RU2529515C1 - Способ орошения бассейнов выдержки отработавшего ядерного топлива и устройства для его осуществления - Google Patents

Способ орошения бассейнов выдержки отработавшего ядерного топлива и устройства для его осуществления Download PDF

Info

Publication number
RU2529515C1
RU2529515C1 RU2013116708/07A RU2013116708A RU2529515C1 RU 2529515 C1 RU2529515 C1 RU 2529515C1 RU 2013116708/07 A RU2013116708/07 A RU 2013116708/07A RU 2013116708 A RU2013116708 A RU 2013116708A RU 2529515 C1 RU2529515 C1 RU 2529515C1
Authority
RU
Russia
Prior art keywords
sfa
water
irrigation
walls
compartment
Prior art date
Application number
RU2013116708/07A
Other languages
English (en)
Inventor
Пётр Михайлович Гаврилов
Михаил Викторович Антоненко
Вадим Альбертович Кравченко
Владимир Иванович Мацеля
Борис Николаевич Бараков
Original Assignee
Федеральное государственное унитарное предприятие "Горно-химический комбинат"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Горно-химический комбинат" filed Critical Федеральное государственное унитарное предприятие "Горно-химический комбинат"
Priority to RU2013116708/07A priority Critical patent/RU2529515C1/ru
Application granted granted Critical
Publication of RU2529515C1 publication Critical patent/RU2529515C1/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

Группа изобретений относится к ядерной технике, в частности к средствам обеспечения безопасности при хранении отработавших тепловыделяющих сборок (ОТВС) реактора ВВЭР-1000, и предназначено для охлаждения чехлов с ОТВС при запроектной аварии, вызванной осушением бассейнов выдержки. При орошении чехлов с ОТВС распыленной дренчерными оросителями водой, воду в дренчерные распылители подают периодически, причем минимальный расход воды определяют по формуле: G мин=Q/r×F/F, где G мин - минимальный массовый расход воды, кг/с; Qот - суммарное тепловыделение ОТВС в отсеке, кВт; R - удельная теплота парообразования воды, кДж /кг; F- площадь отсека, м; F- суммарная площадь чехлов с ОТВС в отсеке, м. Бак аварийного водоснабжения соединен через запорный клапан и подводящий трубопровод непосредственно с системами орошения чехлов с ОТВС и стен, и параллельно через запорный клапан с всасывающим патрубком повысительной насосной станции. Ее нагнетательный патрубок также через запорные клапаны соединен с подводящим трубопроводом и с баком аварийного водоснабжения байпасным трубопроводом. Запорные клапаны снабжены электроприводами и пультом управления, обеспечивающим их открытие и закрытие через заданные промежутки времени. Технический результат - повышение эффективности использования охлаждающей воды за счет прерывистого режима подачи воды на орошение чехлов с ОТВС, обеспечивающего преимущественно пленочный режим кипения охлаждающей воды на стенках чехлов. 2н. и 1 з.п. ф-лы, 2 ил.

Description

Группа изобретений относится к ядерной технике, в частности к средствам обеспечения безопасности при хранении отработавших ядерных топливных элементов реактора ВВЭР-1000, и предназначено для использования в хранилищах отработавшего ядерного топлива на заводах по регенерации такого топлива или на АЭС при запроектных авариях.
Хранение отработавшего ядерного топлива (ОЯТ) является существенной частью любого ядерного топливного цикла. Это может быть временное хранение до переработки отработавшего ядерного топлива, либо достаточно длительное хранение до захоронения топлива в могильниках. Суммарные объемы отработавшего топлива, подлежащего хранению, непрерывно возрастают из-за значительно меньших производственных возможностей перерабатывающих заводов, в результате чего растет не только объем хранящегося топлива, но и увеличиваются предполагаемые сроки его хранения.
Основу ядерно-энергетического парка России составляют реакторы ВВЭР-1000 и РБМК-1000. Для реакторов типа ВВЭР принята концепция замкнутого ядерного топливного цикла. Переработка ОЯТ реакторов ВВЭР-1000 пока не проводится, и его хранение в безопасных условиях в течение длительного времени становится актуальной проблемой, учитывая отсутствие свободных объемов в приреакторных бассейнах. Таким образом, основной практикой обращения с отработавшим ядерным топливом в России на сегодняшний день является хранение.
На площадке Изотопно-химического завода Федерального государственного унитарного предприятия «Горно-химический комбинат» действует хранилище, где ОЯТ хранится в водонаполненном бассейне, так называемое «мокрое» хранилище. Мокрое хранилище включает в себя отсек перегрузки, бассейн выдержки, состоящий из 20 отсеков хранения, соединенных между собой транспортным коридором, и системы, обеспечивающие перегрузку и безопасное хранение ОЯТ. Хранение отработавших тепловыделяющих сборок (ОТВС) осуществляется в чехлах, в частности в чехлах по патенту РФ №2331943, под слоем очищенной от механических взвесей и обессоленной воды. Пеналы представляют собой металлические конструкции квадратного сечения, в которых установлены трубы, связанные дистанционирующими решетками. ОТВС размещаются внутри труб. Общий объем воды в хранилище составляет 33000 м3. Отсеки могут отделяться от транспортного коридора затворами. Для отвода тепла, выделяемого ОТВС в воду бассейна выдержки хранилища, осуществляется охлаждение воды отсеков бассейна при помощи теплообменников. Теплопередача от ОТВС осуществляется конвекцией. При длительном хранении ОТВС их тепловыделение снижается. С учетом произошедшей аварии на АЭС «Фукусима» в Японии, где было обезвожено хранилище ОЯТ, в качестве запроектной аварии рассматривается обезвоживание от 1 до 10 отсеков бассейна выдержки хранилища. Для охлаждения чехлов с ОТВС смонтированы баки аварийного водоснабжения, при этом продолжительность их использования имеет важное значение для организации их пополнения и устранения последствий запроектной аварии.
Известен способ охлаждения строительных конструкции и ОТВС по проекту «Охлаждение строительных конструкций и ОТВС с учетом ядерной безопасности в бассейнах выдержки здания 1 при запроектной аварии, вызванной осушением бассейнов выдержки», разработанному ОАО «Восточно-Европейский головной научно-исследовательский и проектный институт энергетических технологий», г. Санкт-Петербург).
Известным способом предусматривается постоянное орошение стен бассейна выдержки и чехлов с ОТВС распыленной дренчерными оросителями водой. Охлаждение стен осуществляется для исключения снижения прочности железобетонных конструкций стен бассейна выдержки, расположенных за облицовкой бассейна выдержки.
Вода после использования вытекает через образовавшиеся дефекты в строительных конструкциях.
К недостаткам известного способа относится то, что осуществляемый постоянным орошением отвод тепла от ОТВС будет осуществляться в основном за счет нагревания воды, постоянно стекающей по стенкам труб, внутри которых размещены ОТВС, без ее вскипания. Постоянное орошение потребует больших объемов воды, вследствие чего продолжительность орошения будет ограничиваться объемами баков аварийного водоснабжения.
Кроме того, орошение ОТВС и стен принято для всех отсеков одинаковым без учета суммарного тепловыделения ОТВС в отсеке. Остаточное тепловыделение поступающих на хранение ОТВС составляет 2,17 кВт от одной ОТВС, а после выдержки в бассейне хранения в течение 10 лет - 1,3 Вт/кг, или 637 Вт от одной ОТВС. Так как хранилище эксплуатируется более 25 лет, то тепловыделение ОТВС с выдержкой более 10 лет будет еще ниже.
При полном обезвоживании бассейна выдержки и отведении тепла от ОТВС изменяется и режим теплопередачи по сравнению с режимом теплопередачи при полном погружении чехла с ОТВС в воду. При полном осушении бассейна выдержки подаваемая дренчерными распылителями на чехлы с ОТВС распыленная вода попадает на верхнюю решетку чехла и стекает по стенкам труб (пеналов), в которых располагаются ОТВС. Непосредственно на топливные трубки ОТВС вода попадать не будет, поэтому отведение тепла от ОТВС на стенки пеналов будет осуществляться в основном за счет теплового излучения и конвекции. Отведение тепла от ОТВС к чехлу за счет контакта будет незначительным, вследствие малой площади соприкосновения шестигранной ОТВС с круглым пеналом. В начале подачи воды на нагретые стенки пенала будет происходить вскипание воды, но по мере охлаждения стенок пенала, отведение тепла будет происходить только за счет нагревания стекающей по стенкам пенала воды. Известно, что максимальное отведение тепла возникает при превращении воды в пар, исходя из чего, наиболее эффективным будет охлаждение стенок пеналов при вскипании воды на них.
Известна система орошения ОТВС и стен бассейна выдержки для предотвращения их перегрева, предусмотренная указанным проектом. Система орошения включает в себя систему орошения стен хранилища, систему орошения чехлов с ОТВС, повысительную насосную станцию, подводящие трубопроводы и оросительные системы. Элементы системы охлаждения, включая точки подключения к существующим сетям производственно-противопожарного водопровода, соединенного с баками аварийного водоснабжения, размещаются внутри здания бассейна выдержки. Вода после использования вытекает через образовавшиеся дефекты в строительных конструкциях. Система орошения стен хранилища содержит трубы, уложенные вдоль стен, с равномерно расположенными отверстиями, направленными на стены.
Система орошения чехлов с ОТВС содержит расположенные вдоль стен трубопроводы с отводами, располагаемыми между рядами чехлов с ОТВС, на которых установлены дренчерные оросители. Отведение тепла от ОТВС осуществляется способом постоянной подачи воды на дренчерные оросители повысительной насосной станцией.
К недостаткам известной системы орошения относится то, что при прохождении землетрясения возможно отключение электроснабжения повысительной насосной станции. Кроме того, осуществляемый постоянным орошением отвод тепла от ОТВС будет осуществляться в основном за счет нагревания воды, постоянно стекающей по стенкам пеналов, что потребует больших объемов воды, вследствие чего продолжительность орошения будет ограничиваться объемами баков аварийного водоснабжения.
Для охлаждения стен используется труба с равномерно расположенными отверстиями, направленными на стены. Так как чехлы расположены на некотором расстоянии от стен, а ОТВС находятся внутри пеналов чехла, то все тепловое излучение от ОТВС воздействует на стенки пеналов чехлов. При орошении стенок пенала водой затраты воды на орошение стен могут быть сокращены, особенно в случае, если у стен будут располагаться чехлы с ОТВС со значительной продолжительностью хранения в бассейне выдержки.
Задачей, на решение которой направлены предлагаемые изобретения, является увеличение продолжительности использования баков аварийного водоснабжения для охлаждения ОТВС при обезвоживании бассейна выдержки в результате запроектной аварии.
Технический результат, получаемый при внедрении изобретений, заключается в повышении эффективности использования охлаждающей воды за счет прерывистого режима подачи воды на орошение чехлов с ОТВС, обеспечивающего преимущественно пленочный режим кипения охлаждающей воды на стенках чехлов.
Для получения указанного технического результата в предлагаемом способе, включающем орошение чехлов с ОТВС, распыленной дренчерными оросителями водой, воду в дренчерные распылители подают периодически, причем минимальный расход воды определяют по формуле:
G мин=Q/r×F1/F2, где
G мин - минимальный массовый расход воды, кг/с;
Qот - суммарное тепловыделение ОТВС в отсеке, кВт;
R - удельная теплота парообразования воды, кДж /кг;
F1 - площадь отсека, м2;
F2 - суммарная площадь чехлов с ОТВС в отсеке, м2.
Периодическая подача воды в дренчерные распылители позволяет подавать воду на нагретые тепловым излучением от ОТВС стенки пенала и достичь вскипания воды на них и, тем самым, осуществить более эффективное отведение тепла, а в результате увеличить продолжительность использования охлаждающей воды из бака аварийного водоснабжения.
Определение минимального расхода воды по формуле позволяет обеспечить более эффективное использование охлаждающей воды с учетом суммарного тепловыделения ОТВС в отсеке хранения и объемов воды, попадающих на верхние решетки чехлов и в пеналы.
Размещение чехлов с ОТВС выдержкой в бассейне более 10 лет в рядах, примыкающих к стенам, позволяет уменьшить нагревание облицовок стен бассейна. Во-первых, чехлы с ОТВС, тепловыделение которых составляет около 650 Вт от одной ОТВС, охлаждаются водой, подаваемой дренчерными оросителями, и стенки пеналов не будут являться тепловыми излучателями. Во-вторых, эти чехлы экранируют стены от теплового излучения чехлов с ОТВС с более высоким тепловыделением.
Для получения указанного технического результата в предлагаемой системе орошения, включающей бак аварийного водоснабжения, повысительную насосную станцию, подводящие трубопроводы и системы орошения чехлов с ОТВС и стен, бак аварийного водоснабжения соединен через запорный клапан и подводящий трубопровод непосредственно с системами орошения чехлов с ОТВС и стен, и параллельно через запорный клапан с всасывающим патрубком повысительной насосной станции, нагнетательный патрубок которой также через запорные клапаны соединен с подводящим трубопроводом и с баком аварийного водоснабжения байпасным трубопроводом.
Учитывая условия эксплуатации, запорные клапаны снабжены электроприводами и пультом управления, обеспечивающим их открытие и закрытие через заданные промежутки времени.
Соединение бака аварийного водоснабжения через запорный клапан и подводящий трубопровод непосредственно с системами орошения чехлов с ОТВС и стен позволяет при отсутствии электроснабжения подать воду из бака аварийного водоснабжения на системы орошения чехлов с ОТВС и стен бассейна выдержки самотеком.
Соединение бака аварийного водоснабжения параллельно через запорный клапан с всасывающим патрубком повысительной насосной станции, нагнетательный патрубок которой также через запорные клапаны соединен с подводящим трубопроводом и с баком аварийного водоснабжения байпасным трубопроводом позволяет при наличии электроснабжения осуществлять периодическую подачу воды на системы орошения чехлов с ОТВС и стен, при которой достигается вместе с конвективной теплопередачей также и пленочный режим кипения охлаждающей воды. Переключая запорными клапанами выдачу воды повысительной насосной станцией или в подводящий трубопровод, соединенный с системами орошения чехлов с ОТВС, или обратно в бак аварийного водоснабжения по байпасному трубопроводу достигается прерывистый режим подачи воды на орошение чехлов с ОТВС.
Пауза в подаче воды на орошение позволяет вскипеть пленке воды на смоченных при предыдущей подаче поверхностях чехлов и ОТВС и испариться. Поскольку наибольший отвод тепла происходит при испарении воды, охлаждение чехлов с ОТВС осуществляется меньшими объемами воды. В результате прерывистый режим подачи воды на орошение чехлов с ОТВС и стен бассейна позволяет сократить объем воды на охлаждение, и, при ограниченном объеме бака аварийного водоснабжения, увеличить продолжительность использования объема воды в нем для его дальнейшего пополнения и использования для устранения последствий запроектной аварии.
Снабжение запорных клапанов электроприводами и пультом управления, обеспечивающим их открытие и закрытие через заданные промежутки времени, позволяет обеспечить прерывистый режим подачи воды в автоматическом режиме и ее эффективное использование для охлаждения чехлов с ОТВС.
Предлагаемая система орошения бассейнов выдержки ядерного топлива иллюстрируется чертежами, на которых изображены:
- на фиг.1 - схема предлагаемой системы орошения одного отсека бассейна выдержки;
- на фиг.2 - разрез А-А на фиг.1.
Предлагаемый способ осуществляют следующим образом.
Для каждого отсека определяют суммарное тепловыделение от ОТВС - Qот, площадь отсека F1, и суммарную площадь чехлов с ОТВС в отсеке. Далее по формуле:
G мин=Q/r×F1/F2, где
G мин - минимальный массовый расход воды, кг/с;
Qот - суммарное тепловыделение ОТВС в отсеке, кВт;
R - удельная теплота парообразования воды, кДж/кг;
F1 - площадь отсека, м2;
F2 - суммарная площадь чехлов с ОТВС в отсеке, м2
рассчитывают минимально необходимый расход воды для каждого отсека.
Определяют общий минимально необходимый расход воды, необходимый для орошения всех отсеков бассейна выдержки, и с учетом некоторого запаса устанавливают производительность повысительной насосной установки.
Предлагаемая система орошения состоит из бака 1 аварийного водоснабжения, размещенного на рельефе местности выше бассейна выдержки, подводящего охлаждающую воду к отсекам 2 бассейна выдержки трубопровода 3 с запорным клапаном 4, соединенного с системой орошения 5 чехлов 6 с ОТВС. Система орошения 5 чехлов 6 с ОТВС содержит трубопроводы 7, на которых установлены между рядами чехлов 6 дренчерные оросители 8. Параллельно участку 9 трубопровода 3 через запорный клапан 10 к баку 1 присоединена всасывающим трубопроводом 11 повысительная насосная станция 12, нагнетательный трубопровод 13 которой через запорный клапан 14 соединен с трубопроводом 3, а через запорный клапан 15 и байпасный трубопровод 16 с баком 1.
Запорные клапаны 14 и 15 на нагнетательном трубопроводе 13 и запорный клапан 4 снабжены электроприводами и пультом управления (на чертежах не показаны), обеспечивающим их открытие и закрытие через заданные промежутки времени.
Предлагаемая система орошения работает следующим образом.
После прохождения землетрясения и обезвоживания отсеков 2 бассейна выдержки в случае отсутствия электроснабжения открывается клапан 10 и охлаждающая вода подается самотеком по трубопроводу 3 на систему орошения чехлов 6 и далее по трубопроводам 5 и 15 на дренчерные оросители 16 в постоянном режиме подачи охлаждающей воды. Распыленная дренчерными оросителями 16 вода, попадая на верхние дистанционирующие решетки чехлов 6, стекает по внутренней стенке пеналов, охлаждая их от теплового излучения ОТВС, размещенных в пеналах.
При наличии электроснабжения и работоспособной повысительной насосной станции 12, на пульте управления задаются режимы работы запорных клапанов 14 и 15. Клапан 4 закрывается, открывается клапан 10, расположенный на всасывающем трубопроводе 11 повысительной насосной станции 12, которая включается в работу. При открытии запорного клапана 14 охлаждающая вода из бака 1 подается по трубопроводу 3 на системы 5 орошения чехлов 6 с заданной на пульте управления продолжительностью. По истечении заданной продолжительности клапан 14 закрывается и одновременно открывается клапан 15, при этом подаваемая повысительной насосной станцией 12 вода возвращается в бак 1 по байпасному трубопроводу 16. При перекрытии подачи воды в системы орошения, пленка воды на внутренних стенках пеналов испаряется, а стенки пеналов нагреваются от теплового излучения ОТВС. При подаче следующей порции воды дренчерными оросителями на нагретые стенки пеналов в виде пленки, происходит ее вскипание, чем достигается более эффективный отвод тепла при уменьшенных расходах охлаждающей воды.
При наличии электроснабжения и выходе из строя повысительной насосной станции 12, прерывистый режим подачи охлаждающей воды достигается открытием и закрытием клапана 4 через заданные на пульте управления промежутки времени.
В результате достигается более эффективное использование воды для охлаждения чехлов с ОТВС и увеличивается продолжительность подачи охлаждающей воды из бака аварийного водоснабжения.

Claims (3)

1. Способ орошения бассейнов выдержки отработавшего ядерного топлива, включающий орошение чехлов с ОТВС распыленной дренчерными оросителями водой, отличающийся тем, что воду в дренчерные распылители подают периодически, причем минимальный расход воды определяют по формуле:
G мин=Q/r×F1/F2, где
G мин - минимальный массовый расход воды, кг/с;
Qот - суммарное тепловыделение ОТВС в отсеке, кВт;
R - удельная теплота парообразования воды, кДж/кг;
F1 - площадь отсека, м2;
F2 - суммарная площадь чехлов с ОТВС в отсеке, м2.
2. Система орошения бассейнов выдержки отработавшего ядерного топлива, содержащая бак аварийного водоснабжения, систему орошения чехлов с ОТВС, повысительную насосную станцию, подводящие трубопроводы и системы орошения чехлов с ОТВС и стен, отличающаяся тем, что бак аварийного водоснабжения соединен через запорный клапан и подводящий трубопровод непосредственно с системами орошения чехлов с ОТВС и стен, и параллельно через запорный клапан с всасывающим патрубком повысительной насосной станции, нагнетательный патрубок которой также через запорные клапаны соединен с подводящим трубопроводом и с баком аварийного водоснабжения байпасным трубопроводом.
3. Система орошения бассейнов выдержки отработавшего ядерного топлива по п.2, отличающаяся тем, что запорные клапаны снабжены электроприводами и пультом управления, обеспечивающим их открытие и закрытие через заданные промежутки времени.
RU2013116708/07A 2013-04-11 2013-04-11 Способ орошения бассейнов выдержки отработавшего ядерного топлива и устройства для его осуществления RU2529515C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2013116708/07A RU2529515C1 (ru) 2013-04-11 2013-04-11 Способ орошения бассейнов выдержки отработавшего ядерного топлива и устройства для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2013116708/07A RU2529515C1 (ru) 2013-04-11 2013-04-11 Способ орошения бассейнов выдержки отработавшего ядерного топлива и устройства для его осуществления

Publications (1)

Publication Number Publication Date
RU2529515C1 true RU2529515C1 (ru) 2014-09-27

Family

ID=51656710

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2013116708/07A RU2529515C1 (ru) 2013-04-11 2013-04-11 Способ орошения бассейнов выдержки отработавшего ядерного топлива и устройства для его осуществления

Country Status (1)

Country Link
RU (1) RU2529515C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109102910A (zh) * 2018-09-21 2018-12-28 上海核工程研究设计院有限公司 一种确定乏燃料棒束最小喷淋流量密度的试验装置和方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA83014C2 (ru) * 2005-06-07 2008-06-10 Севастопольский Национальный Технический Университет Бассейн для выдержки отработанного ядерного топлива
JP2008185572A (ja) * 2007-01-31 2008-08-14 Toshiba Corp 原子炉等代替冷却設備
US20110286567A1 (en) * 2010-04-21 2011-11-24 Singh Krishna P System and method for reclaiming energy from heat emanating from spent nuclear fuel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
UA83014C2 (ru) * 2005-06-07 2008-06-10 Севастопольский Национальный Технический Университет Бассейн для выдержки отработанного ядерного топлива
JP2008185572A (ja) * 2007-01-31 2008-08-14 Toshiba Corp 原子炉等代替冷却設備
US20110286567A1 (en) * 2010-04-21 2011-11-24 Singh Krishna P System and method for reclaiming energy from heat emanating from spent nuclear fuel

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109102910A (zh) * 2018-09-21 2018-12-28 上海核工程研究设计院有限公司 一种确定乏燃料棒束最小喷淋流量密度的试验装置和方法

Similar Documents

Publication Publication Date Title
JP6315618B2 (ja) 使用済燃料プールの代替受動的冷却システムおよび方法
US20180350472A1 (en) Passive safe cooling system
CN102956275A (zh) 具有紧凑的非能动安全系统的压水反应堆
JP5842218B2 (ja) 無動力原子炉冷却システム
KR101241142B1 (ko) 원자로 비상냉각용 해수담수화시스템
RU2529515C1 (ru) Способ орошения бассейнов выдержки отработавшего ядерного топлива и устройства для его осуществления
CN105118534A (zh) 非能动乏燃料水池冷却及补水系统
TWI585780B (zh) 用於輕水式反應器之替代型遠距廢燃料池冷卻系統之方法及裝置
KR20140047452A (ko) 원자력 발전소 피동보조급수계통의 충수 장치
RU2672140C1 (ru) Способ использования в системе горячего водоснабжения отработанного ядерного топлива
JP6244796B2 (ja) 使用済燃料貯蔵プール
CN105427910A (zh) 一种基于山体深埋式核电站的集成冷却水源系统
JP2013213816A (ja) 非常用復水器及び燃料貯蔵プール並びに原子炉圧力容器冷却水供給装置
EP4325521A1 (en) Emergency residual heat removal and water replenishing system for nuclear power plant
CN207676666U (zh) 一种带上下连通侧向水箱的非能动双层安全壳
CN105575449A (zh) 一种深井式常压核供热系统
RU2551374C1 (ru) Способ орошения бассейнов выдержки отработавшего ядерного топлива и устройства для его осуществления
CN205028666U (zh) 非能动乏燃料水池冷却及补水系统
KR101404646B1 (ko) 열담수화를 위한 고유안전 수냉각형 원자로 계통
RU2697652C1 (ru) Способ и система приведения атомной электростанции в безопасное состояние после экстремального воздействия
JP2522703B2 (ja) 原子力発電システム及びその建設方法
TWI600027B (zh) 用於沸水式反應器之替代型抑壓池冷卻之方法及裝置
RU128292U1 (ru) Котел с теплоаккумулятором
CN207663806U (zh) 一种带分段独立水箱的非能动双层安全壳
JP4974258B1 (ja) 放射能除染施設付原子力発電所

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190412