RU2530932C1 - Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него - Google Patents
Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него Download PDFInfo
- Publication number
- RU2530932C1 RU2530932C1 RU2013148047/02A RU2013148047A RU2530932C1 RU 2530932 C1 RU2530932 C1 RU 2530932C1 RU 2013148047/02 A RU2013148047/02 A RU 2013148047/02A RU 2013148047 A RU2013148047 A RU 2013148047A RU 2530932 C1 RU2530932 C1 RU 2530932C1
- Authority
- RU
- Russia
- Prior art keywords
- alloy
- nickel
- rhenium
- tantalum
- molybdenum
- Prior art date
Links
Landscapes
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе. Сплав, мас.%: хром - 4,0-6,0; кобальт - 8,0-11,0; молибден - 2,5-3,5; вольфрам - 6,0-8,0; алюминий - 5,4-6,2; углерод 0,05-0,16; бор - 0,008-0,04; цирконий - 0,01-0,05; титан - 0,5-2,5; церий - 0,002-0,02; иттрий - 0,001-0,01; лантан - 0,002-0,02; рений - 1,0-2,0; тантал - 4,0-6,0; никель - остальное. Изделие, выполненное из заявленного сплава, может иметь поликристаллическую или монокристаллическую структуру. Технический результат - повышение характеристик фазовой стабильности, повышение длительной прочности и пластичности. 2 н. и 1 з.п. ф-лы., 2 табл., 1 пр.
Description
Изобретение относится к области металлургии, а именно к производству литейных жаропрочных сплавов на никелевой основе и изделиям, получаемым из них, с поликристаллической равноосной или направленной (монокристаллической) структурами, например сопловых и рабочих лопаток газовых турбин.
Известно техническое решение (заявка на изобретение US №2010/0047110 A1, опубл. 25.02.2010), в котором литейный жаропрочный сплав на никелевой основе имеет следующий химический состав, мас.%:
Хром | 9-12 |
Кобальт | 9-11 |
Молибден | менее 1 |
Вольфрам | 6-9 |
Тантал | менее 3 |
Алюминий | 4-5 |
Рений | менее 3 |
Гафний | 0,5-2,5 |
Углерод | 0,05-0,15 |
Бор | 0,005-0,015 |
Цирконий | менее 0,05 |
Титан | 4-5 |
Ниобий | менее 1 |
Никель | остальное |
Известный сплав обладает высокими характеристиками коррозионной стойкости. Сплав предназначен для изготовления лопаток промышленных газовых турбин с поликристаллической равноосной, столбчатой или монокристаллической структурами. Недостатком известного сплава являются низкие характеристики высокотемпературной удельной длительной прочности. Кроме того, сплав недостаточно технологичен при отливке монокристаллических лопаток.
Из патента US №6632299 B1, опубл. 14.10.2003, известен литейный жаропрочный сплав на никелевой основе следующего химического состава, мас.%:
Хром | 5-6 |
Кобальт | 9-9,5 |
Молибден | 0,3-0,7 |
Вольфрам | 8-9 |
Тантал | 5,9-6,3 |
Алюминий | 5,6-6,0 |
Рений | 2,8-3,1 |
Гафний | 1,1-1,8 |
Углерод | 0,10-0,12 |
Бор | 0,010-0,024 |
Цирконий | 0,011-0,020 |
Никель | остальное |
Известный сплав предназначен для изготовления деталей газотурбинных двигателей методами равноосного литья и/или направленной кристаллизации. После термической обработки известный сплав с равноосной структурой имеет весьма высокий уровень механических свойств: при растяжении при комнатной температуре предел текучести - 889 МПа, предел прочности - 1122 МПа, относительное удлинение - 6,9%, поперечное сужение - 9,4%; при температуре 843°C и напряжении 552 МПа время до разрушения составляет 102,6-151,5 ч, при температуре 1038°C и напряжении 138 МПа время до разрушения составляет 115,2-119,5 ч. Однако дополнительные исследования показали, что недостатком этого сплава является повышенная плотность, равная 8,9 г/см3, и недостаточно высокая удельная длительная прочность при температуре 1000°C за 100 ч, равная 22,93 МПа/(г/см3). Другим недостатком сплава является склонность к образованию вредных топологически плотноупакованных (далее ТПУ) фаз, объемная доля которых в структуре материала турбинной лопатки из этого сплава после 1000 ч наработки может достигать 10%, что значительно уменьшает ее дальнейшую работоспособность.
Наиболее близким аналогом, взятым за прототип (патент РФ №2148100 C1, опубл. 27.04.2000), является литейный жаропрочный сплав на никелевой основе следующего химического состава, мас.%:
Хром | 8-9,5 |
Кобальт | 9-10,5 |
Молибден | 1,2-2,4 |
Вольфрам | 9,5-11 |
Алюминий | 5,1-6,0 |
Углерод | 0,13-0,20 |
Бор | 0,005-0,035 |
Цирконий | 0,01-0,05 |
Титан | 2,0-2,9 |
Ниобий | 0,8-1,2 |
Церий | 0,002-0,02 |
Один элемент из группы, | |
включающей иттрий и | |
скандий | 0,0008-0,008 |
Один элемент из группы, | |
включающей лантан и | |
празеодим | 0,0008-0,008 |
Никель | остальное |
при условии, что отношение концентраций церия (Ce) и одного из элементов из группы, включающей иттрий и скандий, и одного из элементов из группы, включающей лантан и празеодим, равно 2,5/1/1.
Известный из прототипа сплав предназначен для изготовления газотурбинных рабочих и сопловых лопаток с равноосной или направленной структурой, обладает хорошими литейными свойствами, повышенными характеристиками жаростойкости. Сплав, известный из прототипа, предпочтительного химического состава имеет следующий уровень жаропрочных свойств: при температуре 975°C при испытании на длительную прочность при напряжении 20 кгс/мм2 время до разрушения составляет 160-200 ч для сплава с равноосной структурой, и 300-370 ч для сплава с направленной структурой; при температуре 1050°C при испытании на длительную прочность при напряжении 11 кгс/мм2 время до разрушения составляет 180-220 ч для сплава с равноосной структурой, и 300-330 ч для сплава с направленной структурой. Дополнительные исследования показали, что при рабочей температуре 1000°C известный сплав с равноосной структурой имеет предел длительной прочности за 100 ч эксплуатации, равный 170 МПа, а с направленной структурой - 190 МПа, что не удовлетворяет требованиям, предъявляемым к жаропрочным сплавам для деталей газотурбинных двигателей (ГТД) нового поколения, например сопловых и рабочих лопаток с равноосной, направленной столбчатой или монокристаллической структурами. Другим недостатком сплава является недостаточная фазовая стабильность, проявляющаяся при длительной эксплуатации в деградации карбидной фазы сплава и образовании пластинчатых карбидов типа M6C, что ограничивает ресурс лопаток из этого сплава.
Технической задачей настоящего изобретения является создание литейного жаропрочного сплава на никелевой основе с повышенными физико-химическими свойствами, необходимыми для повышения рабочих характеристик сопловых и рабочих лопаток газовых турбин.
Техническим результатом предлагаемого изобретения является повышение фазовой стабильности, длительной прочности и пластичности сплава.
Для достижения поставленного технического результата предлагается литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него, содержащий хром, кобальт, молибден, вольфрам, алюминий, углерод, бор, цирконий, титан, церий, иттрий, лантан, в который дополнительно введены рений и тантал при следующем соотношении компонентов, мас.%:
Хром | 4,0-6,0 |
Кобальт | 8,0-11,0 |
Молибден | 2,5-3,5 |
Вольфрам | 6,0-8,0 |
Алюминий | 5,4-6,0 |
Углерод | 0,06-0,16 |
Бор | 0,008-0,04 |
Цирконий | 0,01-0,05 |
Титан | 0,5-1,5 |
Церий | 0,002-0,02 |
Иттрий | 0,001-0,01 |
Лантан | 0,002-0,02 |
Рений | 1,0-2,2 |
Тантал | 4,0-5,2 |
Никель | остальное |
В настоящем изобретении суммарное содержание химических элементов хрома (Cr), молибдена (Mo), вольфрама (W), алюминия (Al), циркония (Zr), титана (Ti), кобальта (Co), рения (Re), тантала (Ta), никеля (Ni) при заявленном соотношении может удовлетворять условию 0,02≥ΔE≥-0,04, где
, где Zi, Ai, Ei - соответственно концентрация, атомная масса и количество валентных электронов i-го компонента; i - любой из указанных выше компонентов, n=10 - количество указанных выше компонентов.
При дополнительном легировании рением предлагаемого сплава при заявленном соотношении остальных легирующих элементов повышение длительной прочности достигается за счет увеличения параметра размерного несоответствия периодов кристаллических решеток никелевого γ-твердого раствора и равновесной с ним γ′-фазы (γ/γ′-мисфит).
В металлургии литейных жаропрочных сплавов на основе никеля известна положительная роль легирования рением, заключающаяся в повышении температуры солидуса сплава и снижении диффузионной подвижности атомов легирующих элементов. Однако в данном случае исследованиями методом рентгеноструктурного анализа было обнаружено, что легирование заявляемого сплава рением и увеличение содержания в заявляемом сплаве молибдена (которые в основном растворяются в никелевом γ-твердом растворе сплава с коэффициентами распределения между γ′-фазой и γ-твердым раствором, равными соответственно ~0,1 и ~0,3) в заявляемых соотношениях вызывают значительно большее увеличение периода кристаллической решетки γ-твердого раствора и тем самым повышение γ/γ′-мисфита по сравнению с их раздельным влиянием на этот основной фактор жаропрочности. В результате наблюдается значительное повышение длительной прочности сплава и изделия из него.
Кроме того, рений препятствует образованию на границах зерен и фаз сплава сегрегации примесей кислорода и азота, неизбежно присутствующих в литейных жаропрочных сплавах на никелевой основе, повышая их растворимость, что способствует увеличению высокотемпературных характеристик длительной прочности и пластичности.
Введение в состав предлагаемого сплава тантала при заявленном соотношении остальных легирующих элементов приводит к понижению темпа растворимости упрочняющих частиц γ′-фазы и увеличению температуры полного растворения этой фазы в матричном γ-твердом растворе, усиливая при высоких температурах сопротивление высокотемпературной ползучести. В результате повышается максимальная рабочая температура и длительная прочность сплава и изделия из него. Кроме того, легирование заявляемого сплава танталом затрудняет при высокотемпературной эксплуатации протекание дестабилизирующих твердофазных карбидных реакций типа MeC→Me6C+γ′, а также усиливает сопротивление сплава высокотемпературной коррозии, что способствует повышению фазовой стабильности, длительной прочности и пластичности. Пониженное содержание вольфрама в предлагаемом сплаве также способствует повышению высокотемпературной фазовой стабильности γ-твердого раствора и MeC-карбидов и, следовательно, достижению повышенных показателей высокотемпературной удельной длительной прочности.
Исключение из химического состава заявляемого сплава γ'-образующего элемента ниобия и уменьшение содержания γ'-образующего элемента титана, наряду с легированием γ-стабилизирующими элементами рением и молибденом, способствует снижению объемной доли выделений эвтектики (γ+γ′) в литой структуре сплава и тем самым улучшает технологические свойства заявляемого сплава, в частности режимы литья изделий из него с равноосной или направленной (монокристаллической) структурами и режимы последующей баротермической обработки для залечивания литейных микропор.
Изделия из предлагаемого сплава, например рабочие и сопловые лопатки с равноосной и направленной (монокристаллической) структурами, будут иметь повышенную долговечность и удельную длительную прочность, а следовательно, надежность и ресурс.
Пример осуществления
В вакуумной индукционной печи были выплавлены три сплава предлагаемого состава и один сплав, известный из прототипа. Химические составы (в масс.%) предлагаемого сплава и сплава, известного из прототипа, приведены в таблице 1. Затем выплавленные сплавы переплавляли в вакуумных установках для равноосной или направленной кристаллизации и получали изделия с равноосной структурой или направленной (монокристаллической) структурой в виде отливок диаметром ~16 мм и длиной 70-160 мм. Далее из этих отливок изготавливали образцы для дифференциального термического анализа и количественной металлографии, по результатам которых определяли температуру полного растворения γ′-фазы в γ-матрице, температуру плавления и объемную долю выделений эвтектики (γ+γ′). С учетом измеренных указанных температур полученные отливки из сплавов подвергали термической обработке, включающей гомогенизирующий отжиг и двухступенчатое старение. Из термически обработанных таким образом отливок изготавливали образцы для определения плотности, механических испытаний (длина образца 70 мм, рабочая база 25 мм, рабочий диаметр 5 мм) и рентгеноструктурного анализа, по результатам которых определяли предел прочности, предел текучести, относительное удлинение и сужение при растяжении, длительную прочность, периоды кристаллических решеток никелевого γ-твердого раствора (aγ), γ′-фазы (aγ ,); γ/γ′-мисфит D рассчитывали по формуле D=(aγ-aγ ,)/aγ.
Механические испытания на растяжение проводили при комнатной температуре. Испытания на длительную прочность проводили в атмосфере воздуха при температуре 1000°C и напряжении 200 МПа.
Полученные характеристики композиций сплава, известного из прототипа, заявляемого сплава и изделий, выполненных из него, приведены в таблице 2.
Как видно из таблицы 2, предлагаемый сплав имеет более высокие значения γ/γ′-мисфита (на 0,09-0,26% абсолютных) и температуры полного растворения γ′-фазы в матричном γ-твердом растворе (на 28-60°C), чем сплав, взятый за прототип. Кроме того, абсолютные значения параметра ΔE, характеризующего фазовую стабильность, у предлагаемого сплава меньше критических, что свидетельствует об отсутствии склонности сплава к дестабилизирующим твердофазным карбидным реакциям типа MeC→Me6C+γ′ и образованию вредных ТПУ фаз. Экспериментальным путем установлено, что суммарное содержание хрома (Cr), молибдена (Mo), вольфрама (W), алюминия (Al), циркония (Zr), титана (Ti), кобальта (Co), рения (Re), тантала (Ta), никеля (Ni) для предпочтительного значения параметра, характеризующего фазовую стабильность ΔE, лежат в пределах от 0,02 до -0,04. Параметр ΔE определяется по следующей формуле
, где Zi, Ai, Ei - соответственно концентрация, атомная масса и количество валентных электронов i-го компонента; i - любой из указанных выше компонентов (например, в порядке перечисления элементов i=1-Cr и т.д. для Mo, W, Al, Zr, Ti, Co, Re, Ta, Ni), n=10 (количество указанных выше компонентов). В результате повышения указанных структурно-фазовых параметров, стабилизации фазового состава и совместного действия легирующих элементов рения и тантала характеристики длительной прочности - время до разрушения предлагаемого сплава и изделия из него с равноосной структурой больше в 2,2 раза, а сплава и изделия из него с направленной (монокристаллической) структурой больше в 3,8 раза, чем из сплава, известного из прототипа. Плотность предлагаемого сплава составляет 8,59-8,63 г/см3. Рассчитанная удельная длительная прочность при температуре 1000°C за 100 ч предлагаемого сплава и изделия из него с равноосной структурой составляет 23,5 МПа/(г/см3), что на 17% больше, чем сплава, известного из прототипа, у которого она равна 20,12 МПа/(г/см3). Характеристика длительной пластичности - остаточное удлинение при разрушении предлагаемого сплава и изделия из него с равноосной структурой больше в 1,6 раза, а сплава и изделия из него с направленной (монокристаллической) структурой больше в 1,8 раза, чем такового сплава, известного из прототипа. Характеристики кратковременной прочности (предел прочности, предел текучести, относительное удлинение и сужение) при комнатной температуре предлагаемого сплава и изделия из него больше, чем сплава, взятого за прототип. Технологическое преимущество предлагаемого сплава заключается в меньшей объемной доле выделений эвтектики (γ+γ′)>образующейся при литье и, как следствие, возможности получать изделия из него сложной формы с равноосной или направленной (монокристаллической) структурами без «горячих» микротрещин, литейной рыхлоты и микропор.
Таким образом, предлагаемый литейный жаропрочный сплав на никелевой основе и изделие из него с равноосной или направленной (монокристаллической) структурами значительно превосходит сплав, известный из прототипа, и изделие из него по характеристикам фазовой стабильности, кратковременной прочности, длительной прочности и пластичности. Это позволяет его использовать для производства турбинных лопаток и других деталей ГТД длительного ресурса.
Claims (3)
1. Литейный жаропрочный сплав на никелевой основе, содержащий хром, кобальт, молибден, вольфрам, алюминий, углерод, бор, цирконий, титан, церий, иттрий, лантан, отличающийся тем, что он дополнительно содержит рений и тантал при следующем соотношении компонентов, мас.%:
Хром 4,0-6,0
Кобальт 8,0-11,0
Молибден 2,5-3,5
Вольфрам 6,0-8,0
Алюминий 5,4-6,0
Углерод 0,06-0,16
Бор 0,008-0,04
Цирконий 0,01-0,05
Титан 0,5-1,5
Церий 0,002-0,02
Иттрий 0,001-0,01
Лантан 0,002-0,02
Рений 1,0-2,2
Тантал 4,0-5,2
Никель остальное
2. Сплав по п.1, отличающийся тем, что суммарное содержание химических элементов хрома, молибдена, вольфрама, алюминия, циркония, титана, кобальта, рения, тантала и никеля соответствует условию
0,02≥ΔE≥-0,04,
где , Zi, Ai, Ei - соответственно атомная концентрация, атомная масса и количество валентных электронов i-го компонента; i - любой из указанных выше компонентов, n=10.
0,02≥ΔE≥-0,04,
где , Zi, Ai, Ei - соответственно атомная концентрация, атомная масса и количество валентных электронов i-го компонента; i - любой из указанных выше компонентов, n=10.
3. Изделие из литейного жаропрочного сплава на никелевой основе, имеющее поликристаллическую или монокристаллическую структуру, отличающееся тем, что оно выполнено из сплава по п.1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013148047/02A RU2530932C1 (ru) | 2013-10-29 | 2013-10-29 | Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2013148047/02A RU2530932C1 (ru) | 2013-10-29 | 2013-10-29 | Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2530932C1 true RU2530932C1 (ru) | 2014-10-20 |
Family
ID=53381828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013148047/02A RU2530932C1 (ru) | 2013-10-29 | 2013-10-29 | Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2530932C1 (ru) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2148100C1 (ru) * | 1999-01-18 | 2000-04-27 | Всероссийский научно-исследовательский институт авиационных материалов | Литейный жаропрочный сплав на никелевой основе |
RU2186144C1 (ru) * | 2000-11-16 | 2002-07-27 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Никелевый жаропрочный сплав для монокристального литья и изделие, выполненное из этого сплава |
US20030091459A1 (en) * | 2001-03-01 | 2003-05-15 | Kenneth Harris | Superalloy for single crystal turbine vanes |
US20090041615A1 (en) * | 2007-08-10 | 2009-02-12 | Siemens Power Generation, Inc. | Corrosion Resistant Alloy Compositions with Enhanced Castability and Mechanical Properties |
RU2439184C1 (ru) * | 2010-10-05 | 2012-01-10 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Жаропрочный сплав на никелевой основе для монокристаллического литья |
-
2013
- 2013-10-29 RU RU2013148047/02A patent/RU2530932C1/ru active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2148100C1 (ru) * | 1999-01-18 | 2000-04-27 | Всероссийский научно-исследовательский институт авиационных материалов | Литейный жаропрочный сплав на никелевой основе |
RU2186144C1 (ru) * | 2000-11-16 | 2002-07-27 | Государственное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" | Никелевый жаропрочный сплав для монокристального литья и изделие, выполненное из этого сплава |
US20030091459A1 (en) * | 2001-03-01 | 2003-05-15 | Kenneth Harris | Superalloy for single crystal turbine vanes |
US20090041615A1 (en) * | 2007-08-10 | 2009-02-12 | Siemens Power Generation, Inc. | Corrosion Resistant Alloy Compositions with Enhanced Castability and Mechanical Properties |
RU2439184C1 (ru) * | 2010-10-05 | 2012-01-10 | Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) | Жаропрочный сплав на никелевой основе для монокристаллического литья |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9945019B2 (en) | Nickel-based heat-resistant superalloy | |
EP2503013B1 (en) | Heat-resistant superalloy | |
JP4036091B2 (ja) | ニッケル基耐熱合金及びガスタービン翼 | |
EP2826877B1 (en) | Hot-forgeable Nickel-based superalloy excellent in high temperature strength | |
EP2610360B1 (en) | Co-based alloy | |
EP1842934A1 (en) | Heat-resistant superalloy | |
JP2007162041A (ja) | 高強度高延性Ni基超合金と、それを用いた部材及び製造方法 | |
RU2295585C2 (ru) | Высокопрочный, стойкий к высокотемпературной коррозии и окислению суперсплав на основе никеля и направленно отвержденное изделие из этого суперсплава | |
EP2537951A1 (en) | Ni-based alloy, and turbine rotor and stator blade for gas turbine | |
RU2434069C1 (ru) | Литейный жаропрочный сплав на основе никеля | |
RU2439184C1 (ru) | Жаропрочный сплав на никелевой основе для монокристаллического литья | |
JP4230970B2 (ja) | 凝固方向強度と結晶粒界強度の優れた一方向凝固用Ni基超合金、鋳造物およびガスタービン用高温部品 | |
EP1760164B1 (en) | Nickel-base superalloy | |
RU2530932C1 (ru) | Литейный жаропрочный сплав на никелевой основе и изделие, выполненное из него | |
RU2434068C1 (ru) | СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al | |
RU2439185C1 (ru) | Жаропрочный литейный сплав на основе никеля | |
RU2447172C1 (ru) | Жаропрочный сплав | |
EP3252180B1 (en) | Ni-based alloy having excellent high-temperature creep characteristics, and gas turbine member using same | |
RU2386714C1 (ru) | Жаропрочный гранулированный сплав на основе никеля | |
RU2588949C1 (ru) | СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | |
WO2005064027A1 (ja) | Ni基超耐熱合金及びそれを用いたガスタービン部品 | |
RU2433196C1 (ru) | ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | |
RU2610577C1 (ru) | ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | |
RU2351673C1 (ru) | ЛИТЕЙНЫЙ СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО | |
RU2349663C1 (ru) | СПЛАВ НА ОСНОВЕ ИНТЕРМЕТАЛЛИДА Ni3Al И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО |