RU2519435C1 - Способ поиска неисправных блоков в непрерывной динамической системе - Google Patents

Способ поиска неисправных блоков в непрерывной динамической системе Download PDF

Info

Publication number
RU2519435C1
RU2519435C1 RU2012153311/08A RU2012153311A RU2519435C1 RU 2519435 C1 RU2519435 C1 RU 2519435C1 RU 2012153311/08 A RU2012153311/08 A RU 2012153311/08A RU 2012153311 A RU2012153311 A RU 2012153311A RU 2519435 C1 RU2519435 C1 RU 2519435C1
Authority
RU
Russia
Prior art keywords
integration
parameters
signals
deviations
estimates
Prior art date
Application number
RU2012153311/08A
Other languages
English (en)
Other versions
RU2012153311A (ru
Inventor
Сергей Викторович Шалобанов
Сергей Сергеевич Шалобанов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет"
Priority to RU2012153311/08A priority Critical patent/RU2519435C1/ru
Application granted granted Critical
Publication of RU2519435C1 publication Critical patent/RU2519435C1/ru
Publication of RU2012153311A publication Critical patent/RU2012153311A/ru

Links

Images

Landscapes

  • Feedback Control In General (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

Областью применения является область контроля и диагностирования систем автоматического управления и их элементов. Техническим результатом является расширение функциональных возможностей способа для нахождения одного или сразу нескольких неисправных блоков (кратных дефектов) в динамической системе с произвольным их соединением, а также улучшение помехоустойчивости способа диагностирования непрерывных систем автоматического управления путем улучшения различимости дефектов. Для достижения результата регистрируют реакцию заведомо исправной системы на интервале в контрольных точках и многократно определяют (одновременно) интегральные оценки выходных сигналов системы для значений параметра интегрирования, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления для параметров интегрирования в каждой из контрольных точек с весами путем подачи на первые входы блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальные сигналы для блоков интегрирования, выходные сигналы блоков перемножения подают на входы блоков интегрирования, интегрирование завершают в момент времени, полученные в результате интегрирования оценки выходных сигналов регистрируют, определяют интегральные оценки сигналов модели для каждой из контрольных точек и параметров интегрирования, полученные в результате пробных отклонений для одиночных и кратных дефектов блоков, для чего поочередно в каждый блок или комбинацию нескольких блоков динамической системы вводят пробное отклонение параметра передаточной функции и находят интегральные оценки выходных сигналов системы для параметров и тестового сигнала, полученные в результате интегрирования оценки выходных сигналов для каждой из контрольных точек, каждого из пробных отклонений и каждого из параметров интегрирования регистрируют, определяют отклонения интегральных оценок сигналов модели, полученных в результате пробных отклонений комбинаций параметров разных структурных блоков, определяют нормированные значения отклонений интегральных оценок сигналов модели, полученных в результате пробных отклонений для одиночных и кратных дефектов при параметрах интегрирования, замещают систему с номинальными характеристиками контролируемой системы, на вход системы подают аналогичный тестовый сигнал, определяют интегральные оценки сигналов контролируемой системы для контрольных точек и для параметров интегрирования, определяют отклонения интегральных оценок сигналов контролируемой системы для контрольных точек и параметров интегрирования от номинальных значений, определяют нормированные значения отклонений интегральных оценок сигналов контролируемой системы для параметров интегрирования, определяют диагностические признаки при параметрах интегрирования, по минимуму значения диагностического признака определяют порядковый номер дефектного блока или комбинации дефектных блоков. 1 ил.

Description

Изобретение относится к области контроля и диагностирования систем автоматического управления и их элементов.
Известен способ поиска неисправных блоков в динамической системе (Патент на изобретение №2453898 от 20.06.2012 по заявке №2010148468, МКИ6 G05B 23/02, 2011).
Недостатком этого способа является то, что он обеспечивает определение дефектов с невысокой различимостью, то есть обладает невысокой помехоустойчивостью.
Наиболее близким техническим решением (прототипом) является способ поиска неисправного блока в динамической системе (Патент на изобретение №2439648 от 10.01.2012 по заявке №2010142159/08 (060530), МКИ6 G05B 23/02, 2012).
Недостатком этого способа является то, что он обеспечивает определение только одиночных структурных дефектов.
Технической задачей, на решение которой направлено данное изобретение, является расширение функциональных возможностей способа для нахождения одного или сразу нескольких неисправных блоков (кратных дефектов) в динамической системе с произвольным их соединением, а также улучшение помехоустойчивости способа диагностирования непрерывных систем автоматического управления путем улучшения различимости дефектов.
Поставленная задача достигается тем, что регистрируют реакцию заведомо исправной системы fjном(t)j=1, …,k на интервале t∈[0, ТK] в k контрольных точках и многократно определяют (одновременно) интегральные оценки выходных сигналов Fjномl), j=1, …, k; l=1, …, n системы для n значений параметра интегрирования, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления для n параметров интегрирования в каждой из k контрольных точек с весами e α l t
Figure 00000001
путем подачи на первые входы k·n блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальные сигналы e α l t
Figure 00000001
для n блоков интегрирования, выходные сигналы k·n блоков перемножения подают на входы k·n блоков интегрирования, интегрирование завершают в момент времени TК, полученные в результате интегрирования оценки выходных сигналов Fjномl), j=1, …, k; l=1, …, n регистрируют, определяют интегральные оценки сигналов модели для каждой из k контрольных точек и n параметров интегрирования, полученные в результате пробных отклонений для m одиночных и кратных дефектов блоков, для чего поочередно в каждый блок или комбинацию нескольких блоков динамической системы вводят пробное отклонение параметра передаточной функции и находят интегральные оценки выходных сигналов системы для n параметров αl и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек, каждого из m пробных отклонений и каждого из n параметров интегрирования Pjil), j=1, …, k, i=1, …, m; l=1, …, n регистрируют, определяют отклонения интегральных оценок сигналов модели, полученных в результате пробных отклонений комбинаций параметров разных структурных блоков ΔPjil)=Pjil)-Fjномl), j=1, …, k; i=1, …, m; l=1, …, n, определяют нормированные значения отклонений интегральных оценок сигналов модели, полученных в результате пробных отклонений для одиночных и кратных дефектов при n параметрах интегрирования из соотношения
Δ P ^ j i ( α l ) = Δ P j i ( α l ) r = 1 k Δ P r i 2 ( α l ) , ( 1 )
Figure 00000002
замещают систему с номинальными характеристиками контролируемой, на вход системы подают аналогичный тестовый сигнал x(t), определяют интегральные оценки сигналов контролируемой системы для k контрольных точек и для n параметров интегрирования αl Fjl), j=1, …, k; l=l, …, n, определяют отклонения интегральных оценок сигналов контролируемой системы для k контрольных точек и n параметров интегрирования от номинальных значений
ΔFjl)=Fj l)-Fjномl), j=1, …,k; l=1, …, n,
определяют нормированные значения отклонений интегральных оценок сигналов контролируемой системы для n параметров интегрирования из соотношения
Δ F ^ j ( α l ) = Δ F j ( α l ) r = 1 k Δ F r 2 ( α l ) , ( 2 )
Figure 00000003
определяют диагностические признаки при n параметрах интегрирования из соотношения:
J i = 1 n l = 1 n { 1 [ j = 1 k Δ P ^ j i ( α l ) Δ F ^ j ( α l ) ] 2 } , i = 1, , m ( 3 )
Figure 00000004
по минимуму значения диагностического признака определяют порядковый номер дефектного блока или комбинации дефектных блоков.
Пробное отклонение параметра блока или параметров блоков, минимизирующее значение диагностического признака (3), указывает на наличие дефекта в этом блоке или комбинации блоков. Область возможных значений диагностического признака лежит в интервале [0, 1].
Таким образом, предлагаемый способ поиска неисправных блоков сводится к выполнению следующих операций:
1. В качестве динамической системы рассматривают систему, состоящую из произвольно соединенных динамических элементов, с количеством рассматриваемых одиночных и кратных дефектов блоков m.
2. Предварительно определяют время контроля ТKПП, где ТПП - время переходного процесса системы. Время переходного процесса оценивают для номинальных значений параметров динамической системы.
3. Определяют n параметров кратных αl многократного интегрирования сигналов.
4. Фиксируют число контрольных точек k.
5. Предварительно определяют нормированные векторы отклонений интегральных оценок сигналов модели, полученных в результате пробных отклонений i-го номера каждого из m одиночных и кратных дефектов блоков и определенных выше параметров интегральных преобразований αl, для чего выполняют пункты 6-10.
6. Подают тестовый сигнал x(t) (единичный ступенчатый, линейно возрастающий, прямоугольный импульсный и т.д.) на вход системы управления с номинальными характеристиками. Принципиальных ограничений на вид входного тестового воздействия предлагаемый способ не предусматривает.
7. Регистрируют реакцию системы fjном(t), j=1, …, k на интервале t∈[0, ТК] в k контрольных точках и определяют интегральные оценки выходных сигналов Fjномl), j=1, …, k; l=1, …, n системы. Для этого в момент подачи тестового сигнала на вход системы управления с номинальными характеристиками одновременно начинают интегрирование (при n параметрах αl) сигналов системы управления в каждой из k контрольных точек с весами e α l t
Figure 00000001
, для чего сигналы системы управления подают на первые входы k·n блоков перемножения, на вторые входы блоков перемножения подают экспоненциальные сигналы e α l t
Figure 00000001
, выходные сигналы k·n блоков перемножения подают на входы k·n блоков интегрирования, интегрирование завершают в момент времени ТК, полученные в результате интегрирования оценки выходных сигналов Fjномl), j=1, …, k; l=1, …, n регистрируют.
8. Определяют интегральные оценки сигналов модели для каждой из k контрольных точек и каждого из n значений параметра интегрирования αl, полученные в результате пробных отклонений параметров каждого из m одиночных и кратных дефектов блоков, для чего поочередно для каждой комбинации параметров разных структурных блоков динамической системы вводят пробное отклонение этих параметров передаточной функции и выполняют пункты 6 и 7 для одного и того же тестового сигнала x(t). Полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек, каждого из m пробных отклонений и каждого из n параметров интегрирования Pjil), j=1, …, k; i=1, …, m; l=1, …, n регистрируют.
9. Определяют отклонения интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров одного или нескольких структурных блоков
ΔPjil)=Pjil)-Fjномl), j=1, …, k; i=1, …, m; l=1, …, n.
10. Определяют нормированные значения отклонений интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров одного или нескольких блоков по формуле:
Δ P ^ j i ( α l ) = Δ P j i ( α l ) r = 1 k Δ P r i 2 ( α l )
Figure 00000005
, j=1, … ,k; i=1, …, m; l=1, …, n.
11. Замещают систему с номинальными характеристиками контролируемой. На вход системы подают аналогичный тестовый сигнал x(t).
12. Определяют интегральные оценки сигналов контролируемой системы для k контрольных точек и n параметров интегрирования Fjl), j=1, …, k; l=1, …, n, осуществляя операции, описанные в пунктах 6 и 7 применительно к контролируемой системе.
13. Определяют отклонения интегральных оценок сигналов контролируемой системы для k контрольных точек и n параметров интегрирования от номинальных значений
ΔFjl)=Fj l)-Fjномl), j=1, …,k; l=1, …, n.
14. Вычисляют нормированные значения отклонений интегральных оценок сигналов контролируемой системы по формуле:
Δ F ^ j ( α l ) = Δ F j ( α l ) r = 1 k Δ F r 2 ( α l )
Figure 00000006
, j=1, …, k; l=1, …, n.
15. Вычисляют диагностические признаки наличия неисправного структурного блока или нескольких блоков (при n параметрах интегрирования) по формуле (3).
16. По минимуму значения диагностического признака определяют дефектный блок или дефектные блоки.
Поскольку диагностические признаки (3) имеют область возможных значений, ограниченную интервалом [0, 1], то разность между ближайшим к минимальному признаку и минимальным признаком (который указывает на дефектный блок или дефектные блоки) количественно характеризует различимость данного дефекта с учетом расположения отдельного блока или нескольких блоков на структурной схеме, вида и параметров передаточных функций отдельных блоков или комбинаций блоков и всех условий диагностирования, при которых получены эти значения диагностических признаков (вид тестового сигнала, количество и величины параметров αl, количество и расположение контрольных точек, величина интервала ТК). Наилучшая различимость дефектов обеспечивается тогда, когда указанная разность равна единице (в терминах векторной интерпретации нормированные векторы деформаций интегральных преобразований динамических характеристик отдельных блоков или комбинаций блоков для пробных отклонений ортогональны). Наихудшая различимость - когда указанная разность равна нулю (в терминах векторной интерпретации нормированные векторы деформаций интегральных преобразований динамических характеристик этих блоков для пробных отклонений коллинеарные).
Рассмотрим реализацию предлагаемого способа поиска кратного дефекта для системы, структурная схема которой представлена на чертеже.
Передаточные функции блоков:
W 1 = k 1 ( T 1 p + 1 ) p
Figure 00000007
; W 2 = k 2 T 2 p + 1
Figure 00000008
; W 3 = k 3 T 3 p + 1
Figure 00000009
,
где номинальные значения параметров: T1=5 с; K1=1; К2=1; Т2=1 с; К3=1; Т3=5 с.
При моделировании в качестве входного сигнала будем использовать единичное ступенчатое воздействие. Время контроля ТК выберем равным 10 с.
Выберем три параметра интегрирования, кратные 5 T к
Figure 00000010
: α 1 = 5 T к = 0.5
Figure 00000011
, α 2 = 1 T к = 0.1
Figure 00000012
, α 3 = 25 T к = 2.5
Figure 00000013
. Определим варианты (m=7) пробных отклонений в виде уменьшения коэффициентов усиления (k1, …, k3) каждого динамического блока и комбинаций блоков на 10%: k1=0.9 (i=1); k2=0.9 (i=2); k3=0.9 (i=3); k1=0.9 и k2=0.9 (i=4); k1=0.9 и k3=0.9 (i=5); k2=0.9 и k3=0.9 (i=6); k1=0.9, k2=0.9 и k3=0.9 (i=7). При поиске кратного дефекта в виде отклонения коэффициентов усиления на 20% k1=0.8, k2=0.8 и k3=0.8 (кратный дефект №7) в первом, втором и третьем звене, при использовании трех контрольных точек, расположенных на выходах блоков, используя пробные отклонения величиной 10%, получены значения диагностических признаков по формуле (3): J1=0.6679; J2=0.3224; J3=0.5875; J4=0.2845; J5=0.4702; J6=0.4991; J7=0.0258. Различимость дефекта: ΔJ=J4-J7=0.2587. Анализ значений диагностических признаков показывает, что кратный дефект в первом, втором и третьем структурных блоках контролируемой системы находится правильно. Следует отметить, что способ работоспособен и при больших значениях величин пробных отклонений параметров (10-40%). Ограничением на величину пробного отклонения является необходимость сохранения устойчивости моделей с пробными отклонениями.
Для сравнения приведем диагностические признаки наличия неисправных блоков при одном параметре интегрирования α=0.5 (Патент на изобретение №2453898 от 20.06.2012 по заявке №2010148468/08 (070039), МКИ6 G05В 23/02, 2011): J1=0.9262; J2=0.08897; J3=0.8552; J4=0.4849; J5=0.398; J6=0.7402; J7=0.03559. Различимость дефекта ΔJ=J2-J7=0.05338.
Приведенные результаты показывают, что фактическая различимость нахождения дефектов этим способом выше, следовательно, выше будет и помехоустойчивость способа.
Покажем, что данный способ работоспособен и для поиска одиночных структурных дефектов.
При наличии дефекта в блоке №3 (в виде уменьшения параметра k3 на 20%, дефект №3): J1=0.1107; J2=0.7311; J3=0; J4=0.6868; J5=0.2717; J6=0.2708; J7=0.5799. Различимость дефекта ΔJ=J1-J3=0.1107.
Для сравнения приведем диагностические признаки наличия неисправного блока при одном параметре интегрирования α=0.5 (Патент на изобретение №2453898 от 20.06.2012 по заявке №2010148468/08(070039), МКИ6 G05В 23/02, 2011): J1=0.07426; J2=0.7469; J3=0; J4=0.8629; J5=0.2574; J6=0.5945; J7=0.7014. Различимость дефекта ΔJ=J1-J3=0.07426.
При наличии дефекта в блоке №2 (в виде уменьшения параметра k2 на 20%, дефект №2): J1=0.7929; J2=0; J3=0.7305; J4=0.5414; J5=0.2265; J6=0.7816; J7=0.2582. Различимость дефекта ΔJ=J5-J2=0.2265.
Для сравнения приведем диагностические признаки наличия неисправного блока при одном параметре интегрирования α=0.5 (Патент на изобретение №2453898 от 20.06.2012 по заявке №2010148468/08(070039), МКИ6 G05В 23/02, 2011): J1=0.7842; J2=0; J3=0.747; J4=0.6549; J5=0.2397; J6=0.8593; J7=0.05451. Различимость дефекта ΔJ=J7-J2=0.05451.
При наличии дефекта в блоке №1 (в виде уменьшения параметра k1 на 20%, дефект №1): J1=0; J2=0.7913; J3=0.1107; J4=0.6853; J5=0.3798; J6=0.3987; J7=0.6721. Различимость дефекта Δ=J3-J7=0.1107.
Для сравнения приведем диагностические признаки наличия неисправного блока при одном параметре интегрирования α=0.5 (Патент на изобретение №2453898 от 20.06.2012 по заявке №2010148468/08(070039), МКИ6 G05В 23/02, 2011): J1=0; J2=0.7841; J3=0.07425; J4=0.8032; J5=0.3313; J6=0.8379; J7=0.8003. Различимость дефекта ΔJ=J3-J1=0.07425.
Минимальное значение диагностического признака во всех случаях правильно указывает на дефектные блоки.

Claims (1)

  1. Способ поиска неисправных блоков в непрерывной динамической системе, основанный на том, что фиксируют число динамических элементов, входящих в состав системы, определяют время контроля ТК≥ТПП, используют тестовый сигнал на интервале t∈[0, TК], определяют n параметров интегрирования сигналов кратные 5 T K
    Figure 00000014
    , в качестве динамических характеристик системы используют интегральные оценки, полученные для n вещественных значений αl, фиксируют число k контрольных точек системы, регистрируют реакцию объекта диагностирования и модели, регистрируют реакцию заведомо исправной системы fjном(t), j=1,…,k на интервале t∈[0, ТK] в k контрольных точках и определяют интегральные оценки выходных сигналов Fjномl), j=1,…,k; l=1,…,n системы, для чего в момент подачи тестового сигнала на вход системы с номинальными характеристиками одновременно начинают интегрирование сигналов системы управления в каждой из k контрольных точек для n параметров интегрирования с весами e α l t
    Figure 00000015
    , l=1,…,n, путем подачи на первые входы k·n блоков перемножения сигналов системы управления, на вторые входы блоков перемножения подают экспоненциальные сигналы e α l t
    Figure 00000001
    , l=1,…,n, выходные сигналы k·n блоков перемножения подают на входы k·n блоков интегрирования, интегрирование завершают в момент времени ТК, полученные в результате интегрирования оценки выходных сигналов Fjномl), j=1,…,k; l=1,…,n регистрируют, определяют интегральные оценки сигналов модели для каждой из k контрольных точек и n параметров интегрирования, полученные в результате m пробных отклонений параметров, для чего поочередно для каждой модели с пробными отклонениями вводят пробное отклонение параметра ее передаточной функции и находят интегральные оценки выходных сигналов модели для n параметров αl и тестового сигнала x(t), полученные в результате интегрирования оценки выходных сигналов для каждой из k контрольных точек, каждого из m пробных отклонений и каждого из n параметров интегрирования Pjil), j=1,…,k; i=1,…,m; l=1,…,n регистрируют, определяют отклонения интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров ΔPjil)=Pjil)-Fjномl), j=1,…,k; i=1,…,m; l=1,…,n, определяют нормированные значения отклонений интегральных оценок сигналов модели, полученные в результате пробных отклонений параметров из соотношения Δ P ^ j i ( α l ) = Δ P j i ( α l ) r = 1 k Δ P r i 2 ( α l )
    Figure 00000016
    , определяют интегральные оценки сигналов контролируемой системы для k контрольных точек и n параметров интегрирования Fjl), j=1,…,k; l=1,…,n, определяют отклонения интегральных оценок сигналов контролируемой системы для k контрольных точек и n параметров интегрирования от номинальных значений
    ΔFjl)=Fjl)-Fjномl), j=1,…,k; l=1,…,n,
    определяют нормированные значения отклонений интегральных оценок сигналов контролируемой системы из соотношения:
    Δ F j ^ ( α l ) = Δ F j ( α l ) r = 1 k Δ F r 2 ( α l )
    Figure 00000017
    ,
    определяют диагностические признаки из соотношения:
    J i = 1 n l = 1 n { 1 [ j = 1 k Δ P j i ^ ( α l ) Δ F ^ j ( α l ) ] 2 }
    Figure 00000018
    , i=1,…,m, по минимуму диагностического признака определяют дефект, отличающийся тем, что фиксируют число m пробных отклонений как общее количество рассматриваемых одиночных и кратных дефектов блоков, пробные отклонения вводят поочередно в параметры каждого блока для одиночных дефектов или в параметры комбинации блоков для кратных дефектов, по минимуму диагностического признака определяют наличие одиночного либо кратного дефекта.
RU2012153311/08A 2012-12-10 2012-12-10 Способ поиска неисправных блоков в непрерывной динамической системе RU2519435C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012153311/08A RU2519435C1 (ru) 2012-12-10 2012-12-10 Способ поиска неисправных блоков в непрерывной динамической системе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012153311/08A RU2519435C1 (ru) 2012-12-10 2012-12-10 Способ поиска неисправных блоков в непрерывной динамической системе

Publications (2)

Publication Number Publication Date
RU2519435C1 true RU2519435C1 (ru) 2014-06-10
RU2012153311A RU2012153311A (ru) 2014-06-20

Family

ID=51213539

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012153311/08A RU2519435C1 (ru) 2012-12-10 2012-12-10 Способ поиска неисправных блоков в непрерывной динамической системе

Country Status (1)

Country Link
RU (1) RU2519435C1 (ru)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500951A (en) * 1981-01-07 1985-02-19 Hitachi, Ltd. Plant control system
US4608628A (en) * 1982-06-21 1986-08-26 Omron Tateisi Electronics Co. Programmable controller
US4851985A (en) * 1985-04-15 1989-07-25 Logitek, Inc. Fault diagnosis system for comparing counts of commanded operating state changes to counts of actual resultant changes
RU2429518C1 (ru) * 2010-07-08 2011-09-20 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправностей динамического блока в непрерывной системе
RU2435189C2 (ru) * 2009-06-23 2011-11-27 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в динамической системе
RU2439648C1 (ru) * 2010-10-13 2012-01-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в динамической системе
RU2439647C1 (ru) * 2011-01-11 2012-01-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в непрерывной динамической системе
RU2444774C1 (ru) * 2011-01-13 2012-03-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в дискретной динамической системе
RU2450309C1 (ru) * 2010-11-26 2012-05-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправностей динамического блока в непрерывной системе
RU2451319C1 (ru) * 2011-07-15 2012-05-20 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в динамической системе

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4500951A (en) * 1981-01-07 1985-02-19 Hitachi, Ltd. Plant control system
US4608628A (en) * 1982-06-21 1986-08-26 Omron Tateisi Electronics Co. Programmable controller
US4851985A (en) * 1985-04-15 1989-07-25 Logitek, Inc. Fault diagnosis system for comparing counts of commanded operating state changes to counts of actual resultant changes
RU2435189C2 (ru) * 2009-06-23 2011-11-27 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в динамической системе
RU2429518C1 (ru) * 2010-07-08 2011-09-20 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправностей динамического блока в непрерывной системе
RU2439648C1 (ru) * 2010-10-13 2012-01-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в динамической системе
RU2450309C1 (ru) * 2010-11-26 2012-05-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправностей динамического блока в непрерывной системе
RU2439647C1 (ru) * 2011-01-11 2012-01-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в непрерывной динамической системе
RU2444774C1 (ru) * 2011-01-13 2012-03-10 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в дискретной динамической системе
RU2451319C1 (ru) * 2011-07-15 2012-05-20 Государственное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Способ поиска неисправного блока в динамической системе

Also Published As

Publication number Publication date
RU2012153311A (ru) 2014-06-20

Similar Documents

Publication Publication Date Title
RU2541857C1 (ru) Способ поиска неисправностей в непрерывной динамической системе на основе введения пробных отклонений
RU2429518C1 (ru) Способ поиска неисправностей динамического блока в непрерывной системе
RU2439648C1 (ru) Способ поиска неисправного блока в динамической системе
RU2450309C1 (ru) Способ поиска неисправностей динамического блока в непрерывной системе
RU2009123999A (ru) Способ поиска неисправного блока в динамической системе
RU2528135C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
RU2473105C1 (ru) Способ поиска неисправностей блоков в непрерывной динамической системе
RU2444774C1 (ru) Способ поиска неисправного блока в дискретной динамической системе
RU2613630C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений
RU2461861C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе
RU2464616C1 (ru) Способ поиска неисправностей динамического блока в непрерывной системе
RU2586859C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
RU2451319C1 (ru) Способ поиска неисправного блока в динамической системе
RU2506623C1 (ru) Способ поиска неисправного блока в дискретной динамической системе
RU2676365C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе введения пробных отклонений
RU2579543C1 (ru) Способ поиска неисправного блока в дискретной динамической системе на основе смены позиции входного сигнала
RU2541896C1 (ru) Способ поиска неисправного блока в дискретной динамической системе на основе анализа знаков передач сигналов
RU2453898C1 (ru) Способ поиска неисправных блоков в динамической системе
RU2519435C1 (ru) Способ поиска неисправных блоков в непрерывной динамической системе
RU2486568C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе
RU2680928C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе функции чувствительности
RU2486569C1 (ru) Способ поиска неисправного блока в дискретной динамической системе
RU2562429C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
RU2562428C1 (ru) Способ поиска неисправного блока в непрерывной динамической системе на основе смены позиции входного сигнала
RU2506622C1 (ru) Способ поиска неисправных блоков в дискретной динамической системе

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141211