RU2529888C1 - Способ радиосвязи подвижных объектов в смв диапазоне - Google Patents

Способ радиосвязи подвижных объектов в смв диапазоне Download PDF

Info

Publication number
RU2529888C1
RU2529888C1 RU2013118371/07A RU2013118371A RU2529888C1 RU 2529888 C1 RU2529888 C1 RU 2529888C1 RU 2013118371/07 A RU2013118371/07 A RU 2013118371/07A RU 2013118371 A RU2013118371 A RU 2013118371A RU 2529888 C1 RU2529888 C1 RU 2529888C1
Authority
RU
Russia
Prior art keywords
subscriber station
radio communication
radio
transmitter power
subscriber stations
Prior art date
Application number
RU2013118371/07A
Other languages
English (en)
Inventor
Константин Леонидович Войткевич
Сергей Вячеславович Алехин
Original Assignee
Открытое акционерное общество "Научно-производственное предприятие "Полет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-производственное предприятие "Полет" filed Critical Открытое акционерное общество "Научно-производственное предприятие "Полет"
Priority to RU2013118371/07A priority Critical patent/RU2529888C1/ru
Application granted granted Critical
Publication of RU2529888C1 publication Critical patent/RU2529888C1/ru

Links

Images

Landscapes

  • Mobile Radio Communication Systems (AREA)

Abstract

Изобретение относится к радиосвязи СМВ диапазона и может быть использовано для пакетной цифровой радиосвязи с реализацией множественного доступа с контролем несущей и предотвращением коллизий в авиационных телекоммуникационных сетях СМВ диапазона, при наличии как широкополосных естественных помех, так и узкополосных технических помех. Технический результат заключается в повышении помехоустойчивости радиосвязи, повышении скрытности обмена сообщениями и организации одновременной работы нескольких абонентских станций, находящихся в зоне радиовидимости путем их пространственного разделения за счет применения узких диаграмм направленности антенн. Для этого в кадры, содержащие управляющую информацию, вводят вложенное поле с информацией о мощности передатчика, коэффициенте усиления антенны, координатах, времени определения координат, скорости, курсе и высоте полета подвижного объекта, а абонентские станции, получившие кадры с вложенным полем, формируют диаграмму направленности антенны и определяют мощность передатчика, необходимую для ведения радиосвязи. 2 ил.

Description

Изобретение относится к авиационной радиосвязи СМВ диапазона и может быть использовано для пакетной цифровой радиосвязи с реализацией множественного доступа с контролем несущей и предотвращением коллизий в авиационных телекоммуникационных сетях СМВ диапазона, при наличии как широкополосных естественных помех, так и узкополосных технических помех.
В настоящее время системы телекоммуникаций строятся на основе семиуровневой модели взаимодействия открытых систем согласно ISO (Open System Interconnection).
Известен способ передачи пакетной информации, при котором согласно спецификации IEEE 802.11 доступ к среде передачи данных осуществляется с использованием протокола многостанционного доступа с контролем несущей и предупреждением коллизий CSMA/CA-Carrier Sense Multiple Access/Collision Avoidance [2], выбранный в качестве прототипа.
Протокол CSMA/CA может работать в двух режимах. В первом режиме абонентская станция сначала прослушивает канал связи. Если канал связи свободен, начинается передача данных. Во время пересылки канал связи не прослушивается, и абонентская станция передает кадр с данными целиком. Если канал связи занят, отправитель дожидается его освобождения и затем начинает передачу данных. Если возникает коллизия, абонентские станции, не поделившие между собой канал связи, выжидают в течение случайных интервалов времени и затем снова пытаются отправить кадр с данными.
Во втором режиме абонентская станция А перед передачей прослушивает канал связи. Если он свободен, то абонентская станция А передает абонентской станции В кадр RTS (Request to Send - запрос на передачу), запрашивая разрешение на передачу. Структура кадра RTS согласно спецификации IEEE 802.11. Если абонентская станция В может принять данные, она передает положительное подтверждение, кадр CTS (Clear to Send - подтверждение готовности). Структура кадра CTS согласно спецификации IEEE 802.11. После приема кадра CTS абонентская станция А запускает таймер АСК (ACKnowledge - подтверждение приема) и начинает передачу данных. В случае корректного приема данных, абонентская станция В генерирует кадр АСК, сообщающий абонентской станции А о конце передачи. Если интервал времени таймера на абонентской станции А истекает прежде, чем получен АСК, весь алгоритм работы протокола повторяется с самого начала.
Абонентская станция С, находясь в зоне действия абонентской станции А, также принимает кадр RTS и определяет, что по каналу связи будут передаваться данные, и ожидает окончания активности соседних абонентских станций. Исходя из информации, содержащейся в RTS, абонентская станция С может предположить, сколько времени займет передача последовательности, включая конечный АСК. В течение этого промежутка времени абонентская станция С считает, что ее канал связи занят и она ожидает окончания активности соседних абонентских станций. Индикацией такого состояния является последовательность NAV (Network Allocation Vector - вектор выделенной сети). Абонентская станция D входит в зону действия абонентской станции В, но не входит в зону действия абонентской станции А, поэтому абонентская станция D не принимает RTS, посылаемый абонентской станцией А, но принимает CTS, передаваемый абонентской станцией В, и также устанавливает сигнал NAV. Сигналы NAV не передаются, а являются внутренними напоминаниями абонентских станций о том, что нужно хранить радиомолчание в течение определенного промежутка времени. В зоне радиовидимости абонентские станции А и В при организации радиосвязи сообщают всем, на какое время они резервируют канал связи и другие абонентские станции, например С и D, хранят радиомолчание и не могут организовывать радиосвязь между собой.
Недостатками прототипа являются отсутствие возможности управления направленными антеннами и мощностью передатчика абонентской станции, и как следствие этого, невозможность формирования диаграммы направленности антенны для организации радиосвязи и обеспечения скрытности обмена сообщениями, а также отсутствие возможности одновременной работы нескольких абонентских станций, находящихся в зоне радиовидимости.
Основной технической задачей, на решение которой направлено предлагаемое изобретение, является обеспечение радиосвязи между абонентами с направленными антеннами, повышение помехоустойчивости и скрытности обмена сообщениями, а так же организация одновременной работы нескольких абонентских станций, находящихся в зоне радиовидимости, путем их пространственного разделения за счет применения узких диаграмм направленности антенн.
Указанный технический результат достигается тем, что в способе радиосвязи подвижных объектов в СМВ диапазоне, основанном на использовании протокола многостанционного доступа с контролем несущей и предупреждением коллизий, обмене абонентских станций кадрами, содержащими управляющую информацию, в упомянутые кадры вводят вложенное поле с информацией о мощности передатчика, коэффициенте усиления антенны, координатах, времени определения координат, скорости, курсе и высоте полета подвижного объекта, а абонентские станции, получившие кадры с вложенным полем, формируют диаграмму направленности антенны и определяют мощность передатчика, необходимую для ведения радиосвязи.
Заявленный способ радиосвязи осуществляется следующим образом. Абонентская станция А перед передачей прослушивает канал связи в режиме дежурный прием. Если канал связи свободен, то абонентская станция А устанавливает мощность передатчика, равную PTX_A, формирует диаграмму направленности в направлении абонентской станции В, используя информацию, находящуюся в информационной управляющей системе, и передает абонентской станции В кадр DRTS (Directional Request to Send - направленный запрос на передачу), который содержит вложенное поле SHF Header, запрашивая разрешение на передачу. Поле SHF Header содержит информацию о координатах абонента, времени определения координат, курсе, скорости, высоте, данные о мощности передатчика, коэффициенте усиления антенны.
Абонентская станция В обрабатывает информацию, полученную в поле SHF Header, рассчитывает время радиосвязи, определяет текущее положение абонентской станции А и мощность передатчика, необходимую для организации радиосвязи. Определение времени радиосвязи позволяет улучшить пользовательские характеристики, такие как вероятность и гарантированное время доставки сообщения. Если В может принять данные, она устанавливает рассчитанную мощность передатчика, равную PTX_B, формирует диаграмму направленности в направлении абонентской станции А и передает положительное подтверждение, кадр DCTS (Clear to Send - подтверждение готовности), который так же содержит вложенное поле SHF Header. После приема кадра DCTS абонентская станция А обрабатывает информацию, полученную в поле SHF Header, определяет текущее положение абонентской станции В и мощность передатчика, необходимую для организации радиосвязи, запускает таймер АСК, устанавливает рассчитанную мощность передатчика равную P'TX_A, формирует диаграмму направленности в направлении абонентской станции В и начинает передачу данных с вложенным полем SHF Header. В случае корректного приема абонентская станция В устанавливает мощность передатчика, равную P'TX_B, формирует диаграмму направленности в направлении абонентской станции А и генерирует кадр DACK с вложенным полем SHF Header, сообщающий абонентской станции А о конце передачи. Если интервал времени таймера на абонентской станции А истекает прежде, чем получен кадр DACK, весь алгоритм работы протокола повторяется с самого начала. Структура кадров приведена на фиг.1.
Абонентская станция С находится в зоне радиовидимости абонентской станции А, поэтому она также принимает кадр DRTS, определяет, что скоро по каналу будут передаваться данные, и ожидает окончания активности соседних абонентских станций. Исходя из информации, содержащейся в кадре DRTS, абонентская станция С устанавливает сигнал NAV и рассчитывает, сколько времени займет передача данных, включая конечный кадр DACK. В течение этого промежутка времени С считает, что ее канал связи в направлении А занят и может организовать радиосвязь с абонентскими станциями, не отмеченными сигналом NAV. Абонентская станция D не находится в зоне действия абонентской станции А и не может принять кадр DRTS, посылаемый абонентской станцией А, но находится в зоне действия абонентской станции В и принимает кадр DCTS, посланный абонентской станцией В, и также устанавливает NAV. Сигналы NAV не передаются, а являются внутренними напоминаниями абонентским станциям о том, что нужно хранить радиомолчание, чтобы не начать передачу информации в направлении передающих соседних абонентских станций в течение определенного промежутка времени. Допускается организация радиосвязи с соседними абонентскими станциями, не отмеченными сигналами NAV. В зоне радиовидимости абонентские станции А и В при организации радиосвязи сообщают всем, на какое время они резервирует канал связи, а другие абонентские станции, например С и D, могут организовать радиосвязь между собой путем пространственного разделения абонентских станций за счет применения узких диаграмм направленности антенн, и таким образом появляется возможность передавать параллельно несколько потоков данных.
Определение требуемой мощности передатчика осуществляется следующим образом. Передача кадров DRTS и DCTS абонентскими станциями осуществляется с мощностью PTX, которая принимает значение от PTX_min до PTX_max передатчика абонентской станции. Когда абонентская станция-отправитель А получает кадр разрешения на передачу DCTS от соседней абонентской станции В, она вычисляет требуемую мощность передатчика, необходимую для ведения радиосвязи с абонентской станцией В. Аналогично определение мощности для передачи происходит и в абонентской станции В.
Алгоритм установления и ведения радиосвязи подвижных объектов в СМВ диапазоне представлен на фиг.2.
Согласно предложенному алгоритму, абонентская станция может находиться в одном из трех состояний: дежурный прием, установление радиосвязи, ведение радиосвязи.
В режиме дежурного приема абонентская станция осуществляет прием с единичным усилением по всем азимутальным направлениям. Из режима дежурного приема абонентская станция может перейти в режим установления связи - на прием или на передачу. В режим установления связи на передачу абонентская станция переходит при поступлении пакетов, которые необходимо передать. В режим установления связи на прием абонентская станция переходит при получении кадра запроса на передачу - DRTS, в режим ведения радиосвязи на передачу абонентская станция переходит при получении кадра разрешения на передачу DCTS.
В результате успешного установления радиосвязи при получении разрешения DCTS после отправки запроса на передачу DRTS, абонентская станция корректирует таблицу маршрутизации в части формирования списка абонентов. Таблица маршрутизации содержит идентификатор абонента, координаты, время определения координат, курс, скорость, высоту абонента, мощность передатчика и др. Обновление таблицы маршрутизации и списка абонентов может происходить при изменении топологии радиосети в результате движения абонентов.
Определение географических координат и коэффициента усиления передающей антенны происходит на основе информации, заложенной в передаваемых кадрах DRTS и DCTS. Собственные географические координаты абонентская станция определяет с помощью системы навигации, например GPS, ГЛОНАСС или других.
Литература
1. Сайт ассоциации IEEE http://standards.ieee.org/about/get/802/802.11.html.
2. A Technical Tutorial on the IEEE 802.11 Standard Draft 4.0 (прототип).
3. Компьютерные сети. 4-е изд./ Э. Таненбаум. - СПб.: Питер, 2003.

Claims (1)

  1. Способ радиосвязи подвижных объектов в СМВ диапазоне, основанный на использовании протокола многостанционного доступа с контролем несущей и предупреждением коллизий, обмене абонентских станций кадрами, содержащими управляющую информацию, отличающийся тем, что в упомянутые кадры вводят вложенное поле с информацией о мощности передатчика, коэффициенте усиления антенны, координатах, времени определения координат, скорости, курсе и высоте полета подвижного объекта, а абонентские станции, получившие кадры с вложенным полем, формируют диаграмму направленности антенны и определяют мощность передатчика, необходимую для ведения радиосвязи.
RU2013118371/07A 2013-04-19 2013-04-19 Способ радиосвязи подвижных объектов в смв диапазоне RU2529888C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013118371/07A RU2529888C1 (ru) 2013-04-19 2013-04-19 Способ радиосвязи подвижных объектов в смв диапазоне

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013118371/07A RU2529888C1 (ru) 2013-04-19 2013-04-19 Способ радиосвязи подвижных объектов в смв диапазоне

Publications (1)

Publication Number Publication Date
RU2529888C1 true RU2529888C1 (ru) 2014-10-10

Family

ID=53381477

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013118371/07A RU2529888C1 (ru) 2013-04-19 2013-04-19 Способ радиосвязи подвижных объектов в смв диапазоне

Country Status (1)

Country Link
RU (1) RU2529888C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2657356C1 (ru) * 2017-05-23 2018-06-13 Акционерное общество "Конструкторское бюро приборостроения им. академика А.Г. Шипунова" Способ одновременного наведения управляемых ракет с лазерными полуактивными головками самонаведения и устройство для его осуществления

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2309543C2 (ru) * 2005-10-03 2007-10-27 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU77738U1 (ru) * 2008-05-19 2008-10-27 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU103046U1 (ru) * 2010-06-02 2011-03-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU104802U1 (ru) * 2010-11-30 2011-05-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU106064U1 (ru) * 2010-11-30 2011-06-27 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU2427078C1 (ru) * 2010-04-12 2011-08-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2309543C2 (ru) * 2005-10-03 2007-10-27 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU77738U1 (ru) * 2008-05-19 2008-10-27 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU2427078C1 (ru) * 2010-04-12 2011-08-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU103046U1 (ru) * 2010-06-02 2011-03-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU104802U1 (ru) * 2010-11-30 2011-05-20 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами
RU106064U1 (ru) * 2010-11-30 2011-06-27 Федеральное государственное унитарное предприятие "Научно-производственное предприятие "Полет" Система радиосвязи с подвижными объектами

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2657356C1 (ru) * 2017-05-23 2018-06-13 Акционерное общество "Конструкторское бюро приборостроения им. академика А.Г. Шипунова" Способ одновременного наведения управляемых ракет с лазерными полуактивными головками самонаведения и устройство для его осуществления

Similar Documents

Publication Publication Date Title
Temel et al. LODMAC: Location oriented directional MAC protocol for FANETs
JP4622503B2 (ja) 無線通信システム、無線通信装置及び無線通信方法、並びにコンピュータ・プログラム
JP2021508419A (ja) Nr v2xにおける位置情報を送受信する方法及び装置
Han et al. M-FAMA: A multi-session MAC protocol for reliable underwater acoustic streams
JP2001160813A (ja) 無線ネットワーク
US9971014B2 (en) Access point-assisted positioning framework
Li et al. Neighbor discovery for ultraviolet ad hoc networks
US20100014489A1 (en) Method and system for directional virtual sensing random access for wireless networks
Akhtar et al. Directional MAC protocol for IEEE 802.11 ad based wireless local area networks
WO2018176324A1 (zh) 数据交互的方法、终端设备及网络设备
CN102625367B (zh) 多跳Ad Hoc网络中时隙优化的多信道多址接入控制方法
Kebkal et al. D-MAC: Hybrid media access control for underwater acoustic sensor networks
Deng et al. Implementing distributed TDMA using relative distance in vehicular networks
US20100315980A1 (en) Unified contention based period
RU2529888C1 (ru) Способ радиосвязи подвижных объектов в смв диапазоне
Huang et al. A platoon-centric multi-channel access scheme for hybrid traffic
Lasowski et al. A multi channel synchronization approach in dual radio vehicular ad-hoc networks
EP3259938B1 (en) Simple mesh network for wireless transceivers
Ndih et al. MAC for physical-layer network coding in VANETs
Ye et al. A jamming‐based MAC protocol to improve the performance of wireless multihop ad‐hoc networks
Burrowes et al. Adaptive Space Time-Time Division Multiple Access (AST-TDMA) protocol for an underwater swarm of AUV's
Rico Garcia et al. Performance of MAC protocols in beaconing Mobile Ad-hoc Multibroadcast Networks
Ndih et al. Reliable broadcasting in VANETs using physical-layer network coding
Bi et al. A multi-channel token ring protocol for inter-vehicle communications
Makhlouf et al. Mac Protocols in Mobile Ad Hoc Networks