируют в мельнице при 5°C в течение 10-15 мин. Скорости вращения шнеков в пределе от 60 до 200 об·мин-1. Нагрузка (по току) без нагрузки - 5 А, а в режиме твердотельного реакционного смешения оптимально поддерживается 30÷35 А. Температура в первой зоне 5°C, во второй 110°C, в третьей зоне 5°C. Продолжительность процесса составляет 3 минуты при давлении 500 МПа. Выход продукта составляет 8,8 г (98,0%). Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,4 мас.%.
Пример 10. Выполнен аналогично примеру 2, однако в отличие от него берем 300,0 г (75·10-2 моля) порошкообразной натриевой соли ГК, 50,0 г (5·10-1 моля) эумеланина и 100,0 г (125·10-3 моля) золотойодистоводородного калия (K[Aul4]·nH2O, n=3 или 4), 50,0 г (21·10-2 моля) натриевой соли КМЦ. Композицию гомогенизируют в мельнице при 5°C в течение 10-15 мин. Скорости вращения шнеков в пределе от 30 до 100 об·мин-1. Нагрузка (по току) без нагрузки - 5 А, а в режиме твердотельного реакционного смешения оптимально поддерживается 25÷30 А. Температура в первой, второй и третьей зоне 5°С. Цикл повторяется 3 раз. Температурный режим на 4-м прогоне составляет - в первой зоне 5°C, во второй 105°C, в третьей зоне 5°C. Продолжительность процесса составляет ~15 минут при давлении 300 МПа. Выход продукта составляет 499,5 г (~100,0%). Максимум поглощения составляет 504 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 5 мас.%.
Пример 11. Выполнен аналогично примеру 2, однако в отличие от него берем 300,0 г (75·10-2 моля) порошкообразной натриевой соли ГК, 100,0 г (5·10-1 моля) эумеланина, 25,0 г (10,5·10-2 моля) натриевой соли КМЦ, 25,0 г натриевой соли ГПЦ (5,5·10-3 моля), гомогенизируем в мельнице при 20°C в течение 10-15 мин. Скорости вращения шнеков в пределе от 20 до 100 об·мин-1. Нагрузка (по току) без нагрузки - 5 А, а в режиме твердотельного реакционного смешения оптимально поддерживается 40÷45 А. Температура в первой, второй и третьей зоне 50°С. Цикл повторяется 3 раза. Температурный режим на 4-м прогоне составляет в первой зоне - 15°C, во второй - 15°C, в третьей зоне - 15°C. На 4-м прогоне к реакционной смеси добавляется ДМСО до 10% от массы композиции и дозируется золотойодистоводородный калий (K[AuI4]·nH2O, n=3 или 4) в количестве 100,0 г (125·10-3 моля). Цикл повторяется 4 раза. Температурный режим в последующих двух циклах составляет в первой зоне 105°C, во второй - 110°C, в третьей зоне - 15°C. Общая продолжительность процесса составляет - 30 минут при давлении 400 МПа. Выход продукта составляет 544,5 г (~100,0%). Максимум поглощения составляет 510 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 9,2 мас.%.
Пример 12. 120,0 мг (3·10-4 моля) порошкообразной натриевой соли ГК, 20,0 мг (2·10-4 моля) алломеланина и 40,0 мг (1·10-4 моля) золотохлористоводородной кислоты (ЗХВК) гомогенизируют в мельнице при - 10°C в течение 10-15 мин. Затем однородную порошкообразную смесь помещают на нижнюю наковальню Бриджмена (диаметр рабочей поверхности =3 см), накрывают верхней наковальней, наковальни ставят под пресс и подвергают давлению 200 МПа при 20°C при угле поворота нижней наковальни 250° втечение 1 мин. Далее снимают давление, вынимают наковальни из-под пресса. Выход продукта составляет 176,4 мг (98,0%), Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,4 мас.%.
Пример 13. 120,0 мг (3·10-4 моля) порошкообразной натриевой соли ГК, 20,0 мг (2·10-4 моля) алломеланина и 40,0 мг (5·10-5 моля) золотойодистовод сродного калия (К[AuI4]·nH2O, n=3 или 4) гомогенизируют в мельнице при 5°C в течение 10-15 мин. Затем однородную порошкообразную смесь помещают на нижнюю наковальню Бриджмена (диаметр рабочей поверхности =3 см), накрывают верхней наковальней, наковальни ставят под пресс и подвергают давлению 450 МПа при 90°C при угле поворота нижней наковальни 200° в течение 30 сек. Далее снимают давление, вынимают наковальни из-под пресса. Выход продукта составляет 176,4 мг (98,0%). Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,4 мас.%.
Пример 14. Выполнен аналогично примеру 12, однако в отличие от него алломеланина берут в количестве 2,00 мг (2·10-5 моля), а ЗХВК берут в количестве 2,00 мг (5·10-6 моля). Выход продукта составляет 124,00 мг (100%). Максимум поглощения составляет 490 нм, что соответствует величине 1 нм для размера частиц золота. Степень наполнения композита золотом составляет 0,8 мас.%.
Пример 15. Выполнен аналогично примеру 13, однако в отличие от него вместо натриевой соли ГК взята смешанная натриево-кальциевая соль при мольном соотношении натрий:кальций =2:1. Выход продукта составляет 176,4 мг (98,0%). Максимум поглощения составляет 513 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,4 мас.%.
Пример 16. Выполнен аналогично примеру 12, однако в отличие от него вместо натриевой соли ГК взята смешанная натриевая-алюминиевая соль при мольном соотношении натрий:алюминий =3:1. Выход продукта составляет 171,0 мг (95,0%). Максимум поглощения составляет 517 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,7 мас.%.
Пример 17. Выполнен аналогично примеру 13, однако в отличие от него вместо натриевой соли ГК взята смешанная натриевая-цинковая соль при мольном соотношении натрий:цинк =2:1. Выход продукта составляет 174,6 мг (97,0%). Максимум поглощения составляет 514 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,5 мас.%.
Пример 18. Выполнен аналогично примеру 12, однако в отличие от него вместо натриевой соли ГК взята смешанная натриевая-медная соль при мольном соотношении натрий:медь =2:1. Выход продукта составляет 172,8 мг (96,0%). Максимум поглощения составляет 515 нм, что соответствует величине 5 нм для размера частиц золота. Степень наполнения композита золотом составляет 11,6 мас.%.
Приведенные примеры убедительно показывают, что создан универсальный экологически безопасный способ, позволяющий получать водорастворимый биоактивный нанокомпозит, включающий модифицированную соединением из ряда меланинов соль гиалуроновой кислоты в качестве матрицы и наночастицы золота как наполнитель, в одностадийном технологическом режиме в отсутствии жидкой среды с получением целевых продуктов с высоким выходом. Способ не требует больших энерго-, трудо- и водозатрат, позволяет использовать в качестве исходных реагентов самые разнообразные, в том числе водонерастворимые, соли ГК.
Достигнуто значительное увеличение эффективности действия биоактивного нанокомпозита, в частности нетоксичность, туморотропность, невысокая вязкость при внутривенном применении соразмерна значению вязкости крови здорового человека 3-5 мПа·с, обладает высокой стабильностью, с точно известной концентрацией основных компонентов. Также достигнута высокая концентрация золота (>10 мг/г-ткани) биоактивного нанокомпозита, что позволяет реализовать принцип ФЗТ, фототермической терапии, фото- и радиосенсибилизации, химиотерапии, лечение ревматоидного артрита, антиВИЧ терапии.

Claims (14)

1. Способ получения водорастворимого биоактивного нанокомпозита, включающего модифицированную соединением из ряда меланинов соль гиалуроновой кислоты в качестве матрицы и наночастицы золота как наполнитель, заключающийся в том, что осуществляют химическое взаимодействие твердофазных порошков соли гиалуроновой кислоты, соединения из ряда меланинов, золотохлористоводородной кислоты или соли золота в условиях одновременного воздействия давления в пределах от 50 до 1000 МПа и деформации сдвига в механохимическом реакторе при температуре от -18° до 110°C.
2. Способ по п.1, отличающийся тем, что солью гиалуроновой кислоты является соль из ряда: тетраалкиламмониевая, литиевая, натриевая, калиевая, кальциевая, магниевая, бариевая, цинковая, алюминиевая, медная, золотая, или смешанная соль гиалуроновой кислоты из вышеуказанного ряда, или гидросоль гиалуроновой кислоты.
3. Способ по п.2, отличающийся тем, что солью гиалуроновой кислоты является натриевая соль.
4. Способ по п.2, отличающийся тем, что солью гиалуроновой кислоты является смешанная соль.
5. Способ по п.1, отличающийся тем, что соединение из ряда меланинов выбрано из группы: феомеланин, эумеланин, алломеланин.
6. Способ по п.1, отличающийся тем, что солью золота является золотойодистоводородный калий.
7. Способ по п.2, отличающийся тем, что мольное соотношение: соль гиалуроновой кислоты к соединению из ряда меланинов находится в пределах от 100:1 до 1:100.
8. Способ по п.1, отличающийся тем, что мольное соотношение золотохлористоводородной кислоты к соединению из ряда меланинов находится в пределах от 1:1000 до 1:4 соответственно.
9. Способ по п.6, отличающийся тем, что мольное соотношение золотойодистоводородный калий к соединению из ряда меланинов находится в пределах от 1:1000 до 1:8 соответственно.
10. Способ по п.1, отличающийся тем, что продолжительность воздействия давления и деформации сдвига находится в пределах от 0,1 до 30 минут.
11. Способ по п.1, отличающийся тем, что дополнительно вводят стабилизирующую добавку, выбранную из группы: карбоксиметилцеллюлоза (КМЦ), тетраалкиламмониевая, литиевая, натриевая, калиевая, кальциевая, магниевая, бариевая, цинковая, алюминиевая, медная, золотая или смешанная соль КМЦ из вышеуказанного ряда или гидросоль КМЦ, гидроксиэтилцеллюлоза, гидроксипропилцеллюлоза.
12. Способ по п.11, отличающийся тем, что мольное соотношение: соль гиалуроновой кислоты к стабилизирующей добавке в пределах от 100:1 до 1:1.
13. Способ по п.1, отличающийся тем, что механохимическим реактром является: двухшнековый экструдер с однонаправленным вращением шнеков или двухшнековый экструдер с противоположно направленным вращением шнеков или двухшнековый экструдер с набором транспортных или запирающих или перетирающих кулачков.
14. Способ по п.1, отличающийся тем, что механохимическим реактром являются наковальни Бриджмена, при этом деформацию сдвига осуществляют путем изменения угла поворота нижней наковальни.
RU2013112628/13A 2013-03-21 2013-03-21 Твердофазный способ получения водорастворимого биоактивного нанокомпозита на основе модифицированной меланином соли гиалуроновой кислоты и наночастиц золота RU2532032C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013112628/13A RU2532032C1 (ru) 2013-03-21 2013-03-21 Твердофазный способ получения водорастворимого биоактивного нанокомпозита на основе модифицированной меланином соли гиалуроновой кислоты и наночастиц золота

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013112628/13A RU2532032C1 (ru) 2013-03-21 2013-03-21 Твердофазный способ получения водорастворимого биоактивного нанокомпозита на основе модифицированной меланином соли гиалуроновой кислоты и наночастиц золота

Publications (2)

Publication Number Publication Date
RU2013112628A RU2013112628A (ru) 2014-09-27
RU2532032C1 true RU2532032C1 (ru) 2014-10-27

Family

ID=51656336

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013112628/13A RU2532032C1 (ru) 2013-03-21 2013-03-21 Твердофазный способ получения водорастворимого биоактивного нанокомпозита на основе модифицированной меланином соли гиалуроновой кислоты и наночастиц золота

Country Status (1)

Country Link
RU (1) RU2532032C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641053C1 (ru) * 2016-09-21 2018-01-15 Наталья Павловна Михайлова Твёрдофазный способ получения биоактивного композита для наращивания ткани на основе гиалуроновой кислоты и микрочастиц полилактида или его сополимеров и способ получения имплантата на основе этого композита

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087254A1 (es) * 2008-01-04 2009-07-16 Endor Nanotechnologies, S.L. Conjugado de ácido hialurónico para el tratamiento cosmético y procedimiento de preparación
WO2011004376A1 (en) * 2009-07-09 2011-01-13 Oshadi Drug Administration Ltd. Matrix carrier compositions, methods and uses
RU2416389C1 (ru) * 2009-10-26 2011-04-20 Учреждение Российской академии наук Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН (ИСПМ РАН) Твердофазный способ получения биоактивного нанокомпозита

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009087254A1 (es) * 2008-01-04 2009-07-16 Endor Nanotechnologies, S.L. Conjugado de ácido hialurónico para el tratamiento cosmético y procedimiento de preparación
WO2011004376A1 (en) * 2009-07-09 2011-01-13 Oshadi Drug Administration Ltd. Matrix carrier compositions, methods and uses
RU2416389C1 (ru) * 2009-10-26 2011-04-20 Учреждение Российской академии наук Институт синтетических полимерных материалов им. Н.С. Ениколопова РАН (ИСПМ РАН) Твердофазный способ получения биоактивного нанокомпозита

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2641053C1 (ru) * 2016-09-21 2018-01-15 Наталья Павловна Михайлова Твёрдофазный способ получения биоактивного композита для наращивания ткани на основе гиалуроновой кислоты и микрочастиц полилактида или его сополимеров и способ получения имплантата на основе этого композита

Also Published As

Publication number Publication date
RU2013112628A (ru) 2014-09-27

Similar Documents

Publication Publication Date Title
Li et al. Fabrication and characterization of starch/zein nanocomposites with pH-responsive emulsion behavior
Fang et al. Hydroxyapatite crystal formation in the presence of polysaccharide
Xu et al. Stable amorphous CaCO3 microparticles with hollow spherical superstructures stabilized by phytic acid
Henrist et al. Study of the morphology of copper hydroxynitrate nanoplatelets obtained by controlled double jet precipitation and urea hydrolysis
Ghosh et al. Bio-evaluation of doxorubicin (DOX)-incorporated hydroxyapatite (HAp)-chitosan (CS) nanocomposite triggered on osteosarcoma cells
Musić et al. Precipitation of ZnO particles and their properties
Wu et al. Adjustable synthesis of polydopamine nanospheres and their nucleation and growth
JP5986448B2 (ja) 硫酸根含有ポリ塩化アルミニウムの製造方法
CN101563294A (zh) 生产表面改性的纳米颗粒状金属氧化物、金属氢氧化物和/或金属羟基氧化物的方法
WO2012115538A1 (ru) Клатратный комплекс циклодекстрина или арабиногалактана с 9-фенил-симм-октагидроселеноксантеном
Liu et al. Starch–zinc complex and its reinforcement effect on starch-based materials
Mandal et al. Vibrational spectroscopic investigation on interaction of sago starch capped silver nanoparticles with collagen: a comparative physicochemical study using FT-IR and FT-Raman techniques
Li et al. A self-healing and multi-responsive hydrogel based on biodegradable ferrocene-modified chitosan
Morimoto et al. Composite nanomaterials by self-assembly and controlled crystallization of poly (2-isopropyl-2-oxazoline)-grafted polysaccharides
Ionita et al. Ion exchange in alginate gels–dynamic behaviour revealed by electron paramagnetic resonance
Meng et al. Construction of size-controllable gold nanoparticles immobilized on polysaccharide nanotubes by in situ one-pot synthesis
RU2532032C1 (ru) Твердофазный способ получения водорастворимого биоактивного нанокомпозита на основе модифицированной меланином соли гиалуроновой кислоты и наночастиц золота
RU2534789C1 (ru) Твердофазный способ получения водорастворимого биоактивного нанокомпозита на основе модифицированной лимонной кислотой гиалуроновой кислоты и наночастиц золота
El Bakkari et al. Facile synthesis of calcium hydroxide nanoparticles onto TEMPO-oxidized cellulose nanofibers for heritage conservation
Feng et al. Biomineralization of calcium carbonate under amino acid carbon dots and its application in bioimaging
Mihai et al. Design of high sorbent pectin/CaCO3 composites tuned by pectin characteristics and carbonate source
Zhang et al. Sonoactivated cascade Fenton reaction enhanced by synergistic modulation of electron–hole separation for improved tumor therapy
Yang et al. Biocompatible, small-sized and well-dispersed gold nanoparticles regulated by silk fibroin fiber from Bombyx mori cocoons
Li et al. Structures and high fluorescence of novel nanocomposites of sodium carboxymethyl cellulose/Tb (III) prepared at different pHs
EP1919959A1 (en) A method for preparing polyanhydroglucuronic acid and/or salts thereof

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160322