RU2518531C2 - Пневматическая противообледенительная система для ликвидации сосулек на крышах зданий - Google Patents

Пневматическая противообледенительная система для ликвидации сосулек на крышах зданий Download PDF

Info

Publication number
RU2518531C2
RU2518531C2 RU2012142290/03A RU2012142290A RU2518531C2 RU 2518531 C2 RU2518531 C2 RU 2518531C2 RU 2012142290/03 A RU2012142290/03 A RU 2012142290/03A RU 2012142290 A RU2012142290 A RU 2012142290A RU 2518531 C2 RU2518531 C2 RU 2518531C2
Authority
RU
Russia
Prior art keywords
outlet
tread
tube
icicles
compressor
Prior art date
Application number
RU2012142290/03A
Other languages
English (en)
Other versions
RU2012142290A (ru
Inventor
Валентин Борисович Мурычев
Валентин Петрович Занин
Александр Николаевич Ржаненков
Иван Дмитриевич Малюшин
Вадим Владимирович Потомский
Original Assignee
Валентин Борисович Мурычев
Валентин Петрович Занин
Александр Николаевич Ржаненков
Иван Дмитриевич Малюшин
Вадим Владимирович Потомский
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Валентин Борисович Мурычев, Валентин Петрович Занин, Александр Николаевич Ржаненков, Иван Дмитриевич Малюшин, Вадим Владимирович Потомский filed Critical Валентин Борисович Мурычев
Priority to RU2012142290/03A priority Critical patent/RU2518531C2/ru
Publication of RU2012142290A publication Critical patent/RU2012142290A/ru
Application granted granted Critical
Publication of RU2518531C2 publication Critical patent/RU2518531C2/ru

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

Изобретение относится к области строительства, в частности к пневматической противообледенительной системе для крыш зданий. Технический результат изобретения заключается в повышении эксплуатационной надежности крыши. Противообледенительная система содержит герметичный протектор из эластомерного или резиноармированного материала с возможностью подключения к источнику сжатого воздуха - компрессору. Протектор выполнен плоским из сложенного пополам в продольном направлении рулонного полотнища с напуском одной из сторон, которое со всех сторон свободно облегает объемную крупноячеистую сетку. Через протектор пропущена трубка со штуцерами на концах, прикрепленная к краю сетки со стороны напуска. Часть трубки, находящаяся в протекторе, перфорирована отверстиями, а выход источника сжатого воздуха через первый выход подключенного к его выходу тройника и шланг соединен с входным штуцером трубки, выходной штуцер которой закрыт заглушкой. Второй выход тройника подключен к входу нормально открытого электровентиля, обмотка которого и обмотка электродвигателя компрессора через двухполюсный выключатель параллельно подключены к низковольтному источнику электропитания и к розетке для подключения к системе автономного низковольтного переносного источника электропитания. 4 ил.

Description

Изобретение относиться к области строительства и жилищно-коммунального хозяйства и предназначено для ликвидации на крышах зданий сосулек и наледей, представляющих серьезную угрозу для прохожих и транспортных средств в местах их возможного падения.
Проблема ликвидации сосулек и наледи остро возникла в Санкт-Петербурге зимой 2010 года, когда в результате многоснежной зимы только в одном Центральном районе протекли кровли 1300 зданий, пострадали 5000 квартир. В итоге на ремонт всех попорченных крыш из городского бюджета было выделено более 0.5 млрд. рублей. Кроме того, от падения сосулек в городе пострадали более 260 человек (http:/www.kadis.ru/texts/index.phtml.?id=8876). В результате чего Правительство Санкт-Петербурга выпустило постановление от 10.08.2010 г.№1061 «О премии Правительства Санкт-Петербурга на лучший инновационный проект, направленный на применение новых технологий при проведении работ по уборке снега и удалению наледи с крыш зданий в Санкт-Петербурге». Однако ввиду сложности задачи этот конкурс не привел к сколь-нибудь существенным результатам. Поставленная задача по-прежнему остается актуальной и требует своего решения с привлечением специалистов различных специальностей.
Так, наиболее эффективным представляется способ борьбы с сосульками на этапах проектирования и строительства зданий. Как известно, главная причина образования сосулек и наледи - теплая скатная крыша, подогреваемая снизу теплом, идущим с чердака. Чтобы уменьшить приток этого тепла делаются «продувки» - специальные открытые окна на крышах. Академия коммунального хозяйства им. К.Д. Панфилова предлагает с этой целью наносить теплоизоляционное покрытие, например полиуретан, изнутри чердака на обрешетку кровли и кровельное железо, что уменьшит их подогрев. По результатам упомянутого выше конкурса о премии Правительства Санкт-Петербурга на лучший инновационный проект победил проект, предусматривающий нанесение на обрешетку кровли и кровельное железо эковаты, изготовленной из вторсырья - старых газет и белья (районная газета «Комендантский аэродром» №27(218) за декабрь 2010 года). Поступали также предложения об утеплении чердачных полов газобетонными плитами.
Все эти решения по своей сути являются паллиативными и не могут быть в полной мере реализоваться в условиях исторического городского фонда, здания которого с деревянными перекрытиями и со скатными крышами имеют большой износ. Кроме того, нет никакой гарантии относительно долговечности покрытий, наносимых на обрешетку кровли и кровельное железо изнутри чердака, а старые деревянные покрытия могут не выдержать веса теплоизоляционных плит из газобетонных плит.
Поэтому разработка новых устройств, предназначенных для непосредственной ликвидации сосулек и наледи, образовывающихся на скатных крышах зданий, является весьма актуальной. Известно несколько типов устройств для борьбы с обледенением защищаемых объектов: термические, механические, пневматические и гидрофобные. Так, устройства, реализующие термический способ защиты, содержат рукава, уложенные вдоль кромки крыши, по которой подается горячая вода или горячий воздух (патенты РФ №2333326, МПК E04D 13/076 от 27.05.2006; №2441122, МПК E04D 13/076 от 10.10.2011; МПК E04D 13/080 от 20.06.2007), либо электронагревательные кабели или элементы (патенты РФ №2310727, МПК E04D 13/076 от 10.11.2007, №2371339, МПК E04D 13/076 от 27.02.2009, патент РФ №2161680, МПК E04D 13/064 от 10.01.2001).
Устройства, реализующие механический способ защиты от сосулек и наледей, содержат механические, электромеханические пьезоэлектрические элементы для создания импульсных деформаций или вибраций в материале крыши с целью предупреждения образования и разрушения уже образовавшихся на кромках крыши и самой крыше сосулек и наледей (патенты РФ №2327829, МПК Е01Н 5/12 от 27.10.2007, №2439261, МПК У05В 13/076 от 20.11.2011). Главный недостаток этих устройств заключается в негативном воздействии на материал кровель.
Устройства, включающие гидрофобные покрытия кровель (например, патент РФ №2291261 МПК E04D 13/076 от 17.08.2005), не является достаточно надежным и прежде всего из-за малой долговечности этих покрытий.
Устройства, реализующие пневматический способ защиты объектов от обледенения нашли широкое распространение в авиации (патенты США №4516745, МПК И64В 15.18 от 14.05.1985, №4358075, МПК И64В 15.02 от 09.11.1982). Различные конструкции пневматических противообледенительных устройств, используемых в авиации, изложены в книге: Функциональные системы аэрокосмической техники / А.В.Бетин, Н.В.Бондарева, В.Н.Кобрин, С.А.Лобов, Н.В.Нечипорук. - Учебн. Пособие. - Харьков: Нац. Аэрокосмический Университет «Харьковский авиационный ин-т», 2005. - 112 с.).
Однако все эти технические решения полностью адаптированы к данной предметной области (авиации) и трудно реализуемы для решения задачи создания противообледенительных устройств для удаления сосулек и наледей на крышах зданий. Вместе с тем, следует отметить, что пневматические противообледенительные системы способны создавать весьма значительные усилия по разрушению сосулек и наледи, что делает их весьма перспективными для защиты зданий от сосулек и наледей в суровых климатических условиях. Это обстоятельство нашло подтверждение в устройствах разгрузки насыпных смерзшихся грузов с железнодорожных платформ, автомобилей и прицепов, содержащих гибкую оболочку, размещенную под грузом и в которую при разгрузка подается сжатый воздух, под воздействием которого оболочка раздувается и создает усилие, под действием которого груз приподнимается и сбрасывается с транспортного средства (см. АС №115804, МПК В60Р 1/00 от 30.05.85, АС №1161420, МПК В60Н 1/00 от 15.06.85).
С учетом изложенного выше из всех известных способов и устройств борьбы с сосульками и обледенением крыш зданий целесообразно использовать устройства, реализующие пневматический способ борьбы с сосульками и наледями, как наиболее эффективный и приспособленный способ борьбы с сосульками в условиях сурового климата.
Ближайшим аналогом к заявленному изобретению является устройство для борьбы с сосульками и наледями предложенное жилищным комитетом администрации Санкт-Петербурга. Это устройство включает «кишку полимерную», проложенную по периметру дома, и источник сжатого воздуха. Когда наледь начинает появляться, полый полимерный шланг накачивают воздухом, и ледяной нарост еще в безопасном объеме отлетает от крыши. Данное устройство описано информационным агентством РОСБАЛТ, Россия, Санкт-Петербург, документ www.rosbalt.ru/2010/08/10/761088/html, дата 2010-08-10 18:26:00+04.
Недостаток этого устройства заключается в том, что при значительном похолодании и перепадах температур на ряде участков «кишки полимерной», которая в дальнейшем будет называться протектором, возможно смерзание ее отдельных участков, что может перекрыть поступление сжатого воздуха на ряд участков «кишки» (протектора). Все это снижает эффективность применения устройства и его надежность. С другой стороны, естественное желание увеличить проходимость смерзшегося протектора путем подачи в него повышенного давления воздуха увеличивает вероятность разрыва протектора, что также снижает его надежность. Кроме того, прокладка протектора - «кишки» по всему фасаду здания, его выступам и изгибам может привести к сужению сечения «кишки» (протектора), а в ряде случаев к ее перекрытию и ускоренному смерзанию в условиях низких температур и их больших перепадов.
Смерзание оболочки протектора приводит к тому, что оболочка при подаче в нее сжатого воздуха полностью не может расшириться, вследствие чего наледи и сосульки, образующиеся на этой части протектора, которая смерзлась и не расширилась, не будут разрушены, что снижает надежность устройства.
С другой стороны, стремление все-таки ликвидировать наледи и сосульки, оставшиеся неразрушенными на поверхности смерзшейся части протектора, путем повторного наддува оболочка протектора или повышения давления этого наддува приведет к увеличению циклов нагрузки на оболочку протектора и увеличению нагрузки при каждом цикле нагружения оболочки протектора и, следовательно, также приведет к снижению надежности устройства.
Фасады и кромки крыш, особенно в исторической части города, имеют сложную конфигурацию, что затрудняет использование различных противообледенительных систем, особенно пневматических, из-за многочисленности изгибов и обусловленных ими сужений. Значительные трудности возникают при прокладке протяженных пневмокоммуникаций, размещении и установке источников сжатого газа и средств управления ими. Все это существенно сужает область применения существующих прикладных пневматических противообледенительных систем для ликвидации сосулек и наледи на крышах зданий.
Таким образом, технической задачей заявляемого изобретения является повышение надежности устройства и расширение области его применения.
Так, повышение надежности заявляемого устройства обеспечивается введением в его состав объемной крупноячеистой сетки, а также выполнением оболочки протектора из эластомерного, сложенного пополам в продольном направлении рулонного материала с напуском одной из сторон, свободно облегающего расположенную внутри оболочки гибкую крупноячеистую сетку. Подобное выполнение оболочки протектора исключает его предварительное натяжение, приводящее к предварительному нагружению оболочки. Объемная крупноячеистая сетка, находящаяся внутри протектора, не допускает слипания стенок оболочки протектора вследствие его смерзания и обеспечивает свободный доступ воздуха, подаваемого от компрессора, ко всем внутренним участкам оболочки. Предварительное натяжение оболочки в исходном состоянии (до ее наддува) исключается ее сообщением с атмосферой с помощью нормального открытого электровентиля.
Кроме того, надежность функционирования устройства обеспечивается таким размещением протектора, чтобы талая вода, стекающая с крыши, попадала на расположенный ниже протектор и замерзала, образуя сосульки и наледи на его поверхности, а не на кромке крыши, что достигается креплением протектора с помощью напуска его оболочки к подстилающим элементам кровли.
Кроме того, использование трубок, перфорированных отверстиями или отверстиями в виде сопел, через которые подается сжатый воздух для наддува протектора, обеспечивает равномерное его заполнение, исключает динамические нагрузки, что способствует увеличению надежности заявляемого устройства.
Протектор с трубкой и объемной крупноячеистой сеткой может рассматриваться как отдельный элементарный модуль, что позволяет создавать модульные конструкции, когда выходной штуцер при снятой заглушке соединяется с входным штуцером другой трубки, проходящей через свой протектор и т.д. Наличие соединенных подобным образом перфорированных трубок позволяет создавать модульные конструкции самой разнообразной конфигурации, что расширяет область применения устройства.
При большом числе модулей они могут соединяться друг с другом с помощью гибких шлангов, различных переходников и т.д., образуя единую многозвенную гибкую трубку, отдельные звенья (модули) которой могут огибать и повторять самые сложные контуры фасадов зданий и кромок двухскатных крыш. В этом случае источник сжатого газа (компрессор) через разветвитель может подключаться к образованной подобным образом трубе двумя способами. При небольшом числе модулей источник сжатого газа (компрессор) через разветвитель (тройник) подключается ко входу трубки первого модуля, а выходной штуцер последнего модуля закрывается заглушкой. При этом заполнение протекторов всех модулей осуществляется компрессором первого модуля. При большом числе модулей производительность одного компрессора может оказаться недостаточной, поэтому к выходному штуцеру последнего модуля многозвенной трубки может подключаться компрессор последнего модуля, который в данном случае используется в полной комплектации и включается (выключается) синхронно с компрессором и электровентилем первого модуля. В этом случае заполнение протекторов осуществляется двумя компрессорами, что ускоряет процесс применения устройства. Следует также отметить, что выходящие из протекторов части трубок, могут использоваться для крепления многозвенных модулей к элементам конструкции зданий.
Заявляемое устройство предназначено для работы в опасных условиях (атмосферные осадки, большие перепады температуры, повышенная влажность и т.д.), что вызывает необходимость использования низковольтных источников электропитания, например 12 В, для питания обмоток электродвигателя компрессора и электровентиля.
Таким образом, единым техническим результатом, достигаемым при осуществлении заявляемого изобретения, является повышение надежности устройства и расширение области его применения.
На чертеже фиг.1 представлено заявленное устройство с угловым вырезом и в разрезе, на фиг.2 - сосульки и наледи на протекторе, на фиг.3 - процесс их разрушения, на фиг.4 - монтажная схема размещения устройства на защищаемом здании.
Представленное на фиг.1 заявленное устройство включает протектор 1, выполненный в виде свободно сложенного в продольном направлении рулонного полотнища из эластомерного или разноармированного материала с напуском 2 размером δ=10…30 см одной из сторон. Все края рулонного полотнища, образующего протектор, герметически скреплены. Сквозь оболочку протектора через герметичные вводы 3 введена трубка 4, часть которой, находящаяся внутри протектора, перфорирована отверстиями 5 или соплами. Внутри протектора к трубке вдоль всей ее длины до стороны напуска прикреплена объемная крупноячеистая сетка 6. На выходящих из протектора концах трубки 4 установлены входной 7 и выходной 8 штуцеры. Компрессор 9 через первый выход I подключенного к его выходу разветвителя 10 (тройника) с помощью шланга 11 подключен к входному штуцеру 7 трубки 4, а второй выход II разветвителя (тройника) 10 соединен с входом нормально открытого электрического вентиля 12. Второй (выходной) штуцер 8 трубки 4 закрыт заглушкой 13. Электродвигатель компрессора 9 и обмотка электродвигателя 13 через двухполюсной выключатель 14 подключены к низковольтному источнику напряжения 15, например 12 В, выполненному либо в стационарном, либо в переносном вариантах. В последнем случае электродвигатель компрессора 9 и электрическая обмотка электровентиля 12 параллельно подключены к розетке 16, в которую включается указанный низковольтный источник напряжения.
Заявленное устройство на защищаемом объекте размещается следующим образом. Так, с целью обеспечения надежности устройства и в первую очередь такой ее составляющей, как сохраняемость, компрессор 9 с разветвителем 10 и электровентиль 12 размещаются не на открытом воздухе, где они могут подвергаться различным атмосферным воздействиям, а на чердаке или под скатом крыши в непосредственной близости от защищаемого участка кровли вблизи места установки протектора 1. Узел крепления протектора 1 на крыше здания с помощью напуска 2 протектора 1 показан на фиг.2. С этой целью там же может размещаться низковольтный источник питающего напряжения 12 В.
Средства управления устройством: розетка 16, двухполюсный выключатель 14, посредством четырехжильного кабеля выводится на пульт управления, находящийся в техническом или служебном помещениях зданий и сооружений или в помещении консьержа. Розетка 15 для автономного питания системы может выводится и закрепляться на наружной поверхности стены здания на высоте, удобной для подключения автономного источника питания и работы с ним.
Монтажная схема размещения заявленного устройства на защищаемом здании приведена на фиг.4 в обозначениях, принятых на фиг.1.
Устройство работает следующим образом. В исходном состоянии выключатель 14 разомкнут, а в розетку 16 не включен автономный источник питания. В этом случае устройство находится в обесточенном состоянии, а нормально открытый в этом состоянии электровентиль 12 сообщает полость протектора 1 с атмосферой.
Когда на выполненном, как это показано на фиг.1, фиг.2 и фиг.3, протекторе 1, оболочка которого в исходном состоянии свободно облегает гибкую крупноячеистую сетку 6, образуется своеобразный нарост из наледи и сосулек, оператор или работник ЖКХ устанавливает выключатель 14 в положение «включено» или подсоединяет переносной источник низковольтного напряжения к розетке 16. В этом случае напряжение подается на обмотку электровентиля 12, который срабатывая, закрывает свое проходное сечение, образуя совместно с разветвителем (тройником) 10, шлангом 11, штуцером 7, трубкой 5 и внутренней полостью протектора 1 закрытый объем. Одновременно напряжение подается на электродвигатель компрессора 9, который начинает работать и заполнять сжатым воздухом этот объем. Благодаря наличию перфорированных отверстий или сопел 5 в трубке 4 и наличию объемной ячеистой сетки 6, размещаемой внутри протектора 1, смерзание отдельных участков оболочки протектора 1 исключается и сжатый воздух оказывает равномерно возрастающее давление на все внутренние участки оболочки протектора 1 при его заполнении. Когда это давление внутри расширяющейся под его воздействием оболочки протектора 1 превысит прочность ледяного нароста (сосульки), последний под воздействием возникающих в нем нормальных и касательных напряжений и разламывающих усилий разрушается, как это показано на фиг.3. При расширившемся, изменившем первоначальную форму, раздувшемся протекторе 1 гибкая объемная ячеистая сетка 6, прикрепленная к трубке 4, также деформируется (см. фиг.3). Отколовшиеся от деформированного подобным образом протектора 1 куски льда от образовавшихся на нем сосулек и наледи падают вниз на придомовой участок, который на время ликвидации сосулек и наледи отгораживается и охраняется, чем обеспечивается безопасность работ по очистке крыш зданий от сосулек.
После разрушения сосулек и наледи на протекторе 1 сотрудник ЖКХ переводит переключатель 14 в положение «выключено» и (или) обесточивает розетку 16. В результате чего компрессор 9 прекращает функционирование и подачу воздуха в протектор 1, а обмотка электровентиля 12 обесточивается, в результате чего его проходное сечение вновь открывается, сообщая полость протектора с атмосферой. Растянувшаяся ранее оболочка протектора 1 под действием упругих сил, возникших ранее в материале, растянувшемся в результате наддува оболочки протектора 1, вновь стягивается и занимает исходное положение, показанное на фиг.1 (см. сечение А-А), после чего устройство вновь готово к работе.
При повторной и всех возможных последующих попытках разрушения оставшихся или вновь образовавшихся на протекторе 1 наледи и сосулек весь описанный выше цикл работы устройства вновь повторяется.
Описанное выше устройство может рассматриваться как отдельный автономный модуль. Так, в зависимости от размеров и конфигурации защищаемых зданий и крыш к выходному штуцеру 8 трубки 4 вместо заглушки 13 с помощью различных переходников или гибких шлангов подключается второй протектор, а к нему третий и т.д. В этом случае собранные в единую систему модули могут свободно повторять конфигурацию фасадов, кромок крыш и их выступающих элементов. Тем самым расширяются возможности устройства и облегчается удаление сосулек и наледи с выступающих элементов крыш и зданий, прежде всего в исторической части города.
Технический эффект, получаемый в результате использования заявляемой пневматической противообледенительной системы для удаления сосулек на крышах зданий, заключается в повышении надежности и расширении области ее применения.
Таким образом, благодаря новой совокупности существенных признаков решается поставленная задача и достигается указанный выше технический результат.

Claims (1)

  1. Пневматическая противообледенительная система для ликвидации сосулек и наледи на крышах зданий, содержащая герметичный протектор из эластомерного или резиноармированного материала с возможностью подключения к источнику сжатого воздуха (компрессору), отличающаяся тем, что протектор выполнен плоским из сложенного пополам в продольном направлении рулонного полотнища с напуском δ=10…30 см одной из сторон, которое со всех сторон свободно облегает объемную крупноячеистую сетку, например, прямоугольной формы, покрывающую всю внутреннюю площадь протектора, через который пропущена трубка со штуцерами на концах и которая прикреплена к краю объемной крупноячеистой сетки со стороны напуска, причем часть трубки, находящаяся в протекторе, перфорирована отверстиями или отверстиями в виде сопел, а выход источника сжатого воздуха (компрессора) через первый выход подключенного к его выходу разветвителя (тройника) и шланг соединен с входным штуцером трубки, выходной штуцер которой закрыт заглушкой, второй выход разветвителя (тройника) подключен к входу нормально открытого электровентиля, обмотка которого и обмотка электродвигателя компрессора через двухполюсный выключатель параллельно подключены к низковольтному, например 12 В, источнику электропитания и к розетке для подключения к системе автономного низковольтного переносного источника электропитания.
RU2012142290/03A 2012-09-26 2012-09-26 Пневматическая противообледенительная система для ликвидации сосулек на крышах зданий RU2518531C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012142290/03A RU2518531C2 (ru) 2012-09-26 2012-09-26 Пневматическая противообледенительная система для ликвидации сосулек на крышах зданий

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012142290/03A RU2518531C2 (ru) 2012-09-26 2012-09-26 Пневматическая противообледенительная система для ликвидации сосулек на крышах зданий

Publications (2)

Publication Number Publication Date
RU2012142290A RU2012142290A (ru) 2014-04-10
RU2518531C2 true RU2518531C2 (ru) 2014-06-10

Family

ID=50435897

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012142290/03A RU2518531C2 (ru) 2012-09-26 2012-09-26 Пневматическая противообледенительная система для ликвидации сосулек на крышах зданий

Country Status (1)

Country Link
RU (1) RU2518531C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2558574C1 (ru) * 2014-06-16 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВПО "КнАГТУ") Противообледенительное устройство

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU82622A1 (ru) * 1948-01-17 1949-11-30 П.М. Шувалов Рукав дл газа
SU1071723A1 (ru) * 1981-07-03 1984-02-07 Leshchinskij Vladimir Z Устройство дл удалени сосулек со свесов кровли
US6668491B1 (en) * 1997-03-03 2003-12-30 Timothy C. Bonerb Device for removing ice from roofs
RU108061U1 (ru) * 2010-09-08 2011-09-10 Юрий Александрович Телегин Устройство для удаления льда и сосулек с карнизного края крыши

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU82622A1 (ru) * 1948-01-17 1949-11-30 П.М. Шувалов Рукав дл газа
SU1071723A1 (ru) * 1981-07-03 1984-02-07 Leshchinskij Vladimir Z Устройство дл удалени сосулек со свесов кровли
US6668491B1 (en) * 1997-03-03 2003-12-30 Timothy C. Bonerb Device for removing ice from roofs
RU108061U1 (ru) * 2010-09-08 2011-09-10 Юрий Александрович Телегин Устройство для удаления льда и сосулек с карнизного края крыши

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2558574C1 (ru) * 2014-06-16 2015-08-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Комсомольский-на-Амуре государственный технический университет" (ФГБОУ ВПО "КнАГТУ") Противообледенительное устройство

Also Published As

Publication number Publication date
RU2012142290A (ru) 2014-04-10

Similar Documents

Publication Publication Date Title
RU2220269C2 (ru) Надувной рабочий навес
US9227749B2 (en) Climatic protection of fracking hydro tanks
KR20110114389A (ko) 소방 장치
CN110747740B (zh) 一种斜拉索智能防冰除冰系统及应用方法
RU2518531C2 (ru) Пневматическая противообледенительная система для ликвидации сосулек на крышах зданий
RU131768U1 (ru) Пневматическая противообледенительная система для ликвидации сосулек на крышах зданий
CN101240928A (zh) 予制式可维修低温辐射供冷及采暖系统
US20060204647A1 (en) De-icing system for driveways, walkways, sidewalks and other surfaces
US20110240166A1 (en) Insulation and methods of insulating
JP5725631B2 (ja) 勾配屋根積雪の反復稼動式無労力雪下ろし装置
RU148528U1 (ru) Устройство для удаления ледяного образования (наледи)
CN110528724A (zh) 一种管线分离防水保温一体化墙体及其构成的建筑物
CN105840099B (zh) 一种极地钻机
CN105926516A (zh) 一种道路清扫车的水路系统
MX2010006512A (es) Metodo para aislamiento térmico de un invernadero recubierto de cubierta inflable.
CN209244598U (zh) 一种单洞隧道单路分区接力补水管道干式水消防系统
RU188011U1 (ru) Кожух криогенной воздухоразделительной установки
EP1777349B1 (en) Device for thawing frozen ground
CN110293892A (zh) 一种移动式液压驱动应急泵车
RU2658796C2 (ru) Система противопожарной защиты объекта
CN109529236A (zh) 一种隧道分区接力补水管道干式水消防控制系统
JP6580908B2 (ja) 給水消火装置
CN209244597U (zh) 一种单洞隧道双路分区接力补水管道干式水消防系统
JPH0352922Y2 (ru)
KR20240048153A (ko) 열 포집막과 열 공급배관이 장착된 에어돔용 제설장치

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150927