RU2531841C2 - Низкооборотный генератор для ветросиловой установки - Google Patents

Низкооборотный генератор для ветросиловой установки Download PDF

Info

Publication number
RU2531841C2
RU2531841C2 RU2013101199/06A RU2013101199A RU2531841C2 RU 2531841 C2 RU2531841 C2 RU 2531841C2 RU 2013101199/06 A RU2013101199/06 A RU 2013101199/06A RU 2013101199 A RU2013101199 A RU 2013101199A RU 2531841 C2 RU2531841 C2 RU 2531841C2
Authority
RU
Russia
Prior art keywords
stators
wind
magnets
generator
rotor
Prior art date
Application number
RU2013101199/06A
Other languages
English (en)
Other versions
RU2013101199A (ru
Inventor
Сергей Евгеньевич Щеклеин
Александр Ильич Попов
Original Assignee
Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина" filed Critical Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Уральский федеральный университет имени первого Президента России Б.Н. Ельцина"
Priority to RU2013101199/06A priority Critical patent/RU2531841C2/ru
Publication of RU2013101199A publication Critical patent/RU2013101199A/ru
Application granted granted Critical
Publication of RU2531841C2 publication Critical patent/RU2531841C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

Изобретение относится к области энергетики и предназначено для использования в низкооборотных ветросиловых установках для преобразования ветровой энергии в электрическую. Низкооборотный генератор для ветросиловой установки в бескорпусной конструкции содержит соединенный с валом ветросиловой установки ротор в виде диска и несколько статоров, состоящих из постоянных магнитов с катушками и полюсными наконечниками, расположенными по окружности диска. Дополнительно введен немагнитный диск ротора с радиально расположенными отверстиями. В этих отверстиях размещены в несколько рядов постоянные магниты с чередующейся по окружности полярностью их полюсов. Статоры снабжены ползунами, обеспечивающими их радиальное перемещение в направляющих относительно дисков. Дополнительно введены компенсирующие статоры с магнитами противоположной полярности, установленные диаметрально относительно диска статорам с катушками. Число магнитов в рядах выбрано четным. Изобретение направлено на повышение надежности работы генератора за счет уменьшения эффекта «залипания», а также на обеспечение модульного принципа подбора параметров генератора под требуемые характеристики конкретной ветросиловой установки. 2 ил.

Description

Настоящее изобретение относится к области энергетики и может быть использовано в низкооборотных ветросиловых установках для преобразования ветровой энергии в электрическую. Скорость вращения вала ветроустановки зависит от постоянно изменяющейся скорости ветра, поэтому выходные параметра электрического генератора необходимо оперативно регулировать.
Известен генератор в составе ветросиловой установки [1], например, по патенту РФ №2064082 «Ветросиловая установка», автора Николаева Г.С. и др., содержащий ротор в виде диска из непроводящего материала, на периферии которого выполнены пазы для обмоток, соединенных с токосъемными кольцами, а обмотки ротора охвачены электромагнитами статора, причем ротор генератора подключен к валу ветросиловой установки.
Недостатком данной конструкции является наличие токосъемных колец и эффекта «залипания» - торможения ротора при вхождении обмотки между полюсами электромагнитного статора, обусловленного взаимодействием электромагнитных полей.
Известен также «Торцевой генератор переменного тока», автора Лисейкина и др., приводимый в действие ветровым лопастным колесом [2], по патенту №1835116 СССР, содержащий ротор в виде двух дисковых магнитопроводов, на которых размещены аксиально намагниченные постоянные магниты и статор с катушками рабочей обмотки, выполненных в виде полых цилиндров и размещенных в отверстиях диска статора.
Недостатком данной конструкции является также наличие эффекта «залипания», что увеличивает начальный стартовый крутящий момент при пуске генератора. Это особенно актуально при трогании с места ветросиловых установок при слабых ветрах. Кроме того, данная конструкция не предполагает изменение параметров ее узлов и подстраивание их под параметры конкретной ветроустановки.
Известен генератор в составе ветроустановки, в котором эффект «залипания» значительно снижен, см., например, «Безредукторный ветроагрегат», автора Строганова В.И. [3] по патенту СССР №1787206.
Генератор содержит ротор, связанный с ветроколесом и выполненный в виде стальных колец с постоянными магнитами, статор - в виде расположенных между кольцами шихтованных секций с обмотками, причем стальные кольца расположены коаксиально друг к другу с зазорами между одноименными полюсами магнитов, а магниты расположены с наружных и внутренних сторон колец.
Недостатком данной конструкции является ее сложность, особенно в части технологии изготовления, последующей сборки и обслуживания. В конструкции не предусматривается подстройка или регулирование каких-либо параметров.
Ближайшим аналогом (прототипом) является генератор в составе «Безредукторного ветроэнергоагрегата» автора Попова А.И. и др. [4] по патенту РФ на полезную модель №33410.
Генератор содержит ротор, соединенный с валом ветроагрегата, и несколько статоров, состоящих из постоянных магнитов с катушками и полюсными наконечниками, причем ротор выполнен в виде диска с ферромагнитными зубцами и впадинами между ними по периферии диска, размещенными между полюсными наконечниками статоров. Необходимое количество дисков и роторов и количество статоров определяется требуемым количеством фаз и частотой выходного напряжения.
Недостатком данного устройства является ограниченная мощность из-за наличия однополярного сигнала в катушках статоров, обусловленная постоянной составляющей магнитной индукции в магнитопроводах. Кроме того, в данной конструкции присутствует также нежелательный эффект «залипания», приводящий к необходимости прилагать дополнительные усилия при начале движения ветроагрегата.
Задачей предлагаемого технического решения является устранение указанных недостатков.
Технический результат предлагаемого решения заключается в следующем:
- увеличена эффективность устройства за счет размещения в радиально расположенных отверстиях диска постоянных магнитов с чередующейся по окружности диска полярностью, что позволяет получать с выходных катушек разнополярные сигналы большей мощности;
- увеличена эффективность устройства за счет размещения рабочих или дополнительных без обмоток статоров с противоположной полярностью магнитов, совпадающих по фазе со съемом сигнала с обмоток рабочих статоров;
- упрощена конструкция устройства, которая может выполняться в сборно-разборном варианте: изменять количество статоров, диаметр и количество зубцов с магнитами на роторе и т.д., что позволяет без дополнительного мультипликатора подбирать режимы работы генератора под конкретную конструкцию ветроагрегата.
Технический результат достигается также за счет того, что на немагнитном диске ротора размещены постоянные магниты в отверстиях нескольких радиальных рядов с чередующейся полярностью, а статоры снабжены ползунами, позволяющими перемещать статоры в радиальном направлении. Технический результат достигается также за счет установки напротив рабочих статоров на диаметрально противоположной стороне диска компенсирующих статоров с противоположной полярностью магнитов.
Технический результат достигается также за счет возможности выполнения устройства в блочном сборно-разборном безкорпусном варианте, обеспечивающем необходимые регулировки и настройки генератора.
Предложенное техническое решение может найти применение в ветроэнергетике в качестве универсального низкооборотного бескорпусного генератора, параметры которого можно подстраивать под конкретные технические характеристики разнотипных ветроэнергетических установок.
На фиг.1 изображен вариант размещения на диске ротора постоянных магнитов в два ряда, одного рабочего и одного компенсирующего статора.
На фиг.2 изображен упрощенный вариант компоновки низкооборотного генератора в составе ветросиловой установки с ортогональной осью вращения.
Устройство содержит немагнитный диск 1 ротора, соединенный с валом 2 ветросиловой установки, причем в отверстиях диска радиально по окружности расположены, например, в два ряда постоянные магниты 3 с чередующейся полярностью их полюсов. Число магнитов в рядах выбрано четным. На чертеже изображен упрощенный вариант генератора, содержащего один рабочий статор 4 с обмотками и один компенсирующий статор 5, который может не содержать рабочей обмотки 6. Кроме того, в состав статоров входят постоянные магниты 7 и полюсные наконечники 8.
Статоры имеют возможность радиально относительно диска перемещаться с помощью ползунов (не показано на чертеже) в направляющих 9.
Низкооборотный генератор для ветросиловой установки работает следующим образом.
Диск 1 получает вращение от связанного с ним вала 2 ветроустановки, причем постоянные магниты 3, например, крайнего (наружного) ряда периодически проходят между полюсными наконечниками 8 статоров 4 и 5.
Поскольку полярность полюсов магнитов 3 чередуется, то при прохождении через статоры их магнитные поля либо суммируются с магнитным полем магнитов 7 статоров, либо вычитаются, при этом с обмотки 6 рабочего статора снимается напряжение «U» обеих полярностей. Для увеличения выходного сигнала магниты располагаются не на поверхности, а в радиально расположенных отверстиях диска 1.
В отличие от прототипа, в котором вырабатывается выходное напряжение одной полярности с постоянной составляющей, приводящей к замагничиванию магнитоприводов, во вновь предложенном устройстве в рабочей обмотке 6 генерируется квазисинусоидальное напряжение с формой, зависящей от конфигурации магнитов 3 и полюсных наконечников 8.
Для уменьшения эффекта «залипания» диаметрально напротив рабочего статора может быть установлен компенсирующий статор 5 с обмоткой или без обмотки. Число магнитов в отверстиях рядов диска должно быть четным. Таким образом, при возникновении эффекта залипания (торможения), например, в рабочем статоре одновременно присутствует эффект отталкивания в компенсирующем противоположно расположенном статоре. Это уменьшает величину момента, необходимого для начала движения (страгивания с места) ветросиловой установки при слабых стартовых ветрах. На чертеже изображен вариант генератора с одним рабочим статором 4, однако их число, так же как и в прототипе, определяется числом фаз и необходимой мощностью на его выходных обмотках.
Вместо нескольких дисков ротора, предлагаемых в прототипе, в рассматриваемом генераторе постоянные магниты 3 (см. фиг.1) располагаются радиально в отверстиях диска по окружности в несколько рядов, в данном примере в два ряда. Радиально расположенные магниты соседних рядов имеют одинаковую угловую скорость, но разную линейную. Поэтому при большей скорости вращения вала 2 ветроустановки полюсные наконечники 8 статоров 4 и 5 находятся в зоне действия ряда крайних магнитов 3 диска 1. Если обороты ветроустановки снизились, то статоры по направляющим 9 перемещаются радиально к центру диска, чтобы полюсные наконечники находились над вторым внутренним рядом магнитов диска ротора.
Статоры перемещаются с помощью ползунов (не показано на чертеже) в пазах направляющих 9 и крепятся винтами по примеру, описанному [5], либо другим известным способом.
В предлагаемом устройстве целесообразно использовать сменные диски 1 разных диаметров с необходимым числом постоянных магнитов 3, а также числом противоположно расположенных пар статоров 4 и 5, причем для низкооборотных ветроустановок с вертикальным ротором диаметр диска конструктивно практически не ограничен (Фиг.2).
Предлагаемая конструкция позволяет компоновать узлы низкооборотного генератора под параметры ветросиловых установок с разными заявленными характеристиками числа оборотов в зависимости от скорости ветра.
Кроме того, в предложенном устройстве представляется возможность регулировать параметры выходного сигнала генератора, перемещая статоры в радиальном направлении.
В отличие от известных корпусных конструкций генераторов, предложенное устройство может быть выполнено в сборно-разборном варианте и монтажом на месте установки ветросиловой установки под ее конкретные параметры. Последнее особенно актуально для низкооборотных ветроэнергетических установок большой мощности.

Claims (1)

  1. Низкооборотный генератор для ветросиловой установки в бескорпусной конструкции, содержащий соединенный с валом ветросиловой установки ротор в виде диска и несколько статоров, состоящих из постоянных магнитов с катушками и полюсными наконечниками, расположенными по окружности диска, отличающийся тем, что использован немагнитный диск ротора с радиально расположенными отверстиями, в которых размещены в несколько рядов постоянные магниты с чередующейся по окружности полярностью их полюсов, а статоры снабжены ползунами, обеспечивающими их радиальное перемещение в направляющих относительно дисков, причем дополнительно введены компенсирующие статоры с магнитами противоположной полярности, установленые диаметрально относительно диска статорам с катушками, и число магнитов в рядах выбрано четным.
RU2013101199/06A 2013-01-10 2013-01-10 Низкооборотный генератор для ветросиловой установки RU2531841C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013101199/06A RU2531841C2 (ru) 2013-01-10 2013-01-10 Низкооборотный генератор для ветросиловой установки

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013101199/06A RU2531841C2 (ru) 2013-01-10 2013-01-10 Низкооборотный генератор для ветросиловой установки

Publications (2)

Publication Number Publication Date
RU2013101199A RU2013101199A (ru) 2014-07-20
RU2531841C2 true RU2531841C2 (ru) 2014-10-27

Family

ID=51215180

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013101199/06A RU2531841C2 (ru) 2013-01-10 2013-01-10 Низкооборотный генератор для ветросиловой установки

Country Status (1)

Country Link
RU (1) RU2531841C2 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1690105A1 (ru) * 1989-03-30 1991-11-07 Предприятие П/Я В-2438 Электрическа машина посто нного тока
RU2064082C1 (ru) * 1993-02-16 1996-07-20 Московский Инженерно-Физический Институт Ветросиловая установка
RU2168062C1 (ru) * 1999-12-07 2001-05-27 Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева" Ветрогенератор
RU33410U1 (ru) * 2003-07-02 2003-10-20 Попов Александр Ильич Безредукторный ветроэнергоагрегат
RU94083U1 (ru) * 2009-12-25 2010-05-10 Сергей Михайлович Есаков Магнитоэлектрический генератор
RU2397362C1 (ru) * 2009-01-11 2010-08-20 Станислав Иванович Гусак Способ работы ветроэлектрогенератора и ветроэлектрогенератор

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1690105A1 (ru) * 1989-03-30 1991-11-07 Предприятие П/Я В-2438 Электрическа машина посто нного тока
RU2064082C1 (ru) * 1993-02-16 1996-07-20 Московский Инженерно-Физический Институт Ветросиловая установка
RU2168062C1 (ru) * 1999-12-07 2001-05-27 Открытое акционерное общество "Всероссийский научно-исследовательский институт гидротехники им. Б.Е. Веденеева" Ветрогенератор
RU33410U1 (ru) * 2003-07-02 2003-10-20 Попов Александр Ильич Безредукторный ветроэнергоагрегат
RU2397362C1 (ru) * 2009-01-11 2010-08-20 Станислав Иванович Гусак Способ работы ветроэлектрогенератора и ветроэлектрогенератор
RU94083U1 (ru) * 2009-12-25 2010-05-10 Сергей Михайлович Есаков Магнитоэлектрический генератор

Also Published As

Publication number Publication date
RU2013101199A (ru) 2014-07-20

Similar Documents

Publication Publication Date Title
US7960887B2 (en) Permanent-magnet switched-flux machine
RU2427067C1 (ru) Магнитоэлектрический генератор
US10122238B2 (en) Fluid flow power generation system
US20100032952A1 (en) Turbine generator having direct magnetic gear drive
RU2711238C1 (ru) Синхронный генератор с трехконтурной магнитной системой
JP2021145544A (ja) 相補的で一方向磁性の回転子/固定子組立体の対
CN103915961B (zh) 一种轴向磁通双凸极永磁发电机
RU2515998C1 (ru) Магнитоэлектрический генератор
RU2474032C2 (ru) Магнитоэлектрический генератор
KR101872262B1 (ko) 마그넷 발전기
RU2012105426A (ru) Дискообразный инверсионный генератор и ветроэнергетическое генерирующее оборудование, включающее его
RU2531841C2 (ru) Низкооборотный генератор для ветросиловой установки
JP4189250B2 (ja) 風車
RU2417506C2 (ru) Низкоскоростная электрическая машина с кольцевым статором
RU2006106463A (ru) Роторная машина и электромагнитная машина
WO2010126392A1 (ru) Магнитоэлектрический генератор
RU158144U1 (ru) Магнитоэлектрический генератор
RU2569380C2 (ru) Ротор генератора индукторного
RU2544836C1 (ru) Шаговый электродвигатель
RU121404U1 (ru) Магнитоэлектрический двигатель
RU203278U1 (ru) Генератор дисковый аксиальный на постоянных магнитах
WO2016190836A1 (ru) Ветроэнергетическая установка
RU2646614C1 (ru) Статор электрогенератора
RU2518152C1 (ru) Ветроэлектрогенератор
RU131919U1 (ru) Низкооборотный генератор электрического тока

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150111