RU2530450C1 - Способ измерения толщины изделия с помощью ультразвуковых импульсов - Google Patents

Способ измерения толщины изделия с помощью ультразвуковых импульсов Download PDF

Info

Publication number
RU2530450C1
RU2530450C1 RU2013133536/28A RU2013133536A RU2530450C1 RU 2530450 C1 RU2530450 C1 RU 2530450C1 RU 2013133536/28 A RU2013133536/28 A RU 2013133536/28A RU 2013133536 A RU2013133536 A RU 2013133536A RU 2530450 C1 RU2530450 C1 RU 2530450C1
Authority
RU
Russia
Prior art keywords
product
moment
converter
thickness
time interval
Prior art date
Application number
RU2013133536/28A
Other languages
English (en)
Inventor
Анатолий Александрович Козяев
Зинур Вакильевич Назыров
Алексей Вячеславович Ермаков
Татьяна Павловна Белозерова
Original Assignee
Открытое акционерное общество "Научно-производственная корпорация "Иркут" (ОАО "Корпорация "Иркут"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственная корпорация "Иркут" (ОАО "Корпорация "Иркут" filed Critical Открытое акционерное общество "Научно-производственная корпорация "Иркут" (ОАО "Корпорация "Иркут"
Priority to RU2013133536/28A priority Critical patent/RU2530450C1/ru
Application granted granted Critical
Publication of RU2530450C1 publication Critical patent/RU2530450C1/ru

Links

Images

Landscapes

  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)

Abstract

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля толщины изделий с помощью ультразвука. Способ измерения толщины изделия с помощью ультразвуковых импульсов состоит в том, что с помощью ультразвукового преобразователя излучают ультразвуковые импульсы, регистрируют момент излучения зондирующего импульса в изделие, регистрируют на уровне выше паразитных шумов преобразователя момент выхода из изделия переднего фронта первого отраженного эхо-импульса, определяют временной интервал между этими моментами, а затем вычисляют толщину исходя из этого временного интервала и известной скорости звука в материале изделия, при этом с момента регистрации выхода из изделия переднего фронта первого отраженного эхо-импульса на уровне выше паразитных шумов преобразователя с задержкой на время, равное 0,25…0,5 периода колебаний резонансной частоты преобразователя, регистрируют момент выхода из изделия переднего фронта первого отраженного эхо-импульса на уровне выше паразитных шумов усилителя, но ниже паразитных шумов преобразователя, определяют временной интервал между моментом излучения зондирующего импульса в изделие и данным моментом и этот временной интервал используют для расчета толщины изделия. Технический результат - повышение точности измерений толщины изделий и повышение стабильности точностных характеристик аппаратуры. 2 ил.

Description

Изобретение относится к области неразрушающего контроля и может быть использовано для контроля толщины изделий с помощью ультразвука.
Известен резонансный способ измерения толщины изделия, в частности, толщины пластины из твердого материала, заключающийся в возбуждении в пластине вынужденных ультразвуковых колебаний и определении их резонансных частот, по которым при известной скорости распространения ультразвуковых колебаний в материале вычисляют искомую толщину пластины (Крауткремер И., Крауткремер Г. Ультразвуковой контроль материалов: Справочник. М.: Металлургия, 1991, с.283-286). Этот способ не пригоден для измерения толщины изделий с криволинейными и шероховатыми поверхностями.
В настоящее время наиболее часто при ультразвуковом измерении толщины изделий применяется эхо-импульсный способ. По данному способу в материал изделия с помощью ультразвукового преобразователя излучают ультразвуковые импульсы, принимают из изделия эхо-импульсы, отраженные от противоположной поверхности изделия, измеряют время распространения эхо-импульса от одной поверхности до другой и обратно и вычисляют толщину исходя из этого времени и известной скорости звука в материале изделия (Королев М.В. Эхо-импульсные толщиномеры. - М.: Машиностроение, 1980, с.79-87). По одному из вариантов способа измеряют временной интервал между моментами приема двух следующих один за другим эхо-импульсов из последовательности сигналов, многократно отраженных от поверхностей изделия. В частности, по а.с. СССР №1696858 от 24.11.89 г., для измерения толщины изделия берут первый и второй эхо-импульсы и измерение осуществляется следующим образом: с помощью ультразвукового преобразователя излучают ультразвуковые импульсы, регистрируют на уровне выше паразитных шумов преобразователя и усилителя (в описании - на заданном уровне) момент выхода из изделия переднего фронта первого отраженного эхо-импульса, регистрируют на этом же уровне момент выхода из изделия переднего фронта второго отраженного эхо-импульса, определяют временной интервал между этими моментами, дополнительно на указанном уровне регистрируют моменты выхода из изделия заднего фронта первого отраженного эхо-импульса и заднего фронта второго отраженного эхо-импульса и определяют временной интервал между этими моментами, а толщину изделия определяют исходя из полусуммы временных интервалов между передними и задними фронтами эхо-импульсов.
Недостаток данного варианта эхо-импульсного способа - низкая точность измерения, которая обусловлена возможностью измерений по двум разным периодам колебаний, изменением амплитуды второго эхо-импульса, в том числе низкой амплитудой второго эхо-импульса при измерении толщины изделий из материалов с высоким затуханием ультразвука, несимметричной формой импульса.
Более предпочтителен вариант способа измерения толщины изделия с помощью ультразвуковых импульсов, состоящий в том, что с помощью ультразвукового преобразователя излучают ультразвуковые импульсы, регистрируют момент излучения зондирующего импульса в изделие, регистрируют на уровне выше паразитных шумов преобразователя и усилителя момент выхода из изделия переднего фронта первого отраженного эхо-импульса, определяют временной интервал между этими моментами, а затем вычисляют толщину исходя из этого временного интервала и известной скорости звука в материале изделия (Неразрушающий контроль. Учебное издание. В 5 кн. / Под ред. В.В.Сухорукова, - М.: Высш.шк., 1991. Кн.2. Акустические методы контроля. - с.234-236). Данный способ наиболее близок к предлагаемому и принят за прототип. В этом варианте определяют временной интервал между моментом излучения зондирующего импульса в изделие и моментом приема из него первого импульса, отраженного от противоположной поверхности изделия (первого донного импульса), а так как момент излучения зондирующего импульса можно зарегистрировать с высокой точностью по времени, то и точность измерений повышается.
Однако в зависимости от уровня, на котором регистрируют момент выхода из изделия первого отраженного эхо-импульса (по прототипу - уровень напряжения U0), зависит точность измерений. Данный уровень должен быть как можно более низким, так как при низком уровне больше крутизна фронта волны и, соответственно, выше точность измерений, но в тоже время быть выше паразитных шумов преобразователя и усилителя (уровня помех). Наиболее высокий уровень шумов создает преобразователь и значительно более низкий уровень шумов (примерно в 10 раз) создает вся остальная схема толщиномера и эти паразитные шумы обычно называют шумами усилителя. Высокий уровень паразитных шумов от преобразователя определяет высокий уровень напряжения U0 и, соответственно, недостаточно высокую точность данного способа измерений. Указанные недостатки ограничивают возможность применения данного способа.
Задачей данного изобретения является повышение точности измерений толщины изделий и повышение стабильности точностных характеристик аппаратуры, использующей эхо-импульсный способ измерений.
Технический результат заключается в достижении возможности создания ультразвуковых эхо-импульсных толщиномеров с улучшенными точностными характеристиками.
Для решения поставленной задачи с достижением технического результата в известном способе измерения толщины изделия с помощью ультразвуковых импульсов, состоящем в том, что с помощью ультразвукового преобразователя излучают ультразвуковые импульсы, регистрируют момент излучения зондирующего импульса в изделие, регистрируют на уровне выше паразитных шумов преобразователя момент выхода из изделия переднего фронта первого отраженного эхо-импульса, определяют временной интервал между этими моментами, а затем вычисляют толщину исходя из этого временного интервала и известной скорости звука в материале изделия, согласно предлагаемому изобретению с момента регистрации выхода из изделия переднего фронта первого отраженного эхо-импульса на уровне выше паразитных шумов преобразователя с задержкой на время, равное 0,25…0,5 периода колебаний резонансной частоты преобразователя, регистрируют момент выхода из изделия переднего фронта первого отраженного эхо-импульса на уровне выше паразитных шумов усилителя, но ниже паразитных шумов преобразователя, определяют временной интервал между моментом излучения зондирующего импульса в изделие и данным моментом и этот временной интервал используют для расчета толщины изделия.
Отличительные признаки заявляемого технического решения: с момента регистрации выхода из изделия переднего фронта первого отраженного эхо-импульса на уровне выше паразитных шумов преобразователя с задержкой на время, равное 0,25…0,5 периода колебаний резонансной частоты преобразователя, регистрируют момент выхода из изделия переднего фронта первого отраженного эхо-импульса на уровне выше паразитных шумов усилителя, но ниже паразитных шумов преобразователя, определяют временной интервал между моментом излучения зондирующего импульса в изделие и данным моментом и этот временной интервал используют для расчета толщины изделия.
Указанные отличительные признаки в известных технических решениях не обнаружены.
Предложенный способ позволяет существенно понизить уровень, на котором регистрируют момент выхода из изделия первого отраженного эхо-импульса, а это позволяет повысить точность и стабильность измерений.
Функциональная схема ультразвукового толщиномера, реализующая предложенный способ, приведена на фиг.1, а на фиг.2 - временные осциллограммы, поясняющие работу толщиномера.
Толщиномер состоит из следующих блоков: блока 1 управления и индикации, генератора 2 зондирующих импульсов, раздельно-совмещенного ультразвукового преобразователя 3, усилителя 4, компараторов 5 и 6, триггера 7, линии задержки 8, блока 9, реализующего логическую функцию И, триггера 10.
Устройство работает следующим образом. При наличии запускающего сигнала (фиг.2а) от блока 1 управления генератор 2 формирует зондирующий импульс, который поступает на одну половину раздельно-совмещенного ультразвукового преобразователя 3. Эхо-импульс, пройдя через изделие и отразившись от его донной части, снимается со второй половины раздельно-совмещенного ультразвукового преобразователя 3 и поступает на усилитель 4. Осциллограмма сигнала после усиления приведена на фиг.2б, при этом известно, что до первого отраженного сигнала А паразитные шумы (В) преобразователя затихают до уровня шумов (С) усилителя. Далее сигнал поступает на компараторы 5 и 6, которые имеют разные уровни срабатывания. Компаратор 5 настроен на уровень 1К (фиг.2б), который несколько выше (на 5…10%) паразитных шумов преобразователя и исключает ложные срабатывания от помех. Вид сигнала после компаратора 5 показан на фиг.2в. Уровень 2К срабатывания компаратора 6 устанавливается несколько выше (на 5…10%) паразитных шумов усилителя. Обычно уровень паразитных шумов преобразователя на порядок выше других паразитных шумов, присущих ультразвуковым толщиномерам, в частности, шумов усилителя и питания, поэтому уровни 1К и 2К также отличаются на порядок. На фиг.2г показана последовательность импульсов на выходе компаратора 6, а на фиг.2д - эта же последовательность импульсов, задержанная с помощью линии задержки 8 на время Т, равное 0,25 периода колебаний резонансной частоты преобразователя. Сигнал после линии задержки 8 (фиг.2д) и сигнал с компаратора 5 после триггера 7 (фиг.2е) поступает на двухвходовой блок 9, выполняющий логическую функцию И, и после блока 9 имеет вид, приведенный на фиг.2ж, что исключает ложные сигналы при измерении толщины изделий. С выхода блока 9 сигнал поступает на триггер 10, на котором формируется измерительный сигнал (фиг.2з), который в блоке управления 1 квантуется и обрабатывается. При обработке сигнала учитывается, что для определения момента входа зондирующего импульса в изделие и выхода из него переднего фронта первого отраженного эхо-импульса из полученного временного интервала необходимо вычесть временные интервалы, характеризующие задержку импульса в преобразователе (при излучении и приеме), а толщина изделия рассчитывается исходя из половины оставшегося временного интервала и скорости звука в материале изделия.
При применении предложенного способа момент регистрации выхода из изделия переднего фронта первого отраженного эхо-импульса производится на значительно более низком уровне, что приводит к повышению точности измерений. В частности, на фиг.2б показано, что снижение уровня, на котором производится регистрация выхода из изделия переднего фронта первого отраженного эхо-импульса с уровня 1К до уровня 2К повышает точность определения временного интервала на величину Δ.
Таким образом, предложенный способ позволяет повысить точность измерений и улучшить характеристики ультразвуковых эхо-импульсных толщиномеров, работа которых основана на регистрации переднего фронта первого отраженного эхо-импульса. Такие толщиномеры более предпочтительны при измерении толщины изделий из материалов с высоким затуханием ультразвука, например пластмасс, в которых второй и последующие эхо-импульсы могут иметь маленькую амплитуду, а также при несимметричной форме импульсов.

Claims (1)

  1. Способ измерения толщины изделия с помощью ультразвуковых импульсов, состоящий в том, что с помощью ультразвукового преобразователя излучают ультразвуковые импульсы, регистрируют момент излучения зондирующего импульса в изделие, регистрируют на уровне выше паразитных шумов преобразователя момент выхода из изделия переднего фронта первого отраженного эхо-импульса, определяют временной интервал между этими моментами, а затем вычисляют толщину исходя из этого временного интервала и известной скорости звука в материале изделия, отличающийся тем, что с момента регистрации выхода из изделия переднего фронта первого отраженного эхо-импульса на уровне выше паразитных шумов преобразователя с задержкой на время, равное 0,25…0,5 периода колебаний резонансной частоты преобразователя, регистрируют момент выхода из изделия переднего фронта первого отраженного эхо-импульса на уровне выше паразитных шумов усилителя, но ниже паразитных шумов преобразователя, определяют временной интервал между моментом излучения зондирующего импульса в изделие и данным моментом и этот временной интервал используют для расчета толщины изделия.
RU2013133536/28A 2013-07-18 2013-07-18 Способ измерения толщины изделия с помощью ультразвуковых импульсов RU2530450C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013133536/28A RU2530450C1 (ru) 2013-07-18 2013-07-18 Способ измерения толщины изделия с помощью ультразвуковых импульсов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013133536/28A RU2530450C1 (ru) 2013-07-18 2013-07-18 Способ измерения толщины изделия с помощью ультразвуковых импульсов

Publications (1)

Publication Number Publication Date
RU2530450C1 true RU2530450C1 (ru) 2014-10-10

Family

ID=53381660

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013133536/28A RU2530450C1 (ru) 2013-07-18 2013-07-18 Способ измерения толщины изделия с помощью ультразвуковых импульсов

Country Status (1)

Country Link
RU (1) RU2530450C1 (ru)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987004783A1 (en) * 1986-02-06 1987-08-13 Britoil P.L.C., Ultrasonic thickness meter
SU1589053A1 (ru) * 1988-10-10 1990-08-30 Каунасский Политехнический Институт Им.Антанаса Снечкуса Ультразвуковой безэталонный толщиномер
RU2130169C1 (ru) * 1997-06-20 1999-05-10 Грошев Владимир Яковлевич Ультразвуковой толщиномер
UA20744U (en) * 2006-07-18 2007-02-15 Serhii Oleksandrovy Zhuravliov Machine for automatic distribution of liquid products into containers

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987004783A1 (en) * 1986-02-06 1987-08-13 Britoil P.L.C., Ultrasonic thickness meter
SU1589053A1 (ru) * 1988-10-10 1990-08-30 Каунасский Политехнический Институт Им.Антанаса Снечкуса Ультразвуковой безэталонный толщиномер
RU2130169C1 (ru) * 1997-06-20 1999-05-10 Грошев Владимир Яковлевич Ультразвуковой толщиномер
UA20744U (en) * 2006-07-18 2007-02-15 Serhii Oleksandrovy Zhuravliov Machine for automatic distribution of liquid products into containers

Similar Documents

Publication Publication Date Title
Espinosa et al. Accuracy on the time-of-flight estimation for ultrasonic waves applied to non-destructive evaluation of standing trees: a comparative experimental study
RU2422769C1 (ru) Способ ультразвуковой эхо-импульсной толщинометрии
DE60004490D1 (de) Verfahren und vorrichtung zur messung der laufzeit eines signals, insbesondere eines ultraschallsignals
US3423992A (en) Ultrasonic apparatus for measuring thickness or distances
RU2530450C1 (ru) Способ измерения толщины изделия с помощью ультразвуковых импульсов
JP2001343365A (ja) 金属薄板の厚み共振スペクトル測定方法及び金属薄板の電磁超音波計測方法
RU2052769C1 (ru) Ультразвуковой способ измерения толщины изделия с большим затуханием ультразвука и устройство для его осуществления
RU2442154C1 (ru) Способ ультразвукового контроля структуры материала
RU2587536C1 (ru) Способ измерения коэффициента затухания ультразвука
SU1345063A1 (ru) Способ определени толщины и скорости распространени ультразвуковых объемных волн в издели х
Lasaygues et al. Use of a chirp-coded excitation method in order to improve geometrical and acoustical measurements in wood specimen
RU2688877C1 (ru) Способ определения прочностных характеристик полимерных композиционных материалов
RU2195635C1 (ru) Способ измерения уровня жидких и сыпучих сред
RU85664U1 (ru) Устройство определения скорости ультразвуковых волн
RU1820230C (ru) Устройство дл измерени скорости распространени ультразвуковых колебаний
RU2121659C1 (ru) Способ ультразвукового контроля толщины изделий
RU2648292C1 (ru) Резонансный способ ультразвуковой толщинометрии
SU1355925A1 (ru) Способ ультразвуковой дефектоскопии
SU1357709A1 (ru) Ультразвуковой эхо-импульсный толщиномер
RU2005126996A (ru) Способ определения коэффициента затухания ультразвуковых колебаний в материале
SU1712783A1 (ru) Ультразвуковой эхо-импульсный толщиномер
RU2614195C2 (ru) Способы измерения параметров ультразвукового сигнала при наличии помехи
RU2047171C1 (ru) Способ измерения коэффициента затухания ультразвука в материале
SU1288589A1 (ru) Устройство дл определени прочности бетона
RU2080593C1 (ru) Устройство для измерения физико-механических параметров среды

Legal Events

Date Code Title Description
PD4A Correction of name of patent owner