RU2527102C2 - Жидкости для технического обслуживания ствола скважины, содержащие катионные полимеры, и способы их применения - Google Patents

Жидкости для технического обслуживания ствола скважины, содержащие катионные полимеры, и способы их применения Download PDF

Info

Publication number
RU2527102C2
RU2527102C2 RU2011137996/03A RU2011137996A RU2527102C2 RU 2527102 C2 RU2527102 C2 RU 2527102C2 RU 2011137996/03 A RU2011137996/03 A RU 2011137996/03A RU 2011137996 A RU2011137996 A RU 2011137996A RU 2527102 C2 RU2527102 C2 RU 2527102C2
Authority
RU
Russia
Prior art keywords
fluid
wellbore
maintenance
copolymer
dadmac
Prior art date
Application number
RU2011137996/03A
Other languages
English (en)
Other versions
RU2011137996A (ru
Inventor
Келли Б. ФОКС
Original Assignee
Шеврон Филлипс Кемикал Компани Лп
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шеврон Филлипс Кемикал Компани Лп filed Critical Шеврон Филлипс Кемикал Компани Лп
Publication of RU2011137996A publication Critical patent/RU2011137996A/ru
Application granted granted Critical
Publication of RU2527102C2 publication Critical patent/RU2527102C2/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/66Compositions based on water or polar solvents
    • C09K8/68Compositions based on water or polar solvents containing organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/02Well-drilling compositions
    • C09K8/04Aqueous well-drilling compositions
    • C09K8/06Clay-free compositions
    • C09K8/12Clay-free compositions containing synthetic organic macromolecular compounds or their precursors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/40Spacer compositions, e.g. compositions used to separate well-drilling from cementing masses
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • C09K8/725Compositions containing polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/62Compositions for forming crevices or fractures
    • C09K8/72Eroding chemicals, e.g. acids
    • C09K8/74Eroding chemicals, e.g. acids combined with additives added for specific purposes
    • C09K8/76Eroding chemicals, e.g. acids combined with additives added for specific purposes for preventing or reducing fluid loss
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/882Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/86Compositions based on water or polar solvents containing organic compounds
    • C09K8/88Compositions based on water or polar solvents containing organic compounds macromolecular compounds
    • C09K8/885Compositions based on water or polar solvents containing organic compounds macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds

Abstract

Изобретение относится к жидкостям для технического обслуживания ствола скважин. Способ включает: введение в ствол скважины жидкости для технического обслуживания ствола скважины, содержащей катионный полимер, минерализованный раствор и твердое вещество, причем указанный катионный полимер имеет молекулярную массу от 300000 дальтон до 10000000 дальтон, минерализованный раствор присутствует в указанной жидкости в количестве от 95 об.% до 99,8 об.% относительно ее общего объема, а твердое вещество представляет собой утяжелитель, выбранный из карбоната железа, карбоната магния, карбоната кальция или комбинаций барита, гематита, ильменита и карбоната железа, карбоната магния и карбоната кальция, причем указанная жидкость демонстрирует снижение вязкости при сдвиге при скорости сдвига от 3 сек-1 до 300 сек-1 и температуре от 24°С (75°F) до 260°С (500°F). Состав жидкости для технического обслуживания ствола скважины содержит катионный полимер, минерализованный раствор и твердое вещество, причем указанный катионный полимер имеет молекулярную массу от примерно 300000 дальтон до примерно 10000000 дальтон, минерализованный раствор присутствует в указанной жидкости в количестве от 95 об.% до 99,8 об.% относительно общего ее объема, а твердое вещество представляет собой утяжелитель, выбранный из карбоната железа, карбоната магния, карбоната кальция или комбинаций барита, гематита, ильменита, карбоната железа, карбоната магния и карбоната кальция, причем указанная жидкость демонстрирует снижение вязкости при сдвиге при скорости сдвига от 3 сек-1 до 300 сек-1 и температуре от 24°С (75°F) до 260°С (500°F). Изобретение развито в зависимых пунктах формулы. Технический результат - улучшение жидкости технического обслуживания скважин. 2 н. и 18 з. п. ф-лы, 9 пр., 9 табл., 10 ил.

Description

ПЕРЕКРЕСТНАЯ ССЫЛКА НА РОДСТВЕННЫЕ ЗАЯВКИ
[0001] Данные отсутствуют.
ЗАЯВЛЕНИЕ О ФИНАНСИРОВАНИИ НАУЧНО-ИССЛЕДОВАТЕЛЬСКИХ РАБОТ ИЗ ФЕДЕРАЛЬНОГО БЮДЖЕТА
[0002] Данные отсутствуют.
ССЫЛКА НА ПРИЛАГАЕМУЮ МИКРОФИШУ
[0003] Данные отсутствуют.
ОБЛАСТЬ ИЗОБРЕТЕНИЯ
[0004] Настоящее изобретение в целом относится к жидкостям для технического обслуживания ствола скважины. Более конкретно, данное изобретение относится к жидкостям для технического обслуживания ствола скважины, содержащим катионные полимеры, и способам их получения и применения.
УРОВЕНЬ ТЕХНИКИ
[0005] Как правило, подземные залежи полезных ископаемых, таких как газ, вода и сырая нефть, извлекают путем бурения скважин для вскрытия подземных формаций или зон, содержащих такие залежи. При бурении и подготовке ствола скважины и прилегающих подземных пластов к извлечению из них материала применяют различные жидкости, предназначенные для технического обслуживания ствола скважины. Например, через ствол скважины при бурении обычно циркулирует буровой раствор. Как правило, буровой раствор можно применять для охлаждения и смазывания буровой коронки, для удаления буровых шламов, для промывания скважины, для регулирования давления в стволе скважины. После обнаружения продуктивной зоны буровой раствор обычно заменяют на раствор для вскрытия пласта, который действует подобно обычной промывочной жидкости, но может содержать минерализованный раствор для сведения к минимуму повреждения продуктивного коллектора. Жидкости для заканчивания скважин можно применять на стадиях заканчивания скважины, а жидкости для ремонта скважин можно применять при выполнении ремонтных работ в стволе скважины.
[0006] В общем случае, жидкости, подходящие для применения в стволе скважины, имеют плотность, достаточную для преодоления пластового давления и предотвращения поступления нежелательных жидкостей в ствол скважины. Как правило, для этих целей применяют минерализованные растворы, поскольку их плотности можно легко контролировать путем регулирования их составов. Кроме того, такие жидкости могут содержать суспендированные твердые вещества для регулирования потерь жидкости в породу, примыкающую к стволу скважины.
[0007] Одной из проблем при применении минерализованных растворов для технического обслуживания ствола скважины является низкая вязкость указанных жидкостей. Жидкости с более высокой вязкостью, содержащие минерализованный раствор, в общем случае были бы полезны по целому ряду причин. Например, такие жидкости могут найти применение при регулировании потерь жидкости, поскольку скорость, с которой жидкость может поступать в пористую матрицу коллекторской породы в виде фильтрата в ходе процесса потери жидкости, пропорциональна вязкости жидкости. Кроме того, если указанные жидкости способны переносить буровой шлам, твердые вещества, скопившиеся в стволе скважины, или твердые добавки, что, опять же, будет зависеть от вязкости жидкости, то такие жидкости могут найти дополнительное применение. Полимеры, содержащие гидроксиэтилцеллюлозу (ГЭЦ) или ксантановую камедь, применяли для загущения жидкостей для технического обслуживания ствола скважины, поскольку они могут растворяться в минерализованных растворах и обеспечивать понижение вязкости за счет разжижения при сдвиге, а также возможность образования суспензии твердых веществ и регулирования потерь жидкости. Однако такие полимеры (т.е. ГЭЦ, ксантановая камедь) теряют свою способность к загущению при сравнительно низких температурах, тем самым ограничивая возможность их применения при температурах, превышающих примерно 240°F для ГЭЦ и 280°F для ксантановой камеди. Кроме того, в минерализованном растворе при повышенных температурах эти полимеры могут образовывать поперечные связи с многовалентными катионами, образуя гели или осадки. Потеря растворимости загустителя (например, ГЭЦ, ксантановой камеди) в минерализованном растворе может вызвать повреждение формации или песчаной пробки, что тем самым ограничит поток углеводородов из скважины. Таким образом, существует потребность в улучшенных жидкостях для технического обслуживания ствола скважины, содержащих минерализованные растворы, и способах их применения.
КРАТКОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0008] В настоящей заявке предложен способ, включающий введение в ствол скважины жидкости для технического обслуживания ствола скважины, содержащей катионный полимер, при этом молекулярная масса катионного полимера составляет от примерно 300000 дальтон до примерно 10000000 дальтон.
[0009] В настоящей заявке также предложен состав, содержащий жидкость для технического обслуживания ствола скважины, катионный полимер и минерализованный раствор.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
[0010] Для более полного понимания настоящего изобретения далее сделана ссылка на следующее краткое описание, приведенное в сочетании с прилагаемыми чертежами и подробным описанием, где одинаковые номера позиций обозначают одинаковые элементы.
[0011] Фиг.1 представляет собой иллюстрацию эксперимента по фазовому разделению.
[0012] Фиг.2 представляет собой графическое отображение вязкости как функции скорости сдвига для образцов из примера 1.
[0013] Фиг.3 представляет собой графическое отображение напряжения сдвига как функции скорости сдвига для образцов из примера 1.
[0014] Фиг.4 представляет собой графическое отображение вязкости как функции температуры для образцов из примера 3.
[0015] Фиг.5 представляет собой графическое отображение вязкости как функции скорости сдвига для образцов из примера 5.
[0016] Фиг.6 представляет собой графическое отображение степени фазового разделения как функции времени для образцов из примера 5.
[0017] Фиг.7 представляет собой графическое отображение значения потерь жидкости как функции квадратного корня времени для образцов из примера 6.
[0018] Фиг.8 представляет собой графическое отображение вязкости как функции скорости сдвига для образцов из примера 7.
[0019] Фиг.9 представляет собой графическое отображение вязкости как функции времени при 350°F для образцов из примера 7.
[0020] Фиг.10 представляет собой графическое отображение вязкости как функции скорости сдвига для образцов из примера 9.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
[0021] Следует изначально понимать, что несмотря на то, что ниже показано иллюстративное осуществление одного или более вариантов реализации изобретения, предложенные системы и/или способы могут быть реализованы с помощью любого количества методов, известных или имеющихся в настоящее время. Изобретение никоим образом не должно быть ограничено иллюстративными примерами, чертежами и методами, показанными ниже, в том числе типичными образцами и вариантами реализации, проиллюстрированными и описанными в настоящей заявке, и может быть модифицировано в рамках объема пунктов прилагаемой формулы изобретения и их эквивалентов во всей полноте.
[0022] В настоящей заявке предложены жидкости для технического обслуживания ствола скважины, содержащие катионный полимер. Также предложены жидкости для технического обслуживания ствола скважины, содержащие катионный полимер и минерализованный раствор. В настоящей заявке "жидкость для технического обслуживания ствола скважины" относится к жидкости на водной основе, которую можно ввести в ствол скважины или подземный пласт и/или применять для подготовки ствола скважины или подземной формации для извлечения материала из формации или ствола скважины. Таким образом, жидкость для технического обслуживания ствола скважины может выступать в качестве, например, бурового раствора, жидкости для подземного ремонта скважин, жидкости для заканчивания скважин, жидкости для гидроразрыва и т.п. Должно быть понятно, что "подземная формация" включает как участки ниже подвергающегося воздействию грунта, так и участки ниже грунта, покрытого водой, такой как вода моря или океана.
[0023] Жидкости для технического обслуживания ствола скважины, содержащие катионный полимер и минерализованный раствор, далее называют минерализованными составами, содержащими катионный полимер (КПМС). КПМС можно применять при техническом обслуживании ствола скважины; например, КПМС можно применять для регулирования потерь жидкости и/или суспендирования твердых веществ в стволе скважины. Способы технического обслуживания ствола скважины с помощью КПМС более подробно будут описаны ниже.
[0024] Согласно одному варианту реализации изобретения, КПМС содержит катионный полимер (КП). В настоящей заявке КП относятся к полимерам, состоящим из положительно заряженного и отрицательно заряженного компонентов. КП, подходящий для применения в данном изобретении, представляет собой любой КП, совместимый с другими компонентами КПМС. Кроме того, КП, подходящий для применения в данном изобретении, также характеризуется низкой или незначительной реакционной способностью в отношении поливалентных катионов, обычно обнаруживаемых в минерализованных растворах (например, Са+2, Zn+2). Согласно одному варианту реализации изобретения, КП имеет достаточную молекулярную массу для придания вязкости минерализованному раствору. Согласно такому варианту реализации изобретения, молекулярная масса КП составляет примерно от 300000 дальтон до примерно 10000000 дальтон, альтернативным образом, примерно от 350000 дальтон до примерно 1000000 дальтон, альтернативным образом, примерно от 400000 дальтон до примерно 750000 дальтон, альтернативным образом, примерно от 450000 дальтон до примерно 650000 дальтон, альтернативным образом, примерно от 475000 дальтон до примерно 550000 дальтон, альтернативным образом, примерно 500000 дальтон.
[0025] Согласно одному варианту реализации изобретения, КП содержит полиамин, альтернативным образом, поли(аллиламин), альтернативным образом, четвертичный амин, альтернативным образом, галогенид (полиалкил)аммония, альтернативным образом, галогенид (полиаллилалкил)аммония, альтернативным образом, хлорид (полидиаллилдиметил)аммония или их комбинации. Согласно другому варианту реализации изобретения, КП содержит галогенид (полиаллилалкил)аммония, поливинилпирролидон, поливинилимидазол или их комбинации. КП может представлять собой гомополимер, альтернативным образом, сополимер, такой как сополимер виниламина и аллиламина, или сополимер акриламида и аллиламина. Примеры КП, подходящих для применения в данном изобретении, включают без ограничения гомополимеры хлорида (полидиаллилдиметил)аммония (поли-ДАДМАХ), сополимер ДАДМАХ и аллиламина, сополимер ДАДМАХ и винилпирролидона, сополимер ДАДМАХ и винилимидазола, сополимер ДАДМАХ и акриламида, поливиниламин, поливинилпирролидон, сополимер винилпирролидона, метакриламида и винилимидазола, или их комбинации. КП описанного в настоящей заявке типа могут представлять собой линейные, разветвленные или поперечно-сшитые полимеры. Согласно некоторым вариантам реализации изобретения, КП не является поперечно-сшитым полимером.
[0026] Согласно одному варианту реализации изобретения, КП содержит поли-ДАДМАХ, который можно приобрести в компаниях Northaven Chemicals, SNF Inc. и Ciba Corporation. Молекулярная структура поли-ДАДМАХ представляет собой:
Figure 00000001
где n составляет примерно от 1800 до примерно 62200, альтернативным образом, примерно от 3000 до примерно 35000, альтернативным образом, примерно от 3000 до примерно 30000, альтернативным образом, n представляет собой любое число, достаточное для получения катионного полимера с молекулярной массой в диапазонах, приведенных ранее в настоящей заявке.
[0027] Согласно некоторым вариантам реализации изобретения, поли-ДАДМАХ не является поперечно-сшитым. Согласно некоторым вариантам реализации изобретения, поли-ДАДМАХ представляет собой гомополимер. Согласно некоторым вариантам реализации изобретения, поли-ДАДМАХ представляет собой сополимер. Например, сополимер поли-ДАДМАХ может включать, но не ограничивается ими, сополимер ДАДМАХ и аллиламина, сополимер ДАДМАХ и винилпирролидона, сополимер ДАДМАХ и винилимидазола и сополимер ДАДМАХ и акриламида.
[0028] Согласно одному варианту реализации изобретения, КП может присутствовать в КПМС в количестве примерно от 0,5 фунтов КП на баррель минерализованного раствора (фунт/баррель) до примерно 15 фунт/баррель, альтернативным образом, примерно от 3 фунт/баррель до примерно 13 фунт/баррель, альтернативным образом, примерно от 7 фунт/баррель до примерно 12 фунт/баррель.
[0029] Согласно одному варианту реализации изобретения, КПМС содержит минерализованный раствор. Неограничивающие примеры минерализованных растворов, подходящих для применения в настоящем изобретении, включают растворы бромида натрия (NaBr), бромида кальция (CaBr2), бромида цинка (ZnBr2), бромида калия (KBr), хлорида натрия (NaCl), хлорида кальция (CaCl2), хлорида цинка (ZnCl2), хлорида калия (KCl) или их комбинации.
[0030] Согласно одному варианту реализации изобретения, минерализованный раствор содержит CaCl2, альтернативным образом, CaBr2, альтернативным образом, ZnBr2. Примеры минерализованных растворов CaBr2 и ZnBr2, подходящих для применения в данном изобретении, включают без ограничения WELLBROM 14.2 и WELLBROM 19.2, соответственно, при этом 14.2 и 19.2 означают плотность минерализованного раствора в фунтах на галлон (фунт/гал). Как WELLBROM 14.2, так и WELLBROM 19.2 можно приобрести в компании Albermarle™ Corporation.
[0031] Согласно одному варианту реализации изобретения, плотность минерализованного раствора может составлять примерно от 8,4 фунт/гал до примерно 19,2 фунт/гал, альтернативным образом, примерно от 9 фунт/гал до примерно 16 фунт/гал, альтернативным образом, примерно от 10 фунт/гал до примерно 14,2 фунт/гал. Минерализованный раствор может присутствовать в КПМС в количестве примерно от 95 об.% относительно общего объема КПМС до примерно 99,8 об.%, альтернативным образом, примерно от 95,5 об.% до примерно 99 об.%, альтернативным образом, примерно от 96 об.% до примерно 98 об.%.
[0032] Согласно одному варианту реализации изобретения, КПМС можно приготовить путем приведения в контакт минерализованного раствора и КП обоих типов, описанных в настоящей заявке. Приведение в контакт минерализованного раствора и КП можно осуществить любыми подходящими способами; например, минерализованный раствор и КП можно смешивать или перемешивать с применением мешалки, смесителя, устройства для перемешивания и т.п. С помощью настоящего описания обычный специалист в данной области техники может определить условия перемешивания (скорость перемешивания, время и т.д.). Согласно некоторым вариантам реализации изобретения, после перемешивания материал можно оставить для протекания гидратации в течение промежутка времени и при температуре, достаточных для растворения КП. На основании настоящего описания обычный специалист в данной области техники может выбрать или установить такие промежутки времени и температуры.
[0033] Согласно некоторым вариантам реализации изобретения, КПМС может содержать дополнительные добавки, которые специалист в данной области техники считает подходящими для улучшения свойств предложенной жидкости. Указанные добавки могут варьироваться в зависимости от предполагаемого применения жидкости в стволе скважины. Примеры указанных добавок включают, но не ограничиваются ими, добавки для предотвращения потерь или утечки жидкости, такие как глина, маслорастворимые смолы, слюда, тальк, стекловолокна, углеродные волокна, крахмал и карбоксиметилцеллюлоза.
Примеры других добавок включают, но не ограничиваются ими, модификаторы рН, поверхностно-активные вещества, эмульгаторы, диспергирующие агенты, ингибиторы коррозии, бактерицидные вещества, пеногасители, модификаторы среды в формации или их комбинации. Такие добавки можно вводить по отдельности или в комбинации. Способы введения указанных добавок и их эффективные количества известны обычному специалисту в данной области техники с учетом настоящего описания.
[0034] КП, подходящий для применения в настоящем изобретении, может также отличаться высокой степенью растворимости в минерализованном растворе. Не желая быть связанными конкретной теорией, полагают, что КП будет легко поглощать доступную воду и растворяться в минерализованном растворе. КП, подходящий для применения в настоящем изобретении, будет проявлять низкую или незначительную реакционную способность в отношении растворенных катионов в минерализованном растворе, которые могут реагировать с КП с образованием геля или осадка.
[0035] КПМС описанного в настоящей заявке типа демонстрирует поведение неньютоновской жидкости. В настоящей заявке неньютоновской жидкостью называют жидкость, реологические свойства которой не описываются единственным постоянным значением вязкости. Таким образом, график логарифмической зависимости напряжения сдвига от скорости сдвига для неньютоновской разжижающейся при сдвиге жидкости имеет тангенс угла наклона менее единицы. Скорость сдвига и напряжение сдвига рассчитывают на основании измеренных значений числа оборотов в минуту и смещения отвеса. Расчеты зависят от геометрии реометра. Например, в случае применения вискозиметра Chandler Model 5550 расчет выполняется самим прибором. Показатель консистенции представляет собой отрезок, отсекаемый прямой на координатной оси, а показатель текучести представляет собой экспоненту. С физической точки зрения показатель консистенции можно приравнять к вязкости жидкости, а показатель текучести можно приравнять к характеру изменения вязкости жидкости при приложении силы. Вязкость жидкости можно определить с учетом рассчитанной скорости сдвига и напряжения сдвига, как определено в уравнении 1.
Figure 00000002
где µ представляет собой вязкость в сантипуазах и K' представляет собой показатель консистенции в фунтах/фут2.
[0036] Согласно одному варианту реализации изобретения, при низкой скорости сдвига, равной примерно от 0,1 сек-1 до примерно 10 сек-1, альтернативным образом, примерно от 0,5 сек-1 до примерно 5 сек-1, альтернативным образом, примерно от 1 сек-1 до примерно 2 сек-1, вязкость КПМС может составлять примерно от 100 сантипуаз до примерно 40000 сантипуаз, альтернативным образом, примерно от 400 сантипуаз до примерно 10000 сантипуаз, альтернативным образом, примерно от 800 сантипуаз до примерно 6000 сантипуаз, при температуре примерно от 75°F до примерно 500°F, альтернативным образом, примерно от 100°F до примерно 400°F, альтернативным образом, примерно от 200°F до примерно 350°F. При увеличении скорости сдвига примерно от 3 сек-1 до примерно 300 сек-1, альтернативным образом, примерно от 10 сек-1 до примерно 100 сек-1, КПМС может демонстрировать разжижение при сдвиге при температуре примерно от 75°F до примерно 500°F, альтернативным образом, примерно от 100°F до примерно 400°F, альтернативным образом, примерно от 200°F до примерно 300°F. В настоящей заявке разжижение при сдвиге относится к понижению вязкости материала при увеличении скорости сдвига.
[0037] Согласно одному варианту реализации изобретения, показатель текучести КПМС составляет менее 1 при температуре примерно от 75°F до примерно 500°F, альтернативным образом, примерно от 100°F до примерно 400°F, альтернативным образом, примерно от 200°F до примерно 350°F.
[0038] КПМС описанного в настоящей заявке типа может также отличаться термической стабильностью при температурах, равных или меньших чем примерно 500°F, альтернативным образом, примерно от 75°F до примерно 450°F, альтернативным образом, примерно от 75°F до примерно 400°F. В настоящей заявке термическая стабильность относится к способности КПМС обеспечивать вязкость и поддерживать растворимость в минерализованных растворах в указанных диапазонах температур.
[0039] Согласно некоторым вариантам реализации изобретения, КПМС может дополнительно содержать твердые вещества. В дальнейшем КПМС, содержащий минерализованный раствор, КП и все твердые вещества описанного в настоящей заявке типа называют КПМС, содержащим твердые вещества (ТВКПМС). Такие твердые вещества могут представлять собой частицы, добавленные к КПМС для изменения или улучшения свойств КПМС (например, для регулирования потерь жидкости, увеличения плотности). Примеры таких твердых веществ, подходящих для применения в настоящем изобретении, включают, но не ограничиваются ими, карбонат кальция, карбонат железа, карбонат магния, барит, гематит, ильменит или их комбинации.
[0040] Согласно одному варианту реализации изобретения, твердые вещества могут присутствовать в ТВКПМС в количестве примерно от 1 фунт/баррель до примерно 400 фунт/баррель, альтернативным образом, примерно от 20 фунт/баррель до примерно 200 фунт/баррель, альтернативным образом, примерно от 50 фунт/баррель до примерно 100 фунт/баррель.
[0041] Согласно одному варианту реализации изобретения, ТВКПМС содержит минерализованный раствор, присутствующий в количестве примерно от 53 об.% до примерно 99,6 об.% относительно общего объема ТВКПМС, альтернативным образом, примерно от 74 об.% до примерно 98 об.%, альтернативным образом, примерно от 85 об.% до примерно 95 об.%.
[0042] Согласно одному варианту реализации изобретения, КП, минерализованный раствор и карбонат кальция приводят в контакт с получением ТВКПМС. Например, КП может содержать поли-ДАДМАХ, присутствующий в количестве примерно от 3 фунт/баррель до примерно 15 фунт/баррель, минерализованный раствор может содержать раствор хлорида кальция, присутствующий в количестве примерно от 55 об.% до примерно 98 об.%, и твердое вещество может содержать карбонат кальция, присутствующий в количестве примерно от 10 фунт/баррель до примерно 380 фунт/баррель. Согласно такому варианту реализации изобретения, образовавшийся ТВКПМС может характеризоваться формированием сетчатой структуры, которая проявляет улучшенную способность к образованию суспензии.
[0043] Согласно другому варианту реализации изобретения, КП может содержать поли-ДАДМАХ, присутствующий в количестве примерно от 3 фунт/баррель до примерно 15 фунт/баррель, минерализованный раствор может содержать раствор хлорида кальция и бромида кальция, присутствующий в количестве примерно от 55 об.% до примерно 98 об, %, и твердое вещество может содержать карбонат кальция, присутствующий в количестве примерно от 10 фунт/баррель до примерно 380 фунт/баррель.
[0044] Согласно другому варианту реализации изобретения, КП может содержать поли-ДАДМАХ, присутствующий в количестве примерно от 3 фунт/баррель до примерно 15 фунт/баррель, минерализованный раствор может содержать раствор бромида кальция, присутствующий в количестве примерно от 55 об.% до примерно 98 об.%, и твердые вещества могут содержать карбонат кальция, присутствующий в количестве примерно от 10 фунт/баррель до примерно 380 фунт/баррель.
[0045] Согласно еще одному варианту реализации изобретения, КП может содержать поли-ДАДМАХ, присутствующий в количестве примерно от 3 фунт/баррель до примерно 15 фунт/баррель, минерализованный раствор может содержать раствор хлорида кальция, бромида кальция и бромида цинка, присутствующий в количестве примерно от 55 об.% до примерно 98 об.%, и твердое вещество может содержать карбонат кальция, присутствующий в количестве примерно от 10 фунт/баррель до примерно 380 фунт/баррель.
[0046] Приведение твердого вещества описанного в настоящей заявке типа в контакт с КПМС можно осуществить с помощью любых подходящих средств. Например, минерализованный раствор, КП и твердое вещество можно смешивать или перемешивать с помощью мешалки, смесителя, устройства для перемешивания и т.п. Согласно одному варианту реализации изобретения, ТВКПМС получают путем приведения КП в контакт с минерализованным раствором в течение промежутка времени, достаточного для растворения КП в минерализованном растворе и образования гомогенной смеси. Затем для получения ТВКПМС к гомогенной смеси можно добавить твердые вещества. Согласно альтернативному варианту реализации изобретения, КП, минерализованный раствор и твердое вещество одновременно приводят в контакт с получением смеси, которую затем можно подвергнуть смешиванию/перемешиванию в течение промежутка времени, достаточного для образования гомогенной смеси. С помощью настоящего описания обычный специалист в данной области техники может определить условия перемешивания (скорость перемешивания, время и т.д.).
[0047] ТВКПМС может характеризоваться увеличением способности к суспендированию по сравнению с другим подобным составом, приготовленным в отсутствие КП. На способность ТВКПМС к суспендированию указывает седиментация твердых веществ и/или фазовое разделение, о которых свидетельствует образование слоя прозрачного минерализованного раствора у поверхности жидкости. Степень фазового разделения можно определить путем смешивания твердых веществ (например, карбоната кальция) и КПМС в прозрачной трубке с образованием ТВКПМС и затем выдерживания для осаждения твердого вещества с течением времени. Как правило, когда твердое вещество в ТВКПМС осаждается, в районе верхней части трубки наблюдается прозрачная жидкость. Например, трубка 10, содержащая ТВКПМС, после смешивания и отстаивания может выглядеть, как показано на Фиг.1. Как видно на Фиг.1, трубка 10 содержит как суспендированное твердое вещество 30, так и прозрачную жидкость 20. Степень фазового разделения рассчитывают путем деления высоты прозрачной жидкости (т.е. h3 или h1-h2) на общую высоту жидкости (т.е. h1) и умножения на 100%. Согласно одному варианту реализации изобретения, степень фазового разделения ТВКПМС составляет примерно от 0% до примерно 60%, альтернативным образом, примерно от 1% до примерно 30%, альтернативным образом, примерно от 2% до примерно 10% через промежуток времени примерно от 2 часов до примерно 14 дней, альтернативным образом, примерно от 4 часов до примерно 7 дней, альтернативным образом, примерно от 6 часов до примерно 24 часов.
[0048] Согласно одному варианту реализации изобретения, ТВКПМС демонстрирует поведение неньютоновской жидкости, как описано ранее в настоящей заявке. Согласно одному варианту реализации изобретения, при низкой скорости сдвига, равной примерно от 0,1 сек-1 до примерно 10 сек-1, альтернативным образом, примерно от 0,5 сек-1 до примерно 5 сек-1, альтернативным образом, примерно от 1 сек-1 до примерно 2 сек-1, вязкость ТВКПМС может составлять примерно от 100 сантипуаз до примерно 40000 сантипуаз, альтернативным образом, примерно от 400 сантипуаз до примерно 10000 сантипуаз, альтернативным образом, примерно от 800 сантипуаз до примерно 6000 сантипуаз, при температуре примерно от 75°F до примерно 500°F, альтернативным образом, примерно от 100°F до примерно 400°F, альтернативным образом, примерно от 200°F до примерно 350°F. При увеличении скорости сдвига примерно от 3 сек-1 до примерно 300 сек-1, альтернативным образом, примерно от 10 сек-1 до примерно 100 сек-1, ТВКПМС может демонстрировать разжижение при сдвиге при температуре примерно от 75°F до примерно 500°F, альтернативным образом, примерно от 100°F до примерно 400°F, альтернативным образом, примерно от 200°F до примерно 300°F.
[0049] Согласно одному варианту реализации изобретения, ТВКПМС, содержащий КП, минерализованный раствор и твердое вещество описанного в настоящей заявке типа (например, карбонат кальция), является эффективным в качестве агента для регулирования потерь жидкости. В частности, объем фильтрата при потере жидкости для ТВКПМС может составлять примерно от 0 мл до примерно 60 мл, альтернативным образом, примерно от 0 мл до примерно 30 мл, альтернативным образом, примерно от 0 мл до примерно 20 мл, через промежуток времени, равный примерно 30 минутам, как определено согласно API RP 13В.
[0050] КПМС и/или ТВКПМС, содержащий КП описанного в настоящей заявке типа, можно применять при эксплуатации нефтяных месторождений. В частности, КПМС и/или ТВКПМС можно вводить в ствол скважины и использовать для технического обслуживания ствола скважины согласно методам, известным специалистам в данной области техники. Например, КПМС и/или ТВКПМС можно применять при бурении, подготовке, заканчивании, обслуживании или повышении продуктивности ствола скважины при добыче углеводородов в подземной формации, через которую проходит ствол скважины. Согласно одному варианту реализации изобретения, КПМС и/или ТВКПМС готовят в месте расположения скважины. Например, КП можно смешивать с другими компонентами КПМС и/или ТВКПМС на поверхности и затем вводить в скважину. Альтернативным образом, КПМС и/или ТВКПМС готовят вне места эксплуатации скважины и транспортируют к месту применения перед введением в скважину.
[0051] Согласно одному варианту реализации изобретения, КПМС можно применять в качестве жидкостей для заканчивания скважин, жидкостей для подземного ремонта скважин, вытеснительных жидкостей и жидких пробок. Например, в качестве жидкостей для заканчивания скважин КПМС можно вводить в скважину для облегчения заключительных операций перед началом добычи. КПМС можно использовать для контроля целостности оборудования, расположенного в скважине, не нанося вреда продуктивной формации или компонентам для заканчивания скважины. КП можно включить в КПМС перед введением жидкости в скважину согласно варианту реализации, предусматривающему применение одного потока. Альтернативным образом, КП можно смешивать с другими компонентами КПМС во время введения в ствол скважины, например, в двухпотоковом процессе, при котором один поток содержит КП, а второй поток содержит минерализованный раствор. Согласно одному варианту реализации изобретения, минерализованный раствор и КП вводят в ствол скважины в отдельных потоках, и КПМС образуется в скважине. Согласно одному варианту реализации изобретения, КП вводят в скважину, где он вступает в контакт с природным минерализованным раствором, присутствующем в формации, и образует КПМС in situ.
[0052] Сравнительно низкая вязкость, создаваемая КПМС при высоких скоростях сдвига, как описано ранее в настоящей заявке, указывает, что жидкость может течь в трубе и межтрубном пространстве без применения излишнего давления для преодоления трения. Таким образом, низкая вязкость КПМС при высоких скоростях сдвига позволяет легко нагнетать состав и может способствовать его применению в качестве промывочной жидкости во время бурения ствола скважины. При низких скоростях сдвига высокая вязкость КПМС позволяет составу функционировать в качестве агента, регулирующего значение потерь жидкости. В качестве жидкостей для ремонта скважин КПМС можно применять для ремонта существующей эксплуатационной скважины или интенсификации притока к ней с целью восстановления, продления или увеличения добычи углеводородов.
[0053] Согласно одному варианту реализации изобретения, ТВКПМС можно применять в качестве буровых растворов, жидкостей, применяемых при заполнении скважинного фильтра гравием, жидкостей для гидроразрыва, жидкостей для регулирования потерь жидкости, жидкостей для регулирования поглощения, суспендирующих агентов или их комбинаций. Например, в качестве бурового раствора ТВКПМС может циркулировать вниз через полую бурильную колонну и наружу через буровую коронку, прикрепленную к ней, при вращении бурильной колонны для бурения ствола скважины. Буровой раствор может течь обратно к поверхности через затрубное пространство между бурильной колонной и стволом скважины и образовывать фильтрационную корку на стенках ствола скважины и переносить буровой шлам к поверхности. КП можно включить в состав ТВКПМС перед введением жидкости в скважину согласно варианту реализации, предусматривающему применение одного потока. В качестве агентов, регулирующих потери жидкости, ТВКПМС можно применять для регулирования или снижения потерь жидкости за счет утечки и/или абсорбции в пласт (например, избыточной потери жидкости из фильтрационной корки в подземную формацию). Потеря жидкости, которая часто имеет место в стволе скважины, может привести к серьезным проблемам. Например, на стенках ствола скважины может накапливаться чрезмерное количество фильтрационной корки, что приводит к заклиниванию бурильной трубы и может затруднять ее удаление из ствола скважины.
[0054] Кроме того, сравнительно высокая вязкость, создаваемая ТВКПМС в диапазоне низких скоростей сдвига, как описано ранее, позволяет суспендировать твердые вещества и обеспечивать регулирование потери жидкости. Подобно КПМС, сравнительно низкая вязкость, создаваемая ТВКПМС при высоких скоростях сдвига, позволяет предположить, что течение жидкости в трубе и затрубном пространстве (например, во время циркуляции жидкости) можно обеспечить без применения излишнего давления на преодоление трения.
[0055] Согласно некоторым вариантам реализации изобретения, способ применения КПМС может также включать техническое обслуживание ствола скважины с помощью жидкости для технического обслуживания ствола скважины. Кроме того, указанный способ может также включать извлечение нефти из ствола скважины после технического обслуживания. Как отмечается, некоторые варианты реализации настоящего изобретения обеспечивают явные преимущества в отношении улучшения ствола скважины и могут влиять на эффективность скважины.
ПРИМЕРЫ
[0056] Варианты реализации изобретения в целом уже описаны ранее, и следующие примеры приведены в качестве конкретных вариантов реализации изобретения и призваны продемонстрировать его практическое применение и преимущества. Понятно, что указанные примеры приведены для иллюстрации и не предполагают ограничения описания или формулы изобретения каким-либо образом.
ПРИГОТОВЛЕНИЕ ОБРАЗЦОВ
[0057] В приведенном ниже примере все образцы были приготовлены с применением следующей общей методики, если не указано иное. Образцы готовили путем перемешивания минерализованного раствора и КП с помощью подвесной мешалки LR400D, которую можно приобрести в компании Yamato Scientific America Inc. Затем перед испытанием образцы оставляли гидратироваться в течение ночи или дольше. После этого, если образцы оставались зернистыми по внешнему виду, осуществляли короткое заключительное перемешивание в течение примерно 30 секунд с применением ручного смесителя, который можно приобрести в компании Braun.
[0058] Реологические свойства определяли с помощью вискозиметра Chandler Model 5550, с конфигурацией ротор-отвес R1/B1. Вискозиметр был запрограммирован работать в режиме линейного изменения скорости сдвига при температуре окружающей среды (75°F) с интервалами 50°F и конечной температурой 350°F. Применяли давление азота, равное 320 psi (2,2 МПа). Линейные изменения включали измерения вязкости при скоростях вращения от 0,59 оборотов в минуту до 300 оборотов в минуту. Время нагревания между линейными изменениями составляло примерно 8 минут. Затем образцы выдерживали при температуре испытания в течение примерно 11 минут во время линейного изменения.
ПРИМЕР 1
[0059] Были исследованы растворимость, термическая стабильность и реологические свойства КП в минерализованном растворе CaCl2. Применяемая соль CaCl2 представляла собой содержащие 95% CaCl2 мини-гранулы, которые можно приобрести в компании Cal-Chlor Corp., и применяемый катионный полимер представлял собой поли-ДАДМАХ, которые можно приобрести в компании Northaven Chemicals. Образец 1 готовили с использованием 10,5 фунт/баррель поли-ДАДМАХ для загущения 11,6 ф/гал минерализованного раствора CaCl2. В частности, 0,20 г гидроксида кальция диспергировали в 210 г деионизированной воде и добавляли 140 г соли CaCl2 до тех пор, пока жидкость не становилась полупрозрачной. Далее, медленно добавляли 7,5 г поли-ДАДМАХ, смесь перемешивали в течение 15 минут и затем оставляли гидратироваться на всю ночь перед испытанием.
[0060] Проводили реологические испытания, результаты которых показаны на Фиг.2 и 3. Фиг.2 представляет собой графическое отоображение вязкости как функции скорости сдвига при различных температурах. Как видно из Фиг.2, КП в минерализованном растворе создавал вязкости, находящиеся в диапазоне примерно от 20 до примерно 2500 сантипуаз в зависимости от скорости сдвига. При всех температурах, вязкость жидкости проявляла свойство уменьшаться при сдвиге. Фиг.3 представляет собой графическое изображение напряжения сдвига как функции скорости сдвига при различных температурах. Как видно из Фиг.3, при всех температурах наблюдалось изменение угла наклона при скоростях сдвига в диапазоне 10 и 20 сек-1. Такое наблюдаемое изменение указывало, что доминирующие взаимодействия полимер-полимер различаются при низких и высоких скоростях сдвига. Показатели текучести (n') и показатели консистенции (K') оценивали раздельно как для участков низких, так и высоких скоростей сдвига, путем нанесения на кривую полученных данных, с применением модели степенной зависимости, при этом показатель текучести представлял собой тангенс угла наклона, а показатель консистенции текучести представлял собой отрезок, отсекаемый на координатной оси. Результаты представлены в таблице 1.
Таблица 1
Температура (°F) Низкая скорость сдвига Высокая скорость сдвига Вязкость (1 сек-1) Вязкость (170 сек-1)
n' K' n' K'
78 0,1964 0,0509 0,7508 0,0125 2,436 167
100 0,1865 0,0455 0,7156 0,0106 2,179 118
150 0,2003 0,0278 0,7015 0,0066 1,330 68
200 0,2149 0,0196 0,7010 0,0044 939 45
250 0,2113 0,0170 0,7006 0,0032 814 33
300 0,3602 0,0106 0,6844 0,0029 509 27
350 0,3115 0,0125 0,5949 0,0041 596 24
[0061] Как видно из таблицы 1, индексы потоков на участке пониженных скоростей сдвига указывают, что КП в минерализованном растворе CaCl2 проявлял способность к образованию суспензии даже при температурах вплоть до 350°F.
ПРИМЕР 2
[0062] Изучали способность КП загущать минерализованные растворы CaBr2 и ZnBr2 и сравнивали поведение КП и минерализованного раствора CaCl2. Готовили три образца, обозначаемые как образцы 2-4, путем применения 10,5 фунт/баррель поли-ДАДМАХ для загущения 11,6 ф/гал минерализованного раствора CaCl2, 13,2 ф/гал минерализованного раствора CaBr2 и 19,2 ф/гал минерализованного раствора ZnBr2 соответственно. Перед испытанием все образцы оставляли гидратироваться на всю ночь и затем проводили реологическое исследование. Результаты представлены в таблице 2.
Таблица 2
Температура (°F) Образец 2. Вязкость (170 сек-1) Образец 3. Вязкость (170 сек-1) Образец 4. Вязкость (170 сек-1)
78 247 226 265
100 193 173 166
150 109 103 78
200 74 71 50
250 52 51 36
300 37 38 28
350 26 27 22
[0063] Как видно из таблицы 2, образцы 2-4 проявляли сопоставимые значения вязкости в исследованных диапазонах температур. Обычное термическое разжижение наблюдали для каждого образца во время нагревания до 350°F, при этом не наблюдалось признаков сшивания или осаждения полимера. После испытания образцы 2-4 охлаждали до температуры окружающей среды, причем восстановленные образцы представляли собой прозрачные, бесцветные вязкие растворы.
ПРИМЕР 3
[0064] Способность анионного синтетического полимера и неионного полимера увеличивать вязкость минерализованного раствора сравнивали с аналогичной способностью КП. Готовили три образца, обозначенные как образцы 5-7. Образец 5 содержал поли-ДАДМАХ и был аналогичен образцу 1 из примера 1. Образец 6 готовили с применением 5 фунт/баррель сополимера акриламида и AMPS (т.е., анионного синтетического полимера), который можно приобрести в компании Drilling Specialties Company. В частности, 140 г CaCl2 добавляли к 210 г деионизированной воды и перемешивали до тех пор, пока жидкость не становилась полупрозрачной. Далее, медленно добавляли 3,57 г акриламид-AMPS до полного растворения сополимера акриламида и AMPS. Образец 7 готовили с использованием 2,5 фунт/баррель NATROSOL ННХ, представляющего собой неионный сополимер гидроксиэтилцеллюлозы (ГЭЦ), который можно приобрести в компании Hercules Incorporated. В частности, 2 г ГЭЦ добавляли к 280 мл 11,6 ф/гал минерализованного раствора CaCl2. Конечные концентрации минерализованного раствора были такими же, как и в случае образцов 5-7. Образцы оставляли гидратироваться всю ночь и затем проводили реологическое исследование. Результаты показаны на Фиг.4.
[0065] Как видно из Фиг.4, вязкость образцов 6 и 7 при 100°F составляла 189 сантипуаз (102 сек-1) и 460 сантипуаз (102 сек-1) соответственно. Сополимер акриламида и AMPS (2-акриламидо-2-метилпропансульфоновой кислоты) был менее эффективен для сгущения минерализованного раствора CaCl2, поскольку он создавал более низкую вязкость при двойной загрузке полимера. Образец 7 создавал более высокую вязкость, чем образец 5, только до температуры 205°F. Низкая вязкость, наблюдаемая для образца 7 при 240°F, типична для технических характеристик ГЭЦ, которые обычно ограничивают возможность ее применения температурами ниже 240°F. Вязкость образца 6 была более высокой, чем образца 5, на протяжении всего испытания. Однако сополимер акриламида и AMPS образовал гель во время охлаждения, что может потенциально вызвать повреждение пласта и ограничить добычу нефти и газа. Напротив, КП, применяемый в образце 5, продемонстрировал способность загущать минерализованный раствор CaCl2 вплоть до температуры 350°F и также был способен сохранять свою растворимость после воздействия температуры в указанных диапазонах.
ПРИМЕР 4
[0066] Была исследована способность КПМС суспендировать твердое вещество. Применяемый КП представлял собой FLOQUAT FL3249, который является полиамином, доступным для приобретения в компании SNF Floerger. Образец 8 готовили путем добавления 6 г FLOQUAT FL3249 в 81 г деионизированной воды. Далее добавляли 0,1 г гидроксида кальция для установления рН равным примерно 8,5 и добавляли 56 г CaCl2 для доведения конечной плотности минерализованного раствора до 11,6 ф/гал. Жидкость охлаждали до температуры окружающей среды. Затем к 60 мл жидкости добавляли 13,4 г СаСО3 и перемешивали до тех пор, пока смесь не становилась гомогенной. СаСО3 представлял собой осажденный мел, который можно приобрести в компании Fisher Scientific. Затем выполняли реологические исследования образца, результаты которых представлены в таблице 3.
Таблица 3
Температура (°F) Образец 8. Вязкость (2 сек-1) Образец 8. Вязкость (170 сек-1)
78 648 85
100 696 67
150 768 46
200 576 36
250 432 16
300 456 15
350 504 15
[0067] Во время нагревания образец 8 показал нормальное термическое разжижение. При каждой тестируемой температуре образец 8 проявлял значительное разжижение при сдвиге, на что указывало различие в вязкости при 2 сек-1 и при 170 сек-1. Сравнительно высокая вязкость при низкой скорости сдвига свидетельствовала о способности к образованию суспензии. Способность к образованию суспензии также была подтверждена после охлаждения образца 8. Охлажденный образец 8 был гомогенным, при этом признаки осаждения или седиментации карбоната кальция отсутствовали.
ПРИМЕР 5
[0068] Реологические свойства КП в минерализованном растворе CaCl2 были изучены и сравнивались с КП в минерализованном растворе CaCl2, содержащем СаСО3. Образец 9 готовили из 10,5 фунт/баррель поли-ДАДМАХ в 11,6 ф/гал CaCl2 способом, подобным способу, применяемому в примере 1. рН жидкости устанавливали равным 8,4, применяя 0,5 фунт/баррель гидроксида кальция. Проводили реологические исследования, результаты которых показаны в таблице 4 и на Фиг.5, которая представляет собой графическое изображение вязкости как функции скорости сдвига при 350°F.
Таблица 4
Температура (°F) n' K' Вязкость (1 сек-1) Вязкость (40 сек-1) Вязкость (100 сек-1) Вязкость (170 сек-1)
78 0,7707 0,0128 614 264 214 189
100 0,7677 0,0090 429 182 147 130
150 0,7786 0,0045 216 96 78 69
200 0,7605 0,0033 158 65 53 46
250 0,7655 0,0024 113 48 38 34
300 0,7573 0,0019 92 38 30 26
350 0,7839 0,0014 69 31 25 23
[0069] Полученные результаты продемонстрировали, что при каждой температуре, образец 9 проявлял более высокую вязкость при более низкой скорости сдвига 1 сек-1, чем при более высокой скорости сдвига 170 сек-1. Кроме того, при увеличении температуры до 350°F, вязкость образца 9 уменьшалась. Таким образом, образец 9 был способен сохранять способность к разжижению при сдвиге при температурах до 350°F.
[0070] Образец 10 готовили, применяя 80 мл образца 9, путем добавления 20 фунт/баррель порошкового СаСО3. Затем выполняли реологические исследования, результаты которых представлены в таблице 5.
Таблица 5
Температура (°F) n' K' Вязкость (1 сек-1) Вязкость (40 сек-1) Вязкость (100 сек-1) Вязкость (170 сек-1)
78 0,6809 0,0244 1,170 361 269 227
100 0,6373 0,0221 1,057 277 199 164
150 0,5321 0,0214 1,024 182 119 93
200 0,4525 0,0243 1,161 154 93 70
250 0,4146 0,0249 1,192 138 80 59
300 0,4063 0,0233 1,117 125 73 53
350 0,3837 0,0249 1,190 123 70 50
[0071] Полученные результаты показали, что при температуре окружающей среды добавление СаСО3 (образец 10) оказывало больший эффект на низкую скорость сдвига, равную 1 сек-1, чем при высокой скорости сдвига, равной 170 сек-1. Результаты показали, что образец 10 разжижается при сдвиге в большей степени, чем образец 9. Не желая быть ограниченными теорией, полагают, что возможно существование сравнительно слабого взаимодействия между поли-ДАДМАХ и СаСО3. Образец 10 проявлял ожидаемое термическое разжижение при высокой скорости сдвига 170 сек-1, и его вязкость при низкой скорости сдвига, равной 1 сек-1, была сравнительно стабильна в диапазоне температур между 78°F и 350°F. Полученные результаты указывают, что взаимодействие между поли-ДАДМАХ и суспендированным СаСО3 является достаточно сильным, чтобы препятствовать воздействию повышенной температуры, но может быть разрушено механически. Кроме того, способность образца 10 удерживать твердое вещество (СаСО3) в суспензии сохраняется на всем протяжении этого температурного диапазона.
[0072] Также на образце 10 было проведено статическое испытание на старение путем мониторинга степени фазового разделения на протяжении 168 час при температуре окружающей среды (75°F) и при 250°F. Порции по 10 мл образца 10 помещали в два стеклянных флакона и герметизировали. Один флакон держали при температуре окружающей среды, а другой флакон помещали в печь при 250°F. Результаты показаны в таблице 6 и на Фиг.6, которая представляет собой графическое отображение % фазового разделения при 75°F как функции времени.
Таблица 6
Время (час) % осаждение при 75°F % осаждение при 250°F
24 8% 3%
48 21% 3%
72 25% 3%
96 29% 3%
168 34% 3%
[0073] Полученные результаты показали, что во время эксперимента признаки седиментации частиц отсутствовали. СаСО3 оставался в суспензии в образце 10. Имелись признаки осадки в образце 10, в котором прозрачный минерализованный раствор расслаивался у поверхности в виде отдельного слоя. За 168 часов статического испытания на старение при 250°F только 3% образца 10 отслаивалась у поверхности в виде прозрачного минерализованного раствора.
ПРИМЕР 6
[0074] Была изучена способность КП предотвращать потери жидкости в минерализованном растворе CaCl2, содержащем твердое вещество. Образец 11 готовили из 10,5 фунт/баррель поли-ДАДМАХ в 11,6 ф/гал минерализованного раствора CaCl2 и 25 фунт/баррель СаСО3, применяя методику, аналогичную описанной ранее. Эксперименты по определению потерь жидкости выполняли при температуре 250°F и давлении азота 500 psi (3,45 МПа), как описано в API RP-13B. Результаты показаны в таблице 7 и на Фиг.7.
Таблица 7
Время (мин) Объем фильтрата (мл)
3 4
5 6
10 8
15 9
20 10,4
30 12,2
(0075] Полученные результаты показали, что в сумме было собрано 12 мл фильтрата в течение 30-минутного периода испытания, что указывает на способность поли-ДАДМАХ предотвращать потери жидкости при применении в сочетании с карбонатом кальция. После испытания образец 10 удаляли, при этом признаки седиментации или образования когезионного фильтрационного осадка на поверхности фильтровальной бумаги отсутствовали.
ПРИМЕР 7
[0076] Были исследованы реологические свойства КП в минерализованном растворе CaBr2. Образец 12 готовили из 10,5 фунт/баррель поли-ДАДМАХ в 14,2 ф/гал CaBr2, применяя методику, аналогичную описанной ранее; рН образца доводили до примерно 8,2 и проводили реологическое исследование. Результаты показаны в таблице 8 и на Фиг.8 и 9. Фиг.8 представляет собой графическое изображение вязкости как функции скорости сдвига, и Фиг.9 представляет собой графическое изображение вязкости как функции времени при 350°F.
Таблица 8
Температура (°F) n' K' Вязкость (1 сек-1) Вязкость (40 сек-1) Вязкость (100 сек-1) Вязкость (170 сек-1)
78 0,7175 0,0121 579 204 158 136
100 0,6983 0,0108 519 170 129 110
150 0,6628 0,0080 385 111 82 68
200 0,6065 0,0081 388 91 63 51
250 0,6227 0,0062 297 74 52 43
300 0,6058 0,0057 272 64 44 36
350 0,6387 0,0041 195 52 37 31
[0077] Полученные результаты показали, что реологические характеристики поли-ДАДМАХ в минерализованном растворе CaBr2 аналогичны характеристикам поли-ДАДМАХ в минерализованном растворе CaCl2, при этом способность к разжижению при сдвиге сохранялась вплоть до температуры 350°F. Кроме того, термическую стабильность образца 12 тестировали путем выдерживания образца при скорости сдвига 170 сек-1 и температуре 350°F в течение четырех часов. Результаты показаны на Фиг.9. Результаты показали, что вязкость образца 12 уменьшилась примерно от 29 сП до примерно 24 сП, что указывает на термическую стабильность образца 12.
ПРИМЕР 8
[0078] Были исследованы реологические свойства КП в минерализованном растворе ZnBr2. Образец 13 готовили из 10,5 фунт/баррель поли-ДАДМАХ в 19,2 ф/гал ZnBr2 и проводили реологическое исследование. Результаты представлены в таблице 9.
Таблица 9
Температура (°F) n' K' Вязкость (1 сек-1) Вязкость (40 сек-1) Вязкость (100 сек-1) Вязкость (170 сек-1)
80 0,8390 0,0127 607 335 289 265
150 0,9083 0,0026 126 90 82 78
200 0,9218 0,0016 75 56 52 50
250 0,9619 0,0009 44 38 37 36
300 0,9599 0,0007 35 30 29 28
350 0,9989 0,0005 22 22 22 22
ПРИМЕР 9
[0079] Были исследованы реологические свойства КП в минерализованном растворе CaCl2 при более высокой загрузке твердого вещества. Образец 14 готовили из 7 фунт/баррель поли-ДАДМАХ в минерализованном растворе 11,6 ф/гал CaCl2 при 78 фунт/баррель СаСО3 и проводили реологическое исследование при 100°F, 200°F, 300°F и 400°F. Результаты показаны на Фиг.10.
[0080] Полученные результаты позволили сделать вывод, что поли-ДАДМАХ, по-видимому, синергически взаимодействует с суспендированным твердым веществом (например, СаСО3). Такое взаимодействие ведет к увеличению вязкости и характеристик разжижения при сдвиге, которые сохранялись вплоть до температуры 400°F.
[0081] Несмотря на то, что были показаны и описаны варианты реализации изобретения, их модификации могут быть сделаны без отклонения от сущности и положений настоящего описания. Описанные в настоящей заявке варианты реализации изобретения являются только иллюстративными и не предполагают ограничения изобретения. Возможно множество вариантов и модификаций предложенного изобретения, находящихся в рамках настоящего изобретения. Когда однозначным образом указаны численные диапазоны или ограничения, следует понимать, что они включают итеративные диапазоны или ограничения подобной величины, попадающей в пределы таких четко указанных диапазонов или ограничений (например, примерно от 1 до примерно 10 включает 2, 3, 4 и т.п.; больше чем 0,10, включает 0,11, 0,12, 0,13 и т.п.). Например, когда задан числовой диапазон с нижним пределом, R1, и верхним пределом, RU, любое число, попадающее в этот диапазон, считается специально описанным. В частности, следующие числа в пределах этого диапазона специально описаны: R=RL+k*(RU-RL), где k представляет собой переменную, варьирующую от 1 процента до 100 процентов при 1-процентном приращении, т.е. k представляет собой 1 процент, 2 процента, 3 процента, 4 процента, 5 процентов, …, 50 процентов, 51 процент, 52 процента, …, 95 процентов, 96 процентов, 97 процентов, 98 процентов, 99 процентов или 100 процентов. Более того, любой численный диапазон, заданный двумя числами R, как определено выше, также является специально описанным. Применение термина "возможно" в отношении любого элемента пункта формулы изобретения означает, что рассматриваемый элемент является необходимым или, альтернативным образом, не является необходимым. Подразумевают, что обе альтернативы находятся в рамках формулы изобретения. Следует понимать, что применение более широких терминов, таких как содержит, включает, имеет и т.п., служит основанием для более узких терминов, таких как состоящий из, по существу состоящий из, в основном состоящий из и т.д.
[0082] Соответственно, объем охраны не ограничен описанием, приведенным выше, а ограничивается только формулой изобретения, представленной далее, при этом объем включает все эквиваленты объекта изобретения, описанного в формуле изобретения. Все без исключения пункты формулы изобретения включены в описание как варианты реализации настоящего изобретения. Таким образом, пункты формулы изобретения также представляют собой описание и дополнение к вариантам реализации настоящего изобретения. Обсуждение ссылки не является признанием того факта, что указанная ссылка входит в известный уровень техники по отношению к настоящему изобретению, в частности, любая ссылка, которая может иметь дату публикации после даты приоритета настоящей заявки. Содержание всех патентов, заявок на патент и публикаций, упоминаемых в настоящей заявке, тем самым включено в настоящую заявку посредством ссылки в той степени, в которой они обеспечивают иллюстративные, методологические или другие подробности, дополняющие описание, приведенное в настоящей заявке.

Claims (20)

1. Способ, включающий:
введение в ствол скважины жидкости для технического обслуживания ствола скважины, содержащей катионный полимер, минерализованный раствор и твердое вещество, причем указанный катионный полимер имеет молекулярную массу от 300000 дальтон до 10000000 дальтон, минерализованный раствор присутствует в жидкости для технического обслуживания ствола скважины в количестве от 95 об.% до 99,8 об.% относительно общего объема жидкости для технического обслуживания ствола скважины, а твердое вещество представляет собой утяжелитель, выбранный из карбоната железа, карбоната магния, карбоната кальция или комбинаций барита, гематита, ильменита и карбоната железа, карбоната магния и карбоната кальция, причем жидкость для технического обслуживания ствола скважины демонстрирует снижение вязкости при сдвиге при скорости сдвига от 3 сек-1 до 300 сек-1 и температуре от 24°С (75°F) до 260°С (500°F).
2. Способ по п.1, отличающийся тем, что катионный полимер включает полиамин, поли(аллиламин), четвертичный амин, галогенид (полиалкил)аммония, галогенид (полиаллилалкил)аммония, хлорид полидиаллилдиметиламмония, поливинилпирролидон, поливинилимидазол, сополимер виниламина и аллиламина, сополимер акриламида и аллиламина, гомополимер хлорида полидиаллилдиметиламмония (поли-ДАДМАХ), сополимер ДАДМАХ и аллиламина, сополимер ДАДМАХ и винилпирролидона, сополимер ДАДМАХ и винилимидазола, сополимер ДАДМАХ и акриламида, поливиниламин, сополимер винилпирролидона-метакриламида-винилимидазола или их комбинации.
3. Способ по п.1, отличающийся тем, что катионный полимер представляет собой гомополимер или сополимер хлорида полидиаллилдиметиламмония.
4. Способ по п.1, отличающийся тем, что катионный полимер не является поперечно-сшитым.
5. Способ по п.1, отличающийся тем, что катионный полимер присутствует в жидкости для технического обслуживания ствола скважины в количестве примерно от 0,14 кг/л до 0,43 кг/л (от 0,5 фунта/баррель до 15 фунтов/баррель) относительно общей массы жидкости для технического обслуживания ствола скважины.
6. Способ по п.1, отличающийся тем, что минерализованный раствор содержит бромид натрия (NaBr), бромид кальция (CaBr2), бромид цинка (ZnBr2), бромид калия (KBr), хлорид натрия (NaCl), хлорид кальция (CaCl2), хлорид цинка (ZnCl2), хлорид калия (KCl) или их комбинации.
7. Способ по п.1, отличающийся тем, что плотность минерализованного раствора составляет от 1 кг/л до 2,3 кг/л (от 8,4 фунта/гал до 19,2 фунта/гал).
8. Способ по п.1, отличающийся тем, что жидкость для технического обслуживания ствола скважины сохраняет вязкость от 100 сантипуаз до 40000 сантипуаз при скорости сдвига от 0,1 сек-1 до 10 сек-1 и при температуре от 24°С до 260°С (от 75°F до 500°F).
9. Способ по п.1, отличающийся тем, что твердое вещество присутствует в жидкости для технического обслуживания ствола скважины в количестве от 0,28 кг/л до 1,14 кг/л (от 1 фунта/баррель до 400 фунтов/баррель) относительно общего объема жидкости для технического обслуживания ствола скважины.
10. Способ по п.1, отличающийся тем, что твердое вещество содержит карбонат кальция.
11. Способ по п.1, отличающийся тем, что степень фазового разделения жидкости для технического обслуживания ствола скважины составляет от примерно 0% до примерно 60%.
12. Способ по п.1, отличающийся тем, что жидкость для технического обслуживания ствола скважины характеризуется значением потерь от примерно 0 мл до примерно 60 мл, определенным согласно API RP13B.
13. Способ по п.1, отличающийся тем, что жидкость для технического обслуживания ствола скважины образует стабильную суспензию.
14. Способ по п.1, отличающийся тем, что жидкость для технического обслуживания ствола скважины представляет собой жидкость для заканчивания скважин, жидкость для ремонта скважин, вытеснительную жидкость, жидкую пробку или их комбинации.
15. Способ по п.1, отличающийся тем, что жидкость для технического обслуживания ствола скважины представляет собой буровой раствор, жидкость, применяемую при заполнении скважинного фильтра гравием, жидкость для гидроразрыва, жидкость для кислотной обработки, жидкость для регулирования потерь жидкости, суспендирующий агент или их комбинации.
16. Способ по п.1, дополнительно включающий:
техническое обслуживание ствола скважины с помощью жидкости для технического обслуживания ствола скважины; и
извлечение нефти из ствола скважины после указанного технического обслуживания.
17. Состав жидкости для технического обслуживания ствола скважины, содержащий катионный полимер, минерализованный раствор и твердое вещество, причем указанный катионный полимер имеет молекулярную массу от примерно 300000 дальтон до примерно 10000000 дальтон, минерализованный раствор присутствует в жидкости для технического обслуживания ствола скважины в количестве от 95 об.% до 99,8 об.% относительно общего объема жидкости для технического обслуживания ствола скважины, а твердое вещество представляет собой утяжелитель, выбранный из карбоната железа, карбоната магния, карбоната кальция или комбинаций барита, гематита, ильменита, карбоната железа, карбоната магния и карбоната кальция, причем жидкость для технического обслуживания ствола скважины демонстрирует снижение вязкости при сдвиге при скорости сдвига от 3 сек-1 до 300 сек-1 и температуре от 24°С (75°F) до 260°С (500°F).
18. Состав по п.17, отличающийся тем, что катионный полимер включает полиамин, поли(аллиламин), четвертичный амин, галогенид (полиалкил)аммония, галогенид (полиаллилалкил)аммония, хлорид полидиаллилдиметиламмония, поливинилпирролидон, поливинилимидазол, сополимер виниламина и аллиламина, сополимер акриламида и аллиламина, гомополимер хлорида полидиаллилдиметиламмония (поли-ДАДМАХ), сополимер ДАДМАХ и аллиламина, сополимер ДАДМАХ и винилпирролидона, сополимер ДАДМАХ и винилимидазола, сополимер ДАДМАХ и акриламида, поливиниламин, сополимер винилпирролидона-метакриламида-винилимидазола или их комбинации.
19. Состав по п.17, который демонстрирует поведение неньютоновской жидкости.
20. Состав по п.17, отличающийся тем, что плотность минерализованного раствора составляет от 1 кг/л до 2,3 кг/л (от 8,4 фунта/гал до 19,2 фунта/гал).
RU2011137996/03A 2009-02-16 2010-02-11 Жидкости для технического обслуживания ствола скважины, содержащие катионные полимеры, и способы их применения RU2527102C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/371,895 2009-02-16
US12/371,895 US9102865B2 (en) 2009-02-16 2009-02-16 Wellbore servicing fluids comprising cationic polymers and methods of using same
PCT/US2010/023808 WO2010093735A1 (en) 2009-02-16 2010-02-11 Wellbore servicing fluids comprising cationic polymers and methods of using same

Publications (2)

Publication Number Publication Date
RU2011137996A RU2011137996A (ru) 2013-03-27
RU2527102C2 true RU2527102C2 (ru) 2014-08-27

Family

ID=42136314

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011137996/03A RU2527102C2 (ru) 2009-02-16 2010-02-11 Жидкости для технического обслуживания ствола скважины, содержащие катионные полимеры, и способы их применения

Country Status (10)

Country Link
US (1) US9102865B2 (ru)
EP (1) EP2396381A1 (ru)
CN (3) CN105154038A (ru)
AU (1) AU2010213822B9 (ru)
BR (1) BRPI1008247A2 (ru)
CA (1) CA2750987C (ru)
MX (1) MX344584B (ru)
MY (1) MY176932A (ru)
RU (1) RU2527102C2 (ru)
WO (1) WO2010093735A1 (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100175877A1 (en) * 2006-01-24 2010-07-15 Parris Michael D Method of designing and executing a well treatment
CN102516959B (zh) * 2011-10-30 2014-01-29 中国石油大学(华东) 一种磁流变隔离液及其应用
US10414963B2 (en) * 2013-06-26 2019-09-17 Halliburton Energy Services, Inc. High-temperature crosslinked polymer for use in a well
US20160137905A1 (en) * 2013-08-06 2016-05-19 Halliburton Energy Services, Inc. Composition for fines agglomeration
MY176423A (en) * 2013-09-06 2020-08-07 Isp Investments Inc Fluid composition comprising crosslinked polyvinylpyrrolidone for oil field applications
CN103626918B (zh) * 2013-12-13 2015-07-29 山东大学 一种高电荷密度水溶性聚合物的制备方法
US20150184058A1 (en) * 2013-12-31 2015-07-02 Baker Hughes Incorporated Well Cementing Methods and Apparatuses
FR3021053A1 (fr) * 2014-05-13 2015-11-20 Total Sa Compositions de tensio-actifs et de polymeres et leurs utilisations pour la recuperation amelioree d'hydrocarbures
CN106608946B (zh) * 2015-10-21 2019-01-25 中国石油化工股份有限公司 用于钻井液增粘剂共聚缔合物及其制备方法
WO2017120520A2 (en) * 2016-01-07 2017-07-13 M-I L.L.C. Methods of logging
CA3049767C (en) 2017-01-11 2022-05-31 Saudi Arabian Oil Company High performance brine viscosifier
CN107353883A (zh) * 2017-07-11 2017-11-17 中石化石油工程技术服务有限公司 一种钻井液、固壁剂及组合应用方法
CN108970241A (zh) * 2018-08-07 2018-12-11 中国地质大学(北京) 一种干酪根制备过程中使用的重液的配制方法
CN109370552A (zh) * 2018-10-22 2019-02-22 中国海洋石油集团有限公司 一种延缓油田用调堵剂中的非交联凝胶溶解速度的方法
CN110929447B (zh) * 2019-12-20 2020-11-03 西南石油大学 一种稠化酸酸化过程中井筒温度场数值计算方法
US11732176B2 (en) 2021-09-16 2023-08-22 Halliburton Energy Services, Inc. Liquid plug for wellbore operations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225445A (en) * 1978-11-15 1980-09-30 Calgon Corporation Polymers for acid thickening
RU2301244C2 (ru) * 2002-06-17 2007-06-20 Налко Компани Использование анионных диспергированных полимеров в качестве модификаторов вязкости буровых растворов на водной основе

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4366071A (en) * 1976-08-13 1982-12-28 Halliburton Company Oil well treating method and composition
US4374739A (en) * 1976-08-13 1983-02-22 Halliburton Company Oil well treating method and composition
US4152274A (en) * 1978-02-09 1979-05-01 Nalco Chemical Company Method for reducing friction loss in a well fracturing process
US4447342A (en) * 1982-04-19 1984-05-08 Halliburton Co. Method of clay stabilization in enhanced oil recovery
US4554081A (en) * 1984-05-21 1985-11-19 Halliburton Company High density well drilling, completion and workover brines, fluid loss reducing additives therefor and methods of use
US4626363A (en) * 1984-08-29 1986-12-02 National Starch And Chemical Corporation Cationic acrylamide emulsion polymer brine thickeners
US5032295A (en) * 1989-04-25 1991-07-16 National Starch And Chemical Investment Holding Corporation Polymers for use in drilling muds
CN1037852C (zh) * 1991-08-27 1998-03-25 石油勘探开发科学研究院钻井工艺研究所 阳离子型钻井液
US5424284A (en) * 1991-10-28 1995-06-13 M-I Drilling Fluids Company Drilling fluid additive and method for inhibiting hydration
US5908814A (en) * 1991-10-28 1999-06-01 M-I L.L.C. Drilling fluid additive and method for inhibiting hydration
US5663123A (en) * 1992-07-15 1997-09-02 Kb Technologies Ltd. Polymeric earth support fluid compositions and method for their use
US5359026A (en) * 1993-07-30 1994-10-25 Cargill, Incorporated Poly(lactide) copolymer and process for manufacture thereof
GB9510396D0 (en) * 1995-05-23 1995-07-19 Allied Colloids Ltd Polymers for drilling and reservoir fluids and their use
WO1997026310A1 (en) 1996-01-17 1997-07-24 Great Lakes Chemical Corporation Viscosification of high density brines
US5849674A (en) * 1996-10-15 1998-12-15 Phillips Petroleum Company Compositions and processes for oil field applications
BR9713071A (pt) * 1996-11-15 2000-04-11 Tetra Tech Fluido para perfuração de salmoura transparente.
GB2361948B (en) * 1998-11-06 2003-04-16 Baker Hughes Inc Drilling fluid systems with improved fluid loss properties
US6281172B1 (en) * 1999-04-07 2001-08-28 Akzo Nobel Nv Quaternary nitrogen containing amphoteric water soluble polymers and their use in drilling fluids
US7439209B2 (en) * 1999-11-05 2008-10-21 Baker Hughes Incorporated Drilling fluid systems with improved fluid loss properties
US6502637B2 (en) * 2000-03-27 2003-01-07 Clearwater, Inc. Treating shale and clay in hydrocarbon producing formations
US6450260B1 (en) * 2000-07-07 2002-09-17 Schlumberger Technology Corporation Sand consolidation with flexible gel system
US6476169B1 (en) * 2000-09-28 2002-11-05 Halliburton Energy Services, Inc. Methods of reducing subterranean formation water permeability
GB0109087D0 (en) * 2001-04-11 2001-05-30 Ciba Spec Chem Water Treat Ltd Treatment of suspensions
US7183239B2 (en) * 2001-12-12 2007-02-27 Clearwater International, Llc Gel plugs and pigs for pipeline use
US7205262B2 (en) * 2001-12-12 2007-04-17 Weatherford/Lamb, Inc. Friction reducing composition and method
US7405188B2 (en) * 2001-12-12 2008-07-29 Wsp Chemicals & Technology, Llc Polymeric gel system and compositions for treating keratin substrates containing same
FR2851251B1 (fr) 2003-02-13 2005-04-08 Seppic Sa Nouveaux epaississants cationiques, procede pour leur preparation et composition en contenant
US7084092B2 (en) * 2003-08-25 2006-08-01 M-I L.L.C. Shale hydration inhibition agent and method of use
US7398824B1 (en) * 2003-09-25 2008-07-15 Bj Services Company Method for inhibiting or controlling inorganic scale formations with copolymers of acrylamide and quaternary ammonium salts
US7159655B2 (en) * 2003-09-25 2007-01-09 Bj Services Company Method for inhibiting or controlling inorganic scale formations
US7347263B2 (en) * 2004-02-27 2008-03-25 University of Pittsburgh - of the Commonwealth of Higher Education Networked polymeric gels and use of such polymeric gels in hydrocarbon recovery
GB0413587D0 (en) 2004-06-17 2004-07-21 Statoil Asa Well treatment
JP2008509164A (ja) * 2004-08-06 2008-03-27 ザ プロクター アンド ギャンブル カンパニー 繊維を含有するパーソナルクレンジング組成物
US7629296B2 (en) * 2005-11-16 2009-12-08 Rhodia Inc. Composition and method for thickening heavy aqueous brines with cationic guar
US8158562B2 (en) * 2007-04-27 2012-04-17 Clearwater International, Llc Delayed hydrocarbon gel crosslinkers and methods for making and using same
US20090062158A1 (en) * 2007-08-28 2009-03-05 Janice Losasso Rheology modifying agents and methods of modifying fluid rheology use in hydrocarbon recovery
WO2009156372A1 (en) 2008-06-23 2009-12-30 M-I Drilling Fluids Uk Limited Copolymer for shale stabilization and method of use
CN101463116B (zh) * 2009-01-12 2011-07-20 成都理工大学 非线型缔合水溶性四元共聚物及其制备方法和用途

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4225445A (en) * 1978-11-15 1980-09-30 Calgon Corporation Polymers for acid thickening
RU2301244C2 (ru) * 2002-06-17 2007-06-20 Налко Компани Использование анионных диспергированных полимеров в качестве модификаторов вязкости буровых растворов на водной основе

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
0 *

Also Published As

Publication number Publication date
WO2010093735A1 (en) 2010-08-19
AU2010213822B9 (en) 2015-10-01
MX2011007954A (es) 2011-08-15
MY176932A (en) 2020-08-27
US20100210482A1 (en) 2010-08-19
BRPI1008247A2 (pt) 2016-03-08
CA2750987A1 (en) 2010-08-19
AU2010213822B2 (en) 2015-09-03
RU2011137996A (ru) 2013-03-27
EP2396381A1 (en) 2011-12-21
AU2010213822A1 (en) 2011-08-18
CN102317402A (zh) 2012-01-11
CN105154038A (zh) 2015-12-16
MX344584B (es) 2016-12-20
CN103952127A (zh) 2014-07-30
CA2750987C (en) 2017-05-09
US9102865B2 (en) 2015-08-11

Similar Documents

Publication Publication Date Title
RU2527102C2 (ru) Жидкости для технического обслуживания ствола скважины, содержащие катионные полимеры, и способы их применения
EP2809742B1 (en) Cellulose nanowhiskers in well services
US10414963B2 (en) High-temperature crosslinked polymer for use in a well
Simjou et al. Polyacrylamide gel polymer as water shut-off system: preparation and investigation of physical and chemical properties in one of the Iranian oil reservoirs conditions
RU2691906C2 (ru) Синергетический эффект вспомогательных поверхностно-активных веществ в отношении реологических характеристик жидкостей для бурения, заканчивания скважины/вскрытия пласта и гидроразрыва пласта
US10883037B2 (en) Crosslinked n-vinylpyrrolidone polymers for use in subterranean formations and wells
AU2016200500A1 (en) Wellbore servicing compositions and methods of making and using same
CA3139114C (en) Cationic and anionic shale inhibitors and clay stabilizers
US9234124B2 (en) Dimer acid grafted polymer for stabilizing particulate in a well
US11746282B2 (en) Friction reducers, fracturing fluid compositions and uses thereof
US20240067867A1 (en) Friction Reducers, Fluid Compositions and Uses Thereof
US11274243B2 (en) Friction reducers, fracturing fluid compositions and uses thereof
US20190375983A1 (en) Friction reducers, fracturing fluid compositions and uses thereof

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180212