RU2528081C2 - Приемник импульсного сигнала - Google Patents

Приемник импульсного сигнала Download PDF

Info

Publication number
RU2528081C2
RU2528081C2 RU2012134953/08A RU2012134953A RU2528081C2 RU 2528081 C2 RU2528081 C2 RU 2528081C2 RU 2012134953/08 A RU2012134953/08 A RU 2012134953/08A RU 2012134953 A RU2012134953 A RU 2012134953A RU 2528081 C2 RU2528081 C2 RU 2528081C2
Authority
RU
Russia
Prior art keywords
input
output
block
intersection
radio
Prior art date
Application number
RU2012134953/08A
Other languages
English (en)
Other versions
RU2012134953A (ru
Inventor
Александр Анатольевич Болкунов
Алексей Витальевич Волков
Руслан Иванович Рюмшин
Original Assignee
Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2012134953/08A priority Critical patent/RU2528081C2/ru
Publication of RU2012134953A publication Critical patent/RU2012134953A/ru
Application granted granted Critical
Publication of RU2528081C2 publication Critical patent/RU2528081C2/ru

Links

Images

Landscapes

  • Noise Elimination (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Superheterodyne Receivers (AREA)

Abstract

Изобретение относится к радиотехнике и может быть использовано в средствах радиоконтроля, радиолокации и радионавигации для приема и обработки сигналов. Технический результат заключается в повышении помехоустойчивости приема радиоимпульсного сигнала. Для этого в приемник введены блок прямого вейвлет-преобразования, соединенный входом с выходом усилителя промежуточной частоты, а выходом с входом амплитудного детектора, а также последовательно включенные первый и второй блоки пересечения, при этом первый вход первого блока пересечения связан с выходом амплитудного детектора непосредственно, а второй его вход через первый блок задержки, первый вход второго блока пересечения связан с выходом первого блока пересечения непосредственно, а второй его вход через второй блок задержки. 1 з.п. ф-лы, 9 ил.

Description

Изобретение относится к области радиотехники и может использоваться в средствах радиоконтроля, радиолокации и радионавигации для приема и обработки сигналов.
Известны различные приемники импульсных сигналов, например, приемник простого импульсного сигнала [Давыдов Ю.Т., Данич Ю.С., Жуковсий А.П. и др. Радиоприемные устройства. Под ред профессора А.П.Жуковского. М., «Высшая школа», 1989 г.342 с, рис.12.1, с.234], содержащий широкополосную часть и оптимальный обнаружитель.
Из известных устройств наиболее близким по технической сущности к заявленному (прототипом) является приемник некогерентной импульсной РЛС [Волошин И.А., Быков В.В., Васин В.В. и др. Справочник по радиоэлектронным системам: в 2-х томах, под ред. Б.Х.Кривицкого. М.; Энергия, 1979 г. 368 с., рис 7.4, с 82].
Известный приемник содержит усилитель высокой частоты, вход которого является входом приемника, смеситель, связанный первым входом с выходом усилителя высокой частоты, а выходом с входом усилителя промежуточной частоты, гетеродин, связанный со вторым входом смесителя и амплитудный детектор. Принцип работы известного приемника заключается в следующем. Поступивший на вход радиоимпульс на рабочей частоте усиливается в усилителе высокой частоты, затем в смесителе с помощью напряжения гетеродина преобразуется в радиоимпульс промежуточной частоты. Этот радиоимпульс получает основное усиление в усилителе промежуточной частоты и детектируется в амплитудном детекторе, на выходе которого будет видеоимпульс, представляющий собой огибающую радиоимпульса.
Недостатком известного приемника является низкая помехоустойчивость в условиях импульсных и шумовых помех.
Задача, на решение которой направлено заявляемое изобретение, заключается в компенсации помеховых составляющих входной смеси.
Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении помехоустойчивости приема радиоимпульсного сигнала.
Технический результат достигается тем, что в известный приемник, содержащий последовательно соединенные усилитель высокой частоты, смеситель, усилитель промежуточной частоты, а также амплитудный детектор и гетеродин, выход которого связан со вторым входом смесителя, введен блок прямого вейвлет-преобразования (ПВП), соединенный входом с выходом усилителя промежуточной частоты, а выходом с входом амплитудного детектора, а также введены последовательно включенные два блока пересечения, при этом выход амплитудного детектора связан с первым входом первого блока пересечения непосредственно, а со вторым его входом через первый блок задержки, первый вход второго блока пересечения связан с выходом первого блока пересечения непосредственно, а второй его вход через второй блок задержки, а выход второго блока пересечения является выходом приемника. Кроме того, во введенном блоке ПВП используют базис вейвлета Морле с девятым масштабным коэффициентом и процедуру пресечения.
Сущность предлагаемого изобретения заключается в преобразовании радиоимпульсного сигнала с помощью блока ПВП на основе базиса вейвлета Морле с девятым масштабным коэффициентом и процедурой пересечения в сложный фазоманипулированный сигнал с огибающей в виде импульсно-временного кода и последующей свертки его с помощью последовательно включенных блоков пересечения. При этом происходит компенсация импульсных и шумовых помех и обеспечивается, тем самым, повышение помехоустойчивости обнаружения радиоимпульсного сигнала.
Предлагаемое изобретение поясняется чертежами графического материала. На фиг.1 представлена структурная схема заявляемого приемника, где обозначено: 1 - усилитель высокой частоты, 2 - смеситель, 3 - гетеродин, 4 - усилитель промежуточной частоты, 5 - блок прямого вейвлет-преобразования, 6 - амплитудный детектор, 7.1, 7.2 - первый и второй блоки задержки, 8.1,8.2 - блоки пересечения. На фиг.2 и фиг.3 показаны характерные сечения вейвлет-спектра импульсного сигнала для обычного (фиг.2) и с применением процедуры пересечения ПВП (фиг.3) на основе вейвлета Морле. Эпюры фиг.4 иллюстрируют процесс обработки входной смеси в элементах заявляемого приемника и прототипа, когда на входе схемы действуют на фоне нормально распределенного шума полезный сигнал в виде прямоугольного радиоимпульса единичной амплитуды - 9, короткоимпульсная помеха - 10, длинноимпульсная помеха - 11 и помеха типа «шумовая вспышка» - 12. На фиг.5 представлена структурная схема исследования эффективности известного и заявляемого приемника при использовании их в схемах обнаружителей. На фиг.6 - 9 представлены результаты оценки вероятностных показателей: вероятность ложной тревоги (фиг.6), вероятность правильного обнаружения (фиг.7), вероятность ошибки для короткой помехи (фиг.8) и вероятность ошибки для длинной помехи (фиг.9).
Прежде всего обоснуем необходимость блока ПВП с базисом вейвлета Морле и процедурой пересечения для достижения технического результата. Традиционное ПВП имеет вид:
Figure 00000001
Здесь W(a, b) - выходной сигнал блока,
S(t) - входной сигнал блока;
ψ(a, b, t) - базис, конструируемый с помощью масштабного коэффициента a и переносов b в пределах длительности принимаемого сигнала в виде:
Figure 00000002
.
Указанный базис конструируется для действительной или мнимой части вейвлета Морле, задаваемого соотношением
ψ ( t ) = e i 2 π f t e t 2 2 , ( 2 )
Figure 00000003
где t - время, f - частота, i - комплексная переменная, π=3.14. Проведем трансформацию традиционного ПВП введением в подынтегральное выражение (1) процедуры пересечения. Эта процедура введена и описана в [Гордиенко В.И., Дубровский С.Е., Рюмшин Р.И. Фенев Д.В. Универсальный многофункциональный структурный элемент систем обработки информации. /Радиоэлектроника/ Изв. ВУЗов, №3, 1998] и имеет вид:
z = | x + y | | x y | , ( 3 )
Figure 00000004
где x и y - произвольные функции, на вид которых ограничения не накладываются, в частности, примем в качестве одной функции S(t), а в качестве другой - элементы базиса ψ(a,b,t).
Тогда выражение (1) преобразуется к виду
Figure 00000005
Здесь K - постоянный множитель, удовлетворяющий неравенству K>>Sm, где Sm - амплитуда сигнала на входе блока ПВП.
Результаты моделирования традиционного ПВП в соответствии с (1) и ПВП с применением процедуры пересечения в соответствии с (4) радиоимпульса единичной амплитуды с несущей частотой f=8·106 Гц приведены на фиг.2 и фиг.3.
Здесь в координатах амлитуда-время (в условных единицах) показаны характерные сечения вейвлет-спектра радиоимпульса для традиционного ПВП (фиг.3) и ПВП на основе использования процедуры пересечения (фиг.4).
На фиг.2, а изображен исследуемый радиоимпульс. Эпюры б, в, г, д, е, ж иллюстрируют сечения вейвлет-спектра радиоимпульса для масштабных коэффициентов а=3, а=6, а=7, а=9, а=11, а=12, соответственно. Одним из характерных свойств разложения радиоимпульсного сигнала по элементам базиса вейвлета Морле является появление зон нечувствительности (отсутствия части преобразованного сигнала). Как видно из рисунка, зоны нечувствительности проявляются на а=3, а=6, а=11, а=12. Приемлемые для анализа сечения, где сохраняется несущая частота и достаточная амплитуда, имеют место при а=7 и а=9, однако, на этих масштабах у традиционного ПВП отсутствуют зоны нечувствительности и практически исключена возможность свертки сигнала.
Исследуемый радиоимпульс и аналогичные сечения вейвлет-спектра для ПВП на основе использования процедуры пересечения показаны на фиг.3. Здесь так же, как и в случае традиционного ПВП, приемлемыми для анализа сечениями с сохраненной несущей частотой являются сечения а=7 и а=9 (фиг.3 г, д.). Однако достижению технического результата удовлетворяет только сечение а=9. Это сечение представляет собой амплитудно-модулированный фазоманипулированный сигнал в виде двух пар парциальных радиоимпульсов, расположенных попарно симметрично на участке длительности анализируемого радиоимпульса. Длительность парциального импульса соответствует длительности вейвлета Морле τв.
Огибающая всего сигнала, как видно из рисунка, может быть рассмотрена как импульсно-временной код, структура которого позволяет произвести его свертку с помощью последовательно включенных блоков пересечения с элементами задержки, соответствующим временной структуре полученного сигнала.
Принцип работы предлагаемого приемника заключается в следующем.
Пусть на входе приемника (фиг.1) на фоне шума n(t) с нормальным распределением мгновенных значений действует смесь полезных и помеховых импульсов в виде:
S ( t ) = U c ( t ) + U n 1 ( t ) + U n 2 ( t ) + U n 3 ( t ) + n ( t ) . ( 5 )
Figure 00000006
Здесь Uc(t)=Umsin2πft - полезный сигнал (радиоимпульс) длительностью τ и амплитудой Um;
Unl(t)=Um1sin2πft - короткоимпульсная помеха с параметрами Um1>Um, τn1<τ, где τn1 длительность помехи;
Un2(t)=Um2sin2πft - длинноимпульсная помеха с параметрами Um2>Um, τn2<τ, где τn2 длительность помехи;
Un3(t) - помеха типа «шумовая вспышка» с параметрами τn3~τ, U ¯ m 3 > U m
Figure 00000007
, где U ¯ m 3
Figure 00000008
- среднее значение огибающей помехи.
После усиления и преобразования на промежуточную частоту входной сигнал подается на блок 5 (фиг.1). В блоке 5 с входной смесью производится ПВП на основе применения процедуры пересечения в соответствии с (4), при этом а=9, K>>Um, где Um=1, а в качестве базисной функции используется мнимая часть вейвлета Морле (2).
В результате ПВП на выходе блока 5 будет амплитудно-модулированный фазоманипулированный сигнал в составе четырех парциальных радиоимпульсов, обозначенных цифрой 9 на фиг.4, б (Эпюры представленные на фиг.4 являются результатом имитационного моделирования работы схемы на выходе соответствующих блоков). Здесь длительность входного радиоимпульса подобрана таким образом, что пары парциальных радиоимпульсов выходного сигнала блока 5 следуют с небольшой задержкой. В общем случае, когда, τ>4τв выходной сигнал представляет собой две пары радиоимпульсов, разделенных зоной нечувствительности (фиг.3, д).
Соответствующие преобразования претерпевают и помеховые сигналы в составе смеси. Однако, их временная структура существенно отличается от полезного сигнала, что в дальнейшем и используется для компенсации помех (фиг.4б). После детектирования в блоке 6 огибающая смеси имеет вид, показанный на фиг.4, в.
Далее, полезный сигнал и помеховые импульсы поступают на первый вход первого блока пересечения 8.1 непосредственно, а на второй вход первого блока пересечения через блок задержки 7.1. При этом необходимо отметить, что задержка в этом блоке соответствует интервалу между импульсами в паре τз1. В соответствии с алгоритмом работы блока пересечения (3) сигнал на выходе первого блока пересечения 8.1 будет определяться выражением:
U 8.1 ( t ) = | U 6 ( t ) + U 6 ( t τ з 1 ) | | U 6 ( t ) U 6 ( t τ з 1 ) | ( 6 )
Figure 00000009
Вид этого сигнала представлен на фиг.4, г. Как следует из рисунка, произошла свертка каждой пары полезного сигнала в один импульс. Это же касается и длинноимпульсной помехи. Короткоимпульсная помеха скомпенсирована полностью, а от помехи типа «шумовая вспышка» остался небольшой «всплеск». Существенно уменьшается дисперсия шума (для представленного масштаба и отношения сигнал/шум этот шум не наблюдается).
С выхода первого блока пересечения сигнал поступает на первый вход второго блока пересечения 8.2 непосредственно, а на второй вход этого блока через второй блок задержки 7.2. Задержка в этом блоке соответствует временному сдвигу между парами импульсов в полезном сигнале τз2.
По аналогии с (6) сигнал на выходе второго блока пересечения 8.2 будет
U 8.2 ( t ) = | U 8.1 ( t ) + U 8.1 ( t τ з 2 ) | | U 8.1 ( t ) U 8,1 ( t τ з 2 ) | ( 7 )
Figure 00000010
Вид этого сигнала представлен на фиг.4, д.
Как видно из рисунка, произошла окончательная свертка полезного сигнала, который представляется одним импульсом, полная компенсация длинноимпульсной помехи из-за отличий ее временной структуры от структуры полезного сигнала и помехи типа «шумовая вспышка». Такой результат является следствием двукратной реализации процедуры пересечения, которая каждый раз в силу своих свойств производит выбор меньшего из двух поступающих на входы сигналов. При равенстве нулю хотя бы одного из них результат пересечения так же будет равен нулю. Этим и объясняется уменьшение дисперсии шума во входной смеси. Полная компенсация помеховых сигналов и существенная компенсация шума объясняется тем, что при подаче на входы блока пересечения входной смеси временные составляющие помех совпадают с временными составляющими шума, в связи с этим на выходе блоков пересечения будет шум, при этом полезный сигнал сохраняется, удваиваясь по амплитуде с каждой реализацией процедуры.
Для сравнения на фиг.4, е, ж показаны результаты обработки входной смеси в известном приемнике. Здесь эпюра, изображенная на фиг.4, е представляет собой выходной сигнал усилителя промежуточной частоты являющегося согласованным фильтром для радиоимпульса. Эпюра, показанная на фиг.4, ж, представляет собой выходной сигнал амплитудного детектора известного приемника. Сравнение эпюр, представляющих собой выходные сигналы предлагаемого и известного приемников, на качественном уровне показывает очевидное преимущество предлагаемого в помехоустойчивости.
Как показывает анализ, качество подавления импульсных помех для схемы с двумя блоками пересечения может быть оценено с помощью коэффициента подавления в виде
К п о д U п в х 2 τ п в х σ ш в х 2 τ , ( 8 )
Figure 00000011
где: U п в х 2
Figure 00000012
и τпвх амплитуда и длительность импульса помехи на входе,
σшвх - среднеквадратическое значение шума на входе.
Из (8) следует, что при фиксированных σшвх и τ коэффициент подавления определяется только параметрами помехи, т.е. подавление обеспечивается ровно настолько, насколько это необходимо для сведения ее к уровню шума.
Для количественной оценки эффективности заявляемого приемника проведено определение статистических показателей качества на основе имитационного моделирования.
Для этого на основе заявляемого устройства и прототипа построены обнаружители, а схема исследования показателей качества представлена на фиг.5.
Здесь 13 - генератор сигнала, 14 - генератор шума, 15 - генератор помех, 16 - сумматор, 17 - схема прототипа, 18 - схема заявляемого устройства, 19, 20 - пороговые устройства, 21 - счетчик.
За показатели качества приняты: вероятность ложной тревоги Рлт, вероятность правильного обнаружения Роб, вероятность ошибки Рош. При этом под Рлт понимается вероятность превышения шумом заданного порога обнаружения; под Роб - вероятность превышения смесью сигнал плюс шум фиксированного порога; под Рош - вероятность превышения смесью помеха плюс шум этого порога.
Оценка указанных вероятностей проводилась в частотном смысле как отношение числа положительных исходов n, определяемого счетчиком 21 на выходе пороговых устройств 19, 20, к общему числу опытов N: P * = n N
Figure 00000013
.
Зависимость вероятностей ложной тревоги от относительного порога обнаружения приведена на фиг.6 в виде:
P л т = f ( U п о р σ ш )
Figure 00000014
.
Здесь Unop - значение порога, σш - среднеквадратическое значение шума на выходе исследуемой схемы. Кривая, обозначенная цифрой 22, характеризует заявляемый приемник, а цифрой 23 - прототип. Из рисунка видно, что при одинаковых значениях порога, уровни ложных тревог для заявляемого устройства существенно ниже, чем для прототипа. Иначе говоря, уровень шумов на выходе заявляемого приемника значительно ниже, чем для прототипа.
На основании зависимостей Рлт установлены пороги для определения других показателей качества.
Оценка Роб проведена при фиксированных для каждой схемы порогах обнаружения, обеспечивающих одинаковую вероятность ложной тревоги Рлт=0,016 для сопоставления результатов.
Зависимости вероятностей правильного обнаружения от относительного значения сигнала на входе приведены на фиг.7 в виде Р о б * = f ( U / σ ш )
Figure 00000015
при Рлт=0,016. Здесь U c σ ш
Figure 00000016
- отношение сигнал/шум на входе исследуемых устройств. Кривая, обозначенная цифрой 24, соответствует заявляемому приемнику, цифрой 25 - прототипу.
Ход кривых Роб свидетельствует о наличии потерь полезного сигнала в заявляемом приемнике по сравнению с прототипом (кривая 24 правее кривой 25), что, как было указано, обусловлено алгоритмом работы заявляемого приемника. Однако, потери эти невелики.
Зависимости вероятностей ошибочного срабатывания в условиях импульсной помехи от отношения помеха/шум на входе приведены на фиг.8-9 в виде
Р о ш = f ( U п U ш )
Figure 00000017
при Рлт=0,016, здесь U п σ ш
Figure 00000018
- отношение помеха/шум на входе исследуемых устройств.
Кривые, обозначенные на фиг.8, соответствуют вероятности ошибки приема при действии «короткой» помехи, где кривая, обозначенная цифрой 26, соответствует вероятности ошибки заявляемого приемника, цифрой 27 - прототипу, а кривые, обозначенные на фиг.9, соответствуют вероятности ошибки при действии «длинной» помехи, где кривая 28 соответствует вероятности ошибки для заявляемого приемника, а 29 - прототипа.
Таким образом, полученные оценки и результаты моделирования подтверждают работоспособность, реализуемость и достижение технического результата заявляемым приемником, который по сравнению известным приемником заключается в существенном (более чем на порядок) улучшении показателей помехоустойчивости в условиях импульсных и шумовых помех.
Возможность практической реализации заявляемого приемника следует из того, что он строится на типовых, известных и технологически отработанных элементах и алгоритмах.
Например, возможно его построение по универсальной аналогово-цифровой схеме.
В этом случае широкополосная часть строится в аналоговом виде, а блок модифицированного ВП на основе вейвлета Морле - в цифровом, на основе высокоскоростных многоразрядных АЦП, цифровых преобразователей частоты на основе цифровых синтезаторов ДДS и программируемых логических интегральных схемах (ПЛИС), позволяющих путем реконфигурации своей «прошивки» всю трудоемкость по организации процедур обработки сосредоточить в области программного обеспечения при неизменной аппаратной части [Н.Г.Пархоменко, Б.М.Баташов. «Решение задачи оптимальной обработки сигналов со сложными видами модуляции при помощи универсальных устройств на ПЛИС». «Радиоконтроль». Выпуск №5, 2002 г., с.81-88, рис.1, с.82, рис.2,3, с.83, рис.4, с.85].
Блоки задержки 7.1, 7.2 для частот до 0,3 ГГц могут быть построены на элементах с сосредоточенными параметрами [Голубков А.П., Долматов А.Д., Лукошкин А.П., и др. Проектирование радиолокационных приемных устройств. Под ред. Соколова М.А. - М.: Высш. Шк., 1984, с.122, 123].
Вычитающие устройства и сумматоры блока пересечения 8.1 и 8.2 могут быть выполнены по обычной схеме усилителей на два входа или с прямым и инверсным входами [Алексеенко А.Г. Применение прецезионных аналоговых интегральных микросхем. - М.: Радио и связь, 1981, с 77, рисунок 2, 3].
Устройства вычисления модуля бока пересечения 8.1 и 8.2 могут быть собраны по схеме двухполупериодного выпрямителя на операционных усилителях [Боровский В.П., Костенко В.И., Михайленко В.М. и др. Справочник по схемотехнике для радиолюбителя. Под ред. Бобровского А.П. - К.: Техника, 1989, с.211, рисунок 12.4].
Анализ известных технических решений в области принципов и устройств приема импульсных сигналов показывает, что заявляемое изобретение благодаря существенным признакам, определившим путь достижения технического результата, не следует для специалиста явным образом из известного уровня техники и соответствует требованию «изобретательского уровня».
Заявителем не обнаружен аналог, характеризующийся признаками, идентичными всем существенным признакам заявляемого изобретения. Определение прототипа как наиболее близкого по совокупности признаков аналога позволило выявить в заявляемом объекте существенные по отношению к техническому результату отличительные признаки, что позволяет считать заявленное изобретение удовлетворяющим критерию «изобретательская новизна».

Claims (2)

1. Приемник импульсного сигнала, содержащий последовательно соединенные усилитель высокой частоты, смеситель, усилитель промежуточной частоты, а также амплитудный детектор и гетеродин, выход которого связан со вторым входом смесителя, а входом приемника является вход усилителя высокой частоты, отличающийся тем, что в него введены блок прямого вейвлет-преобразования, первый и второй блоки задержки, первый и второй блоки пересечения, при этом вход блока прямого вейвлет-преобразования связан с выходом усилителя промежуточной частоты, а выход - со входом амплитудного детектора, первый вход первого блока пересечения связан с выходом амплитудного детектора непосредственно, а второй его вход через первый блок задержки, первый вход второго блока пересечения связан с выходом первого блока пересечения непосредственно, а второй его вход через второй блок задержки, выход второго блока пересечения является выходом приемника.
2. Приемник импульсного сигнала по п.1, отличающийся тем, что в блоке прямого вейвлет-преобразования используют базис вейвлета Морле с масштабным коэффициентом a=9.
RU2012134953/08A 2012-08-15 2012-08-15 Приемник импульсного сигнала RU2528081C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012134953/08A RU2528081C2 (ru) 2012-08-15 2012-08-15 Приемник импульсного сигнала

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012134953/08A RU2528081C2 (ru) 2012-08-15 2012-08-15 Приемник импульсного сигнала

Publications (2)

Publication Number Publication Date
RU2012134953A RU2012134953A (ru) 2014-02-27
RU2528081C2 true RU2528081C2 (ru) 2014-09-10

Family

ID=50151452

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012134953/08A RU2528081C2 (ru) 2012-08-15 2012-08-15 Приемник импульсного сигнала

Country Status (1)

Country Link
RU (1) RU2528081C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2719545C1 (ru) * 2019-05-14 2020-04-21 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Система передачи информации

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385543B1 (en) * 2000-05-17 2002-05-07 The United States Of America Represented By The National Security Agency Method of feature extraction using combination of wavelet and fourier transformation
RU2246132C2 (ru) * 2003-01-09 2005-02-10 Военно-морской институт радиоэлектроники Способ и устройство быстрого вычисления дискретного вейвлет-преобразования сигнала с произвольным шагом дискретизации масштабных коэффициентов
RU2361234C2 (ru) * 2007-06-25 2009-07-10 Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт) Фильтр последовательности видеоимпульсов
RU2439601C1 (ru) * 2010-08-10 2012-01-10 Владимир Владимирович Малый Устройство обнаружения сложных широкополосных частотно-модулированных сигналов с фильтрацией в масштабно-временной области на основе дискретного вейвлет-преобразования
RU117755U1 (ru) * 2012-02-08 2012-06-27 Антон Евгеньевич Манохин Адаптивный вейвлет-компенсатор помех

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6385543B1 (en) * 2000-05-17 2002-05-07 The United States Of America Represented By The National Security Agency Method of feature extraction using combination of wavelet and fourier transformation
RU2246132C2 (ru) * 2003-01-09 2005-02-10 Военно-морской институт радиоэлектроники Способ и устройство быстрого вычисления дискретного вейвлет-преобразования сигнала с произвольным шагом дискретизации масштабных коэффициентов
RU2361234C2 (ru) * 2007-06-25 2009-07-10 Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт) Фильтр последовательности видеоимпульсов
RU2439601C1 (ru) * 2010-08-10 2012-01-10 Владимир Владимирович Малый Устройство обнаружения сложных широкополосных частотно-модулированных сигналов с фильтрацией в масштабно-временной области на основе дискретного вейвлет-преобразования
RU117755U1 (ru) * 2012-02-08 2012-06-27 Антон Евгеньевич Манохин Адаптивный вейвлет-компенсатор помех

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
2. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2719545C1 (ru) * 2019-05-14 2020-04-21 Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации Система передачи информации

Also Published As

Publication number Publication date
RU2012134953A (ru) 2014-02-27

Similar Documents

Publication Publication Date Title
US6208286B1 (en) Method for discovering the location of a living object and microwave location device for realizing the same
CN104765031B (zh) 一种超宽带微波混沌生命探测雷达装置
US20170177934A1 (en) Fingerprint detection apparatus and method
US20180224523A1 (en) Mono-bit multi-signals radar warning receiver
RU2549207C2 (ru) Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника
RU2528081C2 (ru) Приемник импульсного сигнала
RU2441253C1 (ru) Способ обнаружения маркеров - параметрических рассеивателей
RU179509U1 (ru) Корреляционно-фильтровой обнаружитель
EP3167801A1 (en) Wireless sensor apparatus
RU2428712C1 (ru) Способ радиолокационного обнаружения сигналов, отраженных от целей, и устройство для его реализации
Ananieva et al. Design of a device for optimal reception of signals against the background of a two-component Markov interference
RU2589036C1 (ru) Радиолокатор с непрерывным шумовым сигналом и способ расширения диапазона измеряемых дальностей в радиолокаторе с непрерывным сигналом
RU2550757C1 (ru) Устройство обнаружения шумовых гидроакустических сигналов на основе квадратурного приемника
RU2474842C1 (ru) Приемник простого импульсного сигнала
RU2513656C2 (ru) Фазометр когерентно-импульсных сигналов
US8587345B2 (en) Device for detecting pulsed signals with improved sensitivity
RU2466416C1 (ru) Способ измерения отношения сигнал-помеха
RU2413242C2 (ru) Способ обнаружения одноконтурных параметрических рассеивателей
RU2723441C2 (ru) Способ согласованной нелинейной корреляционно-вероятностной фильтрации сигналов и устройство для его реализации
Niranjan et al. FPGA based implementation of pulse parameters measurement
RU2548032C2 (ru) Способ оценивания отношения сигнал/шум при использовании сигналов с фазовой модуляцией
RU2477922C2 (ru) Способ обнаружения сигналов при априорной неопределенности их параметров
RU2431870C1 (ru) Способ обнаружения местонахождения засыпанных биообъектов или их останков и устройство для его осуществления
RU2562065C1 (ru) Устройство повышения разрешающей способности по дальности
Tran et al. A Signal Classification Algorithm with Detection at Two Intermediate Frequencies for RF Spectrum Monitoring

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150816