RU2531679C2 - Способ очистки орбит от космического мусора - Google Patents

Способ очистки орбит от космического мусора Download PDF

Info

Publication number
RU2531679C2
RU2531679C2 RU2012136161/11A RU2012136161A RU2531679C2 RU 2531679 C2 RU2531679 C2 RU 2531679C2 RU 2012136161/11 A RU2012136161/11 A RU 2012136161/11A RU 2012136161 A RU2012136161 A RU 2012136161A RU 2531679 C2 RU2531679 C2 RU 2531679C2
Authority
RU
Russia
Prior art keywords
orbits
afm
orbit
objects
kab
Prior art date
Application number
RU2012136161/11A
Other languages
English (en)
Other versions
RU2012136161A (ru
Inventor
Валерий Иванович Трушляков
Юрий Николаевич Макаров
Игорь Игоревич Олейников
Яков Тимофеевич Шатров
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Омский государственный технический университет"
Priority to RU2012136161/11A priority Critical patent/RU2531679C2/ru
Publication of RU2012136161A publication Critical patent/RU2012136161A/ru
Application granted granted Critical
Publication of RU2531679C2 publication Critical patent/RU2531679C2/ru

Links

Abstract

Изобретение относится к ракетно-космической технике и может быть использовано для увода с рабочих орбит объектов космического мусора (ОКМ) на орбиты утилизации. Способ включает выведение космического аппарата-буксира (КАБ) и автономного стыковочного модуля (АСМ) в области орбит, предназначенных для очистки от ОКМ. Выбор последовательности увода ОКМ осуществляют путем сравнения критерия, например вероятности столкновения ОКМ с другими космическими объектами, для каждого ОКМ. Компенсацию накопленных ошибок параметров движения КАБ при предыдущих маневрах, а также системы целеуказания распределяют между корректирующими импульсами КАБ на этапе дальнего наведения и АСМ на участке самонаведения. Техническим результатом изобретения является повышение эффективности проведения операций по удалению ОКМ с рабочих орбит.

Description

Изобретение относится к ракетно-космической технике и может быть использовано для увода с рабочих орбит различного крупногабаритного космического мусора на основе многократной стыковки космических аппаратов (КА), например, при очистке рабочих орбит от отработавших отделяющихся частей (ОЧ) последних ступеней ракет космического назначения (РКН), ранее выведенных на рабочие орбиты, КА, завершивших выполнение своей миссии.
Известен способ увода космического мусора с орбит полезных нагрузок по заявке RU №2010119972/11 от 18.05.2010 г. Решение о выдаче патента от 20.04.2012 г., предусматривающее буксировку на тросе ОЧ и вход с ней вместе в атмосферу, т.е. одноразовая операция.
В качестве прототипа рассматривается способ очистки орбит, реализованный КА по патенту «Космический аппарат для очистки космоса от пассивных КА и их фрагментов» RU №2141436 B64G 1/00, B64G 1/22, B64G 9/00.
В соответствии с прототипом КА-буксир (КАБ) доставляется на начальную орбиту с помощью РКН. После этого происходит раздвижение фермы с ядерной энергетической установкой и развертывание штанг с электроракетными двигателями. Затем происходит включение ядерной энергоустановки и весь КАБ совершает перелет с помощью электроракетных двигателей на орбиту, близкую к орбите подлежащего удалению объекта, и совершает дальнее сближение с объектом до расстояния от нескольких километров до нескольких сотен метров. После чего происходит отстыковка активного автономного стыковочного модуля (ACM) от КАБ и его автономное сближение с удаляемой ОЧ с помощью двигательной установки АСМ. После сближения с удаляемой ОЧ автономный АСМ осуществляет захват ОЧ автоматическим манипулятором и осуществляет фиксацию его в устройстве фиксации.
Если относительные скорости удаляемой ОЧ и КАБ не превышают значений порядка 10…20 м/с, то АСМ осуществляет сближение и захват удаляемой ОЧ, будучи соединенным с КАБ тросом тросовой системы. В этом случае, после осуществления захвата и фиксации удаляемой ОЧ в устройстве фиксации АСМ происходит выравнивание скоростей основного КАБ и АСМ за счет регулирования скорости разматывания троса тросовой системы. Затем производится ориентация всей системы (КАБ+АСМ) вдоль местной вертикали и осуществляется либо перевод удаляемой ОЧ на орбиту, утилизации, гарантирующей ее торможение в атмосфере, если позволяет высота орбиты системы и длина троса, путем отсоединения ОЧ от АСМ, либо АСМ подтягивается к КАБ путем сматывания троса тросовой системой и стыкуется с ним с помощью стыковочных узлов.
Если подлежащая удалению ОЧ находится на орбите со значительным эксцентриситетом и КАБ не может сформировать такую орбиту за приемлемое время, то удаление ОЧ будет выглядеть следующим образом: КАБ формирует околокруговую орбиту высотой немного ниже (или выше) перицентра (апоцентра) орбиты удаляемой ОЧ, при этом разность высот выбирается из необходимой величины характеристической скорости для перехода АСМ эллиптическую орбиту удаляемой ОЧ. После этого КАБ ориентируется вдоль местной вертикали, происходит расстыковка АСМ с КАБ и их взаимное удаление вдоль местной вертикали за счет разматывания троса до тех пор, пока АСМ не окажется в перицентре (апоцентре) орбиты удаляемой ОЧ. В момент прохождения ОЧ через перицентр (апоцентр) происходит отцепление АСМ от троса, и он осуществляет сближение с ОЧ, захват и фиксацию с помощью устройства фиксации. Затем АСМ и основной КАБ осуществляют взаимное сближение и стыковку с помощью систем автоматической стыковки и стыковочных узлов. После этого с ОЧ производятся операции, аналогичные описанным выше.
Использование предлагаемого способа для очистки орбит затруднено по следующим причинам:
- высокая стоимость очистки орбиты из-за разработки ядерной двигательной установки;
- при выборе последовательности спуска ОЧ не учитывается опасность их столкновения с другими космическими объектами либо какие-то другие критерии, например масса, «переполненность» орбиты и т.д.;
- при реализации описанных маневров не учитываются ограничения, свойственные реальным системам, например двигательной установки (ДУ), в том числе время на запуск ДУ после отделения от РКН, интервалы между запусками ДУ, что приводит к изменению схемы дальнего наведения, выбору последовательности уводимых ОЧ, времени нахождения на орбите и, соответственно, дополнительным энергетическим затратам;
- не учитываются точностные характеристики системы управления (СУ) КАБ, точность отработки импульсов ДУ, ошибок системы целеуказаний по ОЧ, которые приводят к появлению больших начальных отклонений на начало этапа самонаведения, а затраты топлива для самонаведения АСМ напрямую связаны с точностью целеуказаний ОЧ;
- не рассматриваются действия по снижению энергетических затрат, вероятности успешной стыковки из-за случайного характера начальных параметров относительного движения на начало этапа самонаведения.
Техническим результатом предлагаемого решения является повышение эффективности проведения операций по удалению с орбит отработавших космических объектов за счет учета степени опасности объектов при выборе последовательности их спуска, с учетом ограничений, накладываемых характеристиками ДУ и СУ обслуживающих космических аппаратов, точностных характеристик наземной системы высокоточных целеуказаний.
Достижение указанных технических результатов при реализации предлагаемого способа обеспечивают за счет введения в известный способ, основанный на выведении КАБ и АСМ в области орбит, последовательные маневры дальнего и ближнего наведения для стыковки и захвата объектов и их спуск на орбиты утилизации, следующих действий:
- выбор последовательности объектов, из имеющихся на рабочей орбите для их спуска на орбиты утилизации, осуществляют путем последовательного сравнения критериев для каждого предполагаемого к спуску объекта, например вероятности столкновения объектов с другими космическими объектами;
- компенсацию накопленных ошибок параметров движения КАБ при предыдущих маневрах, а также системы целеуказания распределяют между корректирующими импульсами КАБ на этапе дальнего наведения и АСМ на участке самонаведения из условия обеспечения относительных параметров движения КАБ и ОЧ на начало этапа самонаведения АСМ, соответствующих вероятности стыковки и захвата ОЧ не ниже заданной.
Реализация предлагаемого технического решения.
Реализация способа иллюстрируется на примере спуска ОЧ вторых ступеней РКН «Космос-3М» с использованием РКН «Союз-2» с космодрома Плесецк.
Учитывая тот факт, что все РКН «Космос-3М» запускались с космодрома Плесецк, существует возможность выбором азимута пуска, временем старта вывести РКН «Союз-2» с РБ «Фрегат» (или блоком выведения «Волга») и АСМ в плоскость орбиты выбранной ОЧ с учетом углов i наклонения орбиты и долготы ее восходящего узла Ω.
На 06.06.2012 года в околоземном космическом пространстве на высотах 1000 км находилось 298 орбитальных ОЧ вторых ступеней РКН «Космос-3М». Среди них 120 объектов имеют орбиты с наклонением 74° (73-75°), 157 объектов имеют орбиты с наклонением 82°(81-83°).
Предположим, что максимальной вероятностью столкновения обладает, например, ОЧ1 и запуск РКН в составе КАБ, АСМ осуществляется в плоскость орбиты этой ОЧ1.
1). Выбор последовательности объектов из имеющихся на рабочей орбите для их спуска на орбиты утилизации, осуществляют путем последовательного сравнения критерия для каждого предполагаемого к спуску объекта, например, вероятности столкновения объектов с другими космическими объектами, а также функциональных, энергетических, точностных возможностей бортовых систем КАБ и АСМ на этапах дальнего и ближнего наведения, при этом запуск РКН осуществляют в ближайшую плоскость орбиты первого уводимого объекта с минимальным временем дальнего наведения.
Выбор последовательности спускаемых космических объектов предлагается осуществлять из анализа критерия вероятности столкновения объектов с другими космическими объектами:
Figure 00000001
где
i - рассматриваемые космические объекты для их спуска с орбиты.
В общем случае эта задача - близкая к классической «задаче почтальона» по обходу заданного количества абонентов при минимальном значении какого-то критерия (вероятности нанесения ущерба от столкновения, опасное сближение и т.д.).
Функциональные, энергетические, точностные ограничения при решении баллистической задачи со стороны ДУ, СУ для АКБ (2):
- интервал времени Δtзап запуска ДУ после отделения РБ от РКН;
- минимальный интервал между запусками ДУ Δtк, к+1,
- допустимое количество KДУ включений ДУ,
которые оказывают влияние на схему выведения S(Hα, Hπ, Tфаз), например, на время этапа дальнего наведения TДНi, время увода TУВi, на заданную орбиту утилизации (в случаях когда эти интервалы должны быть практически нулевыми, эти ограничения приводят к необходимости ожидания следующего «временного» окна для старта с орбиты ожидания);
- допустимые угловые скорости программного разворота КАБ, реализуемые СУ ωпр;
- условия встречи АСМ и ОЧ (требования по освещенности ОЧ в случае использования оптической головки самонаведения, необходимости подсветки ОЧ и т.д.);
- запасы энергетики на борту КАБ ΔVΣКАБ, АСМΔVΣАСМ, в том числе запасы электрической энергии Iбат, в аккумуляторах, мощность солнечных панелей PСБ и т.д.;
- тяговооруженность АСМnАСМ.
Накопление ошибок в СУ приводит к необходимости корректировки навигационной системы, например, с помощью астрокоррекции, что требует специальных режимов, также накладывает ограничения на схему ДН.
Все приведенные выше ограничения удовлетворяются за счет увеличения времени нахождения КАБ на орбитах фазирования, промежуточных орбитах (на орбите после захвата объекта, на орбите после отделения объекта), что приводит к дополнительному расходу электрической энергии на работу бортовых систем, расхода рабочего топлива на ориентацию и стабилизацию АКБ на всех участках полета.
Этап ближнего наведения (самонаведения) предполагается одинаковым для всех ОЧ и его начальные условия обеспечиваются предыдущим этапом ДН, реализуемым КАБ.
Энергетические затраты ΔVСП для увода на орбиту утилизации, например, на орбиту с 25-летним сроком баллистического существования для ОЧ второй ступени «Космос-3М» с орбиты 1000 км составляет ~160 м/с. При маневре спуска общая масса системы равна массе КАБ+АСМ+ОЧ1.
Выбор ОЧ1
А. Осуществляется на основе анализа критериев (1), например из критерия вероятности столкновения ОЧ с другими космическими объектами.
Б. Оценка энергетических затрат.
Затраты характеристической скорости на этап дальнего наведения ΔVДН1 на ОЧ1 самые большие, т.к. определяются переходом с круговой орбиты 200-400 км (схема выведения РКН «Союз-2») на орбиту ОЧ1 (Н=1000 км) и не зависят от параметров орбиты фазирования.
В. Запуск РКН осуществляют в ближайшую плоскость орбиты ОЧ1 с минимальным TДН1.
Выбор ОЧ2 начинается с момента отделения ОЧ1 от связки КАБ+АСМ и, в соответствии с (1) оценивают энергетические затраты, функциональные возможности (2).
Величина ΔVДН2 для прихода в область ОЧ2 будет отличаться от ΔVСП добавку, обусловленную некомпланарностью орбит КАБ и ОЧ2: т.к. проводится очистка той же орбиты, т.е. имеет место возврат практически на ту же орбиту или близкую, учитывая дрейф по углу долготы восходящего узла Ω.
Наличие угла некомпланарности χ между орбитами КАБ и ОЧ приводит к соответствующей относительной скорости в точке встречи, определяемой по теореме косинусов:
Figure 00000002
Например, при выровненных орбитальных скоростях КАБ и ОЧ на круговой орбите высотой Н=1000 км величина круговой скорости Vкр=5,2 км/с в точке встречи относительная скорость будет определяться по формуле:
Figure 00000003
Для значения угла некомпланарности, равного χ=1 градусу, относительная скорость ΔV составит около 100 м/с, что приводит к невозможности проведения операции стыковки и захвата ОЧ с заданной степенью вероятности из-за наличия разбросов проектно-конструктивных параметров АСМ, разброса начальных отклонений на этапе самонаведения и т.д.
Величины ошибок по координатам и скоростям ОЧ определяются алгоритмами и аппаратурными возможностями наземной системы высокоточных указаний системы контроля космического пространства. Точности выведения КАБ, закладываемые на этапе выбора проектных параметров АСМ, приводят к значительным запасам топлива на этап самонаведения, большой тяговооруженности двигательной установки, большой длине троса, ограничениям по возможности проведения стыковки из-за значительных угловых скоростей линии визирования АСМ - ОЧ.
Предлагается компенсацию накопленных ошибок параметров движения КАБ при предыдущих маневрах и ошибки определения координат и скоростей ОЧ системой высокоточных указаний распределить между КАБ и АСМ.
Критерий распределения: минимальные затраты топлива на реализацию операции.
Ограничения: условие обеспечения относительных параметров движения КАБ и ОЧ на начало этапа самонаведения АСМ, соответствующих вероятности стыковки и захвата ОЧ не ниже заданной.
Например, для отработки корректирующего импульса величиной ΔVкорs=10 м/с с помощью КАБ и АСМ требуются существенно разные массы топлива, например,
- для КАБ:
Figure 00000004
- для АСМ:
Figure 00000005
Из приведенного примера следует, что затраты на коррекцию одной и той же величины скорости ΔVкорs массовые затраты топлива существенно различны, определяются массой, удельным весом, импульсом.
Наличие ошибок целеуказания ОЧ приводит как к дополнительной некомпланарности, так и ошибкам по относительным скоростям и координатам в плоскости.
Например, суммарный начальный промах по дальности определяется как среднее геометрическое ошибок выведения КАБ в плоскости σ Р Б R
Figure 00000006
и ошибки прогноза положения ОЧ σ О Ч R
Figure 00000007
, выдаваемых наземной системой высокоточных целеуказаний, т.е.
Figure 00000008
аналогичные промахи по скорости σ Р Б V
Figure 00000009
,
Figure 00000010
, соответственно, возникает максимальная дополнительная ошибка по скорости:
Figure 00000011
Рассматриваемый участок относительного движения КАБ и ОЧ для случая плоского движения (учет некомпланарности приведен выше) на этапе ближнего наведения за счет энергетики АСМ для проведения предварительных энергетических оценок можно рассматривать как прямолинейный, тогда относительное движение ОЧ и АСМ можно записать в виде равноускоренного движения, пренебрегая изменением силы тяготения, изменением ускорения АСМ за счет изменения его массы при работе его двигателей:
Figure 00000012
где a - ускорение, развиваемое двигательной установкой АСМ на этапе самонаведения,
t - время работы двигательной установки АСМ.
Для предварительных оценочных расчетов можно принять работу двигательной установки АСМ непрерывной на всем этапе самонаведения, в дальнейшем режим работы предполагается дискретным.
К концу этапа самонаведения должны быть обеспечены условия:
Figure 00000013
Из приведенных оценок (3)-(10) показана взаимосвязь между точностными характеристиками выведения РКН, КАБ, точности целеуказаний и затратами на этапы дальнего и ближнего наведения КАБ, АСМ.
Существенными факторами являются параметры углового движения ОЧ, в частности угловые скорости, ориентация ОЧ на момент стыковки.
Наличие угловой скорости ОЧ, дополнительные ошибки системы целеуказания приводят к появлению таких начальных условий относительного движения на начальном этапе стыковки КАБ и ОЧ, при которых вероятность успешной стыковки снижается.
Эта вероятность рассчитывается на основе проведения статистического эксперимента при моделировании процесса стыковки, где варьируемыми параметрами являются параметры относительного движения АСМ и ОЧ из области допустимых значений, в том числе и (7), (8).
Условия успешной стыковки определяются как относительными параметрами движения, так и характеристиками системы стыковки. Например, использование в качестве ответного стыковочного узла сопла камеры маршевого двигателя ОЧ, а на АСМ - выдвигаемый штырь с устройством фиксации и захвата. В этом случае возможна область относительных параметров движения, когда штырь не попадает в сопло, или из-за относительных угловых скоростей штырь, двигаясь по внутренней стенке сопла, не попадает в камеру и т.д. (патент РФ №2490183 B64G 1/64, F42B 15/36 от 07.03.2012).
Положительным свойством от применения предлагаемого способа является получение социального эффекта, который заключается в повышении безопасности космической деятельности.

Claims (1)

  1. Способ очистки орбит от объектов космического мусора, основанный на выведении космического аппарата-буксира (КАБ) и автономного стыковочного модуля (АСМ) в области орбит, предназначенных для их очистки от объектов космического мусора, последовательных маневров дальнего и ближнего наведения для стыковки и захвата объектов и их спуск на орбиты утилизации, отличающийся тем, что выбор последовательности объектов из имеющихся на орбитах для их спуска на орбиты утилизации осуществляют путем последовательного сравнения значения критерия для каждого предполагаемого к спуску объекта, например вероятности столкновения объекта с другими космическими объектами, кроме того, компенсацию накопленных ошибок параметров движения КАБ при предыдущих маневрах, а также системы целеуказания распределяют между корректирующими импульсами КАБ на этапе дальнего наведения и АСМ на участке самонаведения из условия обеспечения относительных параметров движения КАБ и объекта на начало этапа самонаведения АСМ, соответствующих вероятности стыковки и захвата объекта не ниже заданной.
RU2012136161/11A 2012-08-21 2012-08-21 Способ очистки орбит от космического мусора RU2531679C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012136161/11A RU2531679C2 (ru) 2012-08-21 2012-08-21 Способ очистки орбит от космического мусора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012136161/11A RU2531679C2 (ru) 2012-08-21 2012-08-21 Способ очистки орбит от космического мусора

Publications (2)

Publication Number Publication Date
RU2012136161A RU2012136161A (ru) 2014-02-27
RU2531679C2 true RU2531679C2 (ru) 2014-10-27

Family

ID=50151681

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012136161/11A RU2531679C2 (ru) 2012-08-21 2012-08-21 Способ очистки орбит от космического мусора

Country Status (1)

Country Link
RU (1) RU2531679C2 (ru)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2643020C1 (ru) * 2016-09-06 2018-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Способ проведения лётно-конструкторских испытаний автономного стыковочного модуля для очистки орбит от космического мусора
RU2676368C1 (ru) * 2018-02-09 2018-12-28 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Способ очистки орбит от объектов космического мусора
RU2688120C1 (ru) * 2018-07-03 2019-05-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Способ определения последовательности перелётов между объектами космического мусора при значительном отличии в долготе восходящего узла их орбит
RU2695155C1 (ru) * 2018-12-19 2019-07-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Космический комплекс для утилизации группы объектов крупногабаритного космического мусора
RU2709957C1 (ru) * 2018-12-14 2019-12-23 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ удержания космического аппарата на геостационарной орбите
RU2777460C1 (ru) * 2022-02-22 2022-08-04 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ утилизации космических аппаратов посредством аэродинамического действия атмосферы земли

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110510153B (zh) * 2019-08-21 2021-03-02 中国科学院力学研究所 一种地磁蓄能低轨道空间碎片离轨控制方法
CN110510152B (zh) * 2019-08-21 2021-01-01 中国科学院力学研究所 一种低轨道地磁蓄能-释放投送系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1811129A1 (ru) * 1976-09-03 1996-10-10 И.И. Шунейко Способ пилотирования гиперзвуковых, суборбитальных и космических летательных аппаратов
RU2141436C1 (ru) * 1998-10-14 1999-11-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им.С.П.Королева" Космический аппарат для очистки космоса от пассивных ка и их фрагментов
US6843446B2 (en) * 1993-11-12 2005-01-18 David D. Scott Apparatus and methods for in-space satellite operations
US7246775B1 (en) * 2004-08-02 2007-07-24 Lockheed Martin Corporation System and method of substantially autonomous geosynchronous time-optimal orbit transfer
US7293743B2 (en) * 2005-05-06 2007-11-13 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics
US20100049440A1 (en) * 2008-08-19 2010-02-25 Salvatore Alfano System and Method of Addressing Nonlinear Relative Motion for Collision Probability Using Parallelepipeds
US7725259B2 (en) * 2007-05-03 2010-05-25 Raytheon Company Trajectory estimation system for an orbiting satellite
RU2393978C1 (ru) * 2009-01-13 2010-07-10 Государственное образовательное учреждение высшего профессионального образования Московский авиационный институт (государственный технический университет) (МАИ) Гиперзвуковой летательный аппарат и способ реализации его полета

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1811129A1 (ru) * 1976-09-03 1996-10-10 И.И. Шунейко Способ пилотирования гиперзвуковых, суборбитальных и космических летательных аппаратов
US6843446B2 (en) * 1993-11-12 2005-01-18 David D. Scott Apparatus and methods for in-space satellite operations
RU2141436C1 (ru) * 1998-10-14 1999-11-20 Открытое акционерное общество "Ракетно-космическая корпорация "Энергия" им.С.П.Королева" Космический аппарат для очистки космоса от пассивных ка и их фрагментов
US7246775B1 (en) * 2004-08-02 2007-07-24 Lockheed Martin Corporation System and method of substantially autonomous geosynchronous time-optimal orbit transfer
US7293743B2 (en) * 2005-05-06 2007-11-13 United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Method and associated apparatus for capturing, servicing, and de-orbiting earth satellites using robotics
US7725259B2 (en) * 2007-05-03 2010-05-25 Raytheon Company Trajectory estimation system for an orbiting satellite
US20100049440A1 (en) * 2008-08-19 2010-02-25 Salvatore Alfano System and Method of Addressing Nonlinear Relative Motion for Collision Probability Using Parallelepipeds
RU2393978C1 (ru) * 2009-01-13 2010-07-10 Государственное образовательное учреждение высшего профессионального образования Московский авиационный институт (государственный технический университет) (МАИ) Гиперзвуковой летательный аппарат и способ реализации его полета

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2643020C1 (ru) * 2016-09-06 2018-01-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Омский государственный технический университет" Способ проведения лётно-конструкторских испытаний автономного стыковочного модуля для очистки орбит от космического мусора
RU2676368C1 (ru) * 2018-02-09 2018-12-28 Российская Федерация, от имени которой выступает Государственная корпорация по космической деятельности "РОСКОСМОС" Способ очистки орбит от объектов космического мусора
RU2688120C1 (ru) * 2018-07-03 2019-05-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Способ определения последовательности перелётов между объектами космического мусора при значительном отличии в долготе восходящего узла их орбит
RU2709957C1 (ru) * 2018-12-14 2019-12-23 Российская Федерация, от имени которой выступает Министерство обороны Российской Федерации Способ удержания космического аппарата на геостационарной орбите
RU2695155C1 (ru) * 2018-12-19 2019-07-22 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Космический комплекс для утилизации группы объектов крупногабаритного космического мусора
RU2777460C1 (ru) * 2022-02-22 2022-08-04 Акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнёва" Способ утилизации космических аппаратов посредством аэродинамического действия атмосферы земли
RU2803360C1 (ru) * 2022-12-12 2023-09-12 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Способ управления движением космического объекта при сближении с другим космическим объектом
RU2803360C9 (ru) * 2022-12-12 2023-11-07 Публичное акционерное общество "Ракетно-космическая корпорация "Энергия" имени С.П. Королёва" Способ управления движением космического объекта при сближении с другим космическим объектом

Also Published As

Publication number Publication date
RU2012136161A (ru) 2014-02-27

Similar Documents

Publication Publication Date Title
RU2531679C2 (ru) Способ очистки орбит от космического мусора
US9555905B2 (en) System, apparatus, and method for active debris removal
JP6019044B2 (ja) 宇宙空間を自由に飛行している物体の回収・制動装置
EP2979979B1 (en) Systems and methods for countering an unmanned air vehicle
RU2141436C1 (ru) Космический аппарат для очистки космоса от пассивных ка и их фрагментов
JP6737512B2 (ja) スペースデブリのインターセプト
JPH03500038A (ja) ロケット推進で、空中配置され、揚力を助長される、軌道飛行、超軌道飛行および低軌道飛行するためのブースタ飛行体
US20230150700A1 (en) Space vehicles with paraglider re-entry, and associated systems and methods
RU2475429C1 (ru) Способ спуска отделяющейся части ступени ракеты космического назначения
US9499285B2 (en) Three dimensional imaging arrangement
Guerra et al. Active space debris removal system
RU2521082C2 (ru) Способ стыковки космических аппаратов
Baranov et al. Solution of the flyby problem for large space debris at sun-synchronous orbits
RU2559392C1 (ru) Способ удаления с геостационарной орбиты нефункционирующего космического аппарата
RU2676368C1 (ru) Способ очистки орбит от объектов космического мусора
RU2573015C2 (ru) Многомодульный космический аппарат для очистки геостационарной орбиты и способ очистки геостационарной орбиты
CN103253372A (zh) 飞碟航天器
RU2456217C2 (ru) Способ управления ракетами космического назначения
Mase et al. Mars odyssey navigation experience
JP2802130B2 (ja) 人工衛星の軌道変更方法及び軌道変更装置
Bolonkin Sling rotary space launchers
RU2643020C1 (ru) Способ проведения лётно-конструкторских испытаний автономного стыковочного модуля для очистки орбит от космического мусора
RU2666014C1 (ru) Способ поддержания состава орбитальной группировки автоматических космических аппаратов
RU2120397C1 (ru) Способ транспортировки полезного груза многоразовой авиационно-космической системой
Kubota et al. Touchdown dynamics for sample collection in Hayabusa mission

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20170822