RU2516000C2 - Способ распознавания и определения параметров образа объекта на радиолокационном изображении - Google Patents

Способ распознавания и определения параметров образа объекта на радиолокационном изображении Download PDF

Info

Publication number
RU2516000C2
RU2516000C2 RU2012115951/07A RU2012115951A RU2516000C2 RU 2516000 C2 RU2516000 C2 RU 2516000C2 RU 2012115951/07 A RU2012115951/07 A RU 2012115951/07A RU 2012115951 A RU2012115951 A RU 2012115951A RU 2516000 C2 RU2516000 C2 RU 2516000C2
Authority
RU
Russia
Prior art keywords
coordinates
objects
radar
parameters
image
Prior art date
Application number
RU2012115951/07A
Other languages
English (en)
Other versions
RU2012115951A (ru
Inventor
Александр Владимирович Коренной
Сергей Андреевич Кулешов
Сергей Анатольевич Лепешкин
Original Assignee
Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации filed Critical Федеральное государственное военное образовательное учреждение высшего профессионального образования "Военный авиационный инженерный университет" (г. Воронеж) Министерства обороны Российской Федерации
Priority to RU2012115951/07A priority Critical patent/RU2516000C2/ru
Publication of RU2012115951A publication Critical patent/RU2012115951A/ru
Application granted granted Critical
Publication of RU2516000C2 publication Critical patent/RU2516000C2/ru

Links

Images

Landscapes

  • Radar Systems Or Details Thereof (AREA)

Abstract

Изобретение относится к способам обработки радиолокационных изображений (РЛИ). Достигаемый технический результат - повышение быстродействия обработки РЛИ. Сущность изобретения состоит в следующем. При зондировании участка земной поверхности с помощью радиолокатора с синтезированной апертурой (РСА), установленного на носителе в виде ЛА, получают отраженный сигнал от земной поверхности, одновременно с получением сигнала определяют с помощью навигационной системы ЛА пространственное положение фазовых центров антенн (ФЦА) и запоминают его. Полученный сигнал на входе РСА представляют в виде суммы радиоизображений объекта, фона и шума наблюдения. При этом фон, на котором расположен объект в совокупности с шумами наблюдения, рассматривают как некоторый эквивалентный шум. Для совместного различения и оценки параметров (координат) используют байесовский метод, предполагающий совместную оптимизацию этих двух операций. В соответствии с байесовским правилом оптимальности необходимо минимизировать апостериорный риск по двум параметрам: оценке дискретного параметра неопределенности i - определить объект, и оценке параметров (координат) объекта, где i - тип объекта. Совместная минимизация риска может быть выполнена в два этапа: сначала по условной оценке параметров (координат) объекта при фиксированном значении i, а затем по всем i. Определение параметров (координат) образа объектов в данном алгоритме предшествует различению самих объектов, однако байесовская оценка формируется после определения i-го объекта. Условную оценку координат объекта получают по методике, приведенной с использованием эталонных моделей объектов, формируемых предварительно. Для различения объектов необходимо выполнить минимизацию апостериорного риска по всем возможным i-типам объектов. При этом алгоритм различения сводится к сравнению усредненных отношений правдоподобия с набором пороговых значений, которые формируются предварительно для всех типов объектов. 1 ил.

Description

Изобретение относится к способам обработки радиолокационных изображений в целях оперативного обнаружения на земной (водной) поверхности объектов, их распознавания и определения местоположения.
Известен способ обнаружения и определение координат искомого объекта (по патенту РФ №2392635, МПК G01S 5/02 (2010/01) опубликован 20.06.2010). Он заключается в том, что при зондировании земной поверхности радиолокатором с синтезированной апертурой (РСА) используют M≥2 каналов, работающих в разных частотных диапазонах, определяются с помощью навигационной системы (НС) координаты фазовые центры антенн (ФЦА), после чего они запоминаются. Для первичного обнаружения объекта выбирается канал РСА с наилучшей контрастностью сигнала искомого объекта на фоне местности, далее результаты первичного обнаружения используют в канале с наибольшей несущей частотой, для повторного зондирования участка местности с более высоким разрешением. После повторного зондирования происходит различение искомого объекта и определение его координат в экранной системе координат с последующим их пересчетом в геодезические координаты с использованием хранящихся данных о координатах ФЦА.
Недостатком известного способа является то, что задачи обнаружения и распознавания объекта на радиолокационном изображении (РЛИ) решается с помощью операторов-дешифровщиков и отличается низким быстродействием и ограниченной пропускной способностью, связанной с особенностями человеческого организма (Ю.С. Лифанов, В.Н. Саблин, А.Н. Федоринов, В.И. Шапошников Направления развития радиолокационных средств и систем разведки наземных целей: Часть 2. Воздушные средства и системы радиолокационной разведки // Зарубежная радиоэлектроника. Успехи современных наук. 1998. №6. С.3-16.).
В данном способе задачи различения и оценки координат объекта решаются совместно и автоматизированно.
Техническим результатом изобретения является повышение быстродействия обработки РЛИ, достигаемое тем, что при использовании способа распознавания и определения параметров образа объекта на радиолокационном изображении, включающего использование радиолокатора с синтезированной апертурой, установленного на носителе в виде летательного аппарата, зондирование зон с помощью радиолокатора с синтезированной апертурой и одновременным определением, запоминанием с помощью навигационной системы летательного аппарата пространственного положения фазовых центров антенн радиолокатора с синтезированной апертурой при каждом зондировании, формирование на входе приемника радиолокатора с синтезированной апертурой сигнала, отраженного от земной поверхности, и его запоминание, восстановление радиолокационного изображения, распознавание на восстановленном радиолокационном изображении объекта, определение координат его положения, сигнал, отраженный от земной поверхности, запоминают, распознавание объекта и оценку его координат производят совместно, при восстановлении радиолокационного изображения фон, на котором расположен искомый объект, рассматривают как шум, вычисляют К условных оценок координат объекта и усредненных отношений правдоподобия, где К - количество объектов, подлежащих распознаванию, вычисляют К×(К+1) значение порога, сравнивают i-е усредненное отношение правдоподобия со значениями порога остальных объектов, где i∈К, если значение усредненного отношения правдоподобия превышает хотя бы одно значение порога, то принимают решение о наличии i-го объекта на радиолокационном изображении и выдают оценку его координат, в противном случае ту же процедуру производят для следующего объекта, и так до тех пор, пока не будет принято решение в пользу одного из объектов, если ни один из объектов не обнаружен, то переходят к анализу следующего сигнала.
Сущность изобретения состоит в следующем. При зондировании участка земной поверхности с помощью РСА, установленного на носителе в виде летательного аппарата (ЛА), получают отраженный сигнал от земной поверхности, одновременно с получением сигнала определяется с помощью НС ЛА пространственное положение ФЦА и происходит его запоминание. Полученный сигнал на входе РСА представляется в виде суммы радиоизображений объекта, фона и шума наблюдения. При этом фон, на котором расположен объект в совокупности с шумами наблюдения можно рассматривать как некоторый эквивалентный шум. При решении задачи совместного различения и оценки параметров (координат) используется байесовский метод (Горев П.Г., Коренной А.В., Егоров С.А. Восстановление изображений в условиях априорной неопределенности как задача совместного различения и восстановления случайных полей. // Радиотехника. 1999. №3. С.44-47.), предполагающий совместную оптимизацию этих двух операций. При этом показателем качества при выборе решений является апостериорный риск, вычисляемый для каждого типа объекта. В соответствии с байесовским правилом оптимальности необходимо минимизировать апостериорный риск по двум параметрам: оценке дискретного параметра неопределенности i (определить объект) и оценке параметров (координат) объекта. Совместная минимизация риска может быть выполнена в два этапа: сначала по условной оценке параметров (координат) объекта при фиксированном значении i, а затем по всем i. Определение параметров (координат) образа объектов в данном алгоритме предшествует различению самих объектов, однако байесовская оценка формируется после определения i-го объекта. Условную оценку координат объекта получают по методике, приведенной в (Коренной А.В., Ершов Л.А. Восстановление по методике, приведенной в (Коренной А.В., Ершов Л.А. Восстановление неподвижных изображений как задача пространственной фильтрации статических случайных полей. // Радиотехника. 1996. №7. С.74-77.) с использованием эталонных моделей объектов формируемых предварительно. Данные модели описываются непрерывными математическими функциями. Для различения объектов необходимо выполнить минимизацию апостериорного риска по всем возможным i-типам объектов. При этом алгоритм различения сводится к сравнению усредненных отношений правдоподобия с набором пороговых значений, которые формируются предварительно для всех типов объектов.
Таким образом распознавание образа объекта и определение его координат сводится к вычислению К условных оценок координат объекта и отношений правдоподобия, а также К×(К+1) значений порога, если усредненное отношение правдоподобия сформировано для i-го объекта больше значений порога, сформированного для всех остальных объектов, принимается решение о наличии i-го объекта на радиолокационном изображении и формируется оценка его координат, в противном случае ту же процедуру производят для следующего объекта, и так до тех пор, пока не будет принято решение в пользу одного из объектов. Если принимается решение об отсутствии объекта (i=0), то формирование оценки координат вообще не производится и переходят к следующему сигналу.
Способ может быть реализован, например, с помощью устройства, структурная схема которого приведена на фигуре, где обозначено: 1 - приемник; 2 - блок хранения информации; 3 - блок хранения априорных данных; 4 - блок пространственных координат ФЦА; 5 - блок усредненного отношения правдоподобия; 6 - блок условных оценок координат; 7 - блок байесовских оценок координат; 8 - блок пороговых значений; 9 - устройство сравнения; 10 - ключевая схема; 11 - счетчик. Блок хранения информации (2) предназначен для запоминания сигналов, отраженных от земной поверхности и пространственных координат ФЦА, соответствующих принятым сигналам, данный блок может быть выполнен в виде, например, оперативного запоминающего устройства. Блок хранения априорных данных 3 предназначен для хранения эталонных моделей объектов, подлежащих различению, их априорных вероятностей присутствия в принимаемом сигнале, коэффициентов матричной функции потерь и д.р., данный блок может быть выполнен в виде, например, постоянного запоминающего устройства. Блок пространственных координат ФЦА 4 предназначен для формирования пространственных координат ФЦА РСА, данный блок может быть выполнен в виде, например, приемника спутниковой навигации GPS. Блок усредненного отношения правдоподобия 5 предназначен для вычисления усредненных отношений правдоподобия всех типов объектов подлежащих различению, данный блок может быть выполнен в виде, например, вычислительного устройства реализующего выражение (10) (Горев П.Г., Коренной А.В., Егоров С.А. Восстановление изображений в условиях априорной неопределенности как задача совместного различения и восстановления случайных полей. // Радиотехника. 1999. №3. С.44-47.). Блок условных оценок координат 6 предназначен для формирования условных оценок координат объектов подлежащих распознаванию, например, по критерию минимума среднего квадрата ошибки. Блок байесовских оценок координат 7 предназначен для формирования байесовских оценок координат объектов подлежащих распознаванию, данный блок может быть выполнен в виде, например, вычислительного устройства реализующего выражение (12) (Горев П.Г., Коренной А.В., Егоров С.А. Восстановление изображений в условиях априорной неопределенности как задача совместного различения и восстановления случайных полей. // Радиотехника. 1999. №3. С.44-47.). Блок пороговых значений предназначен для формирования значений адаптивного порога объектов, подлежащих распознаванию, данный блок быть выполнен в виде, например, вычислительного устройства реализующего выражение (20) (Горев П.Г., Коренной А.В., Егоров С.А. Восстановление изображений в условиях априорной неопределенности как задача совместного различения и восстановления случайных полей. // Радиотехника. 1999. №3. С.44-47.). Устройство сравнения 9 предназначено для сравнения усредненного отношения правдоподобия со значениями порога. Ключевая схема 10 осуществляет соответствие между выбранным типом объекта и байесовской оценкой его координат. Счетчик 11 предназначен для подсчета количества выполненных сравнений усредненных значений правдоподобия с пороговыми значениями.
Устройство работает следующим образом: сигнал, отраженный от земной поверхности, поступает в приемник. С приемника сигнал поступает в блок хранения информации, где происходит его запоминание вместе с данными о пространственных координатах ФЦА РСА, соответствующими данному сигналу, поступающими с блока пространственных координат ФЦА. С блока хранения информации сигнал поступает в блок усредненного отношения правдоподобия и на блок условных оценок. С блока усредненного отношения правдоподобия значения усредненных отношений правдоподобия поступают в блок байесовских оценок, в блок пороговых значений и на устройство сравнения. С блока условных оценок значения условных оценок поступают в блок байесовских оценок и на блок пороговых значений. С блока хранения априорных данных необходимая информация поступает в блок усредненных отношений правдоподобия, в блок условных оценок, в блок байесовских оценок и в блок пороговых значений. С блока байесовских оценок оценки координат объектов поступают в блок пороговых значений и на ключевую схему. С блока пороговых значений значения порогов поступают в устройство сравнения, в устройстве сравнения, сравниваются значения усредненных отношений правдоподобия с пороговыми значениями, на выходе формируется информация о типе объекта, содержащемся во входящем сигнале или об его отсутствии. С устройства сравнения данные о типе объекта поступают на ключевую схему и на счетчик. На выход ключевой схемы проходит та из оценок объектов, которая соответствует входящем сигнале или об его отсутствии. С устройства сравнения данные о типе объекта поступают на ключевую схему и на счетчик. На выход ключевой схемы проходит та из оценок объектов, которая соответствует выходному сигналу с блока пороговых значений, в противном случае подается сигнал на счетчик. Если искомый объект отсутствует в наблюдении, то со счетчика поступает управляющий сигнал в блок хранения информации на выдачу следующего сигнала для обработки.
Применение предложенного способа позволит обеспечить автоматизацию обработки радиолокационных изображений, обеспечивая при этом оперативность и высокую достоверность принимаемых решений.

Claims (1)

  1. Способ распознавания и определения параметров образа объекта на радиолокационном изображении, включающий использование радиолокатора с синтезированной апертурой, установленного на носителе в виде летательного аппарата, зондирование зон с помощью радиолокатора с синтезированной апертурой и одновременным определением, запоминанием с помощью навигационной системы летательного аппарата пространственного положения фазовых центров антенн радиолокатора с синтезированной апертурой при каждом зондировании, формирование на входе приемника радиолокатора с синтезированной апертурой сигнала, отраженного от земной поверхности, и его запоминание, восстановление радиолокационного изображения, распознавание на восстановленном радиолокационном изображении объекта, определение координат его положения, отличающийся тем, что сигнал, отраженный от земной поверхности, запоминают, распознавание объекта и оценку его координат производят совместно, при восстановлении радиолокационного изображения фон, на котором расположен искомый объект, рассматривают как шум, вычисляют K условных оценок координат объекта и усредненных отношений правдоподобия, где К - количество объектов, подлежащих распознаванию, вычисляют К×(К+1) значение порога, сравнивают i-e усредненное отношение правдоподобия со значениями порога остальных объектов, где i∈К, если значение усредненного отношения правдоподобия превышает хотя бы одно значение порога, то принимают решение о наличии i-го объекта на радиолокационном изображении и выдают оценку его координат, в противном случае ту же процедуру производят для следующего объекта, и так до тех пор, пока не будет принято решение в пользу одного из объектов, если ни один из объектов не обнаружен, то переходят к анализу следующего сигнала.
RU2012115951/07A 2012-04-19 2012-04-19 Способ распознавания и определения параметров образа объекта на радиолокационном изображении RU2516000C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012115951/07A RU2516000C2 (ru) 2012-04-19 2012-04-19 Способ распознавания и определения параметров образа объекта на радиолокационном изображении

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012115951/07A RU2516000C2 (ru) 2012-04-19 2012-04-19 Способ распознавания и определения параметров образа объекта на радиолокационном изображении

Publications (2)

Publication Number Publication Date
RU2012115951A RU2012115951A (ru) 2013-10-27
RU2516000C2 true RU2516000C2 (ru) 2014-05-20

Family

ID=49446319

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012115951/07A RU2516000C2 (ru) 2012-04-19 2012-04-19 Способ распознавания и определения параметров образа объекта на радиолокационном изображении

Country Status (1)

Country Link
RU (1) RU2516000C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106405548A (zh) * 2016-08-23 2017-02-15 西安电子科技大学 基于多任务贝叶斯压缩感知的逆合成孔径雷达成像方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2143708C1 (ru) * 1998-12-25 1999-12-27 Коночкин Анатолий Иванович Способ формирования радиолокационного изображения объекта и устройство формирования радиолокационного изображения
RU2347239C1 (ru) * 2007-10-02 2009-02-20 Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт) Способ формирования радиолокационного изображения объектов
RU2360264C1 (ru) * 2007-10-12 2009-06-27 Федеральное государственное учреждение "Федеральный государственный научно-исследовательский испытательный центр радиоэлектронной борьбы и оценки снижения заметности" Минобороны России Способ измерения локальных эффективных поверхностей рассеяния объектов в сверхширокой полосе частот
US7609188B2 (en) * 2007-11-21 2009-10-27 Infineon Technologies Ag Multi-standard analog-to-digital data conversion
RU2392635C2 (ru) * 2008-06-04 2010-06-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" Способ обнаружения и определения координат искомого объекта
WO2010140692A1 (ja) * 2009-06-05 2010-12-09 マスプロ電工株式会社 ミリ波イメージングセンサ
WO2010145831A1 (de) * 2009-06-19 2010-12-23 Smiths Heimann Gmbh Verfahren und vorrichtung zur detektion von verdeckten gegenständen mittels elektromagnetischen mm-wellen

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2143708C1 (ru) * 1998-12-25 1999-12-27 Коночкин Анатолий Иванович Способ формирования радиолокационного изображения объекта и устройство формирования радиолокационного изображения
RU2347239C1 (ru) * 2007-10-02 2009-02-20 Государственное образовательное учреждение высшего профессионального образования Воронежское высшее военное авиационное инженерное училище (военный институт) Способ формирования радиолокационного изображения объектов
RU2360264C1 (ru) * 2007-10-12 2009-06-27 Федеральное государственное учреждение "Федеральный государственный научно-исследовательский испытательный центр радиоэлектронной борьбы и оценки снижения заметности" Минобороны России Способ измерения локальных эффективных поверхностей рассеяния объектов в сверхширокой полосе частот
US7609188B2 (en) * 2007-11-21 2009-10-27 Infineon Technologies Ag Multi-standard analog-to-digital data conversion
RU2392635C2 (ru) * 2008-06-04 2010-06-20 Федеральное государственное унитарное предприятие "Государственный научно-исследовательский институт авиационных систем" Способ обнаружения и определения координат искомого объекта
WO2010140692A1 (ja) * 2009-06-05 2010-12-09 マスプロ電工株式会社 ミリ波イメージングセンサ
WO2010145831A1 (de) * 2009-06-19 2010-12-23 Smiths Heimann Gmbh Verfahren und vorrichtung zur detektion von verdeckten gegenständen mittels elektromagnetischen mm-wellen

Also Published As

Publication number Publication date
RU2012115951A (ru) 2013-10-27

Similar Documents

Publication Publication Date Title
US10488507B2 (en) Surrounding environment estimation device and surrounding environment estimating method
Davey et al. Using phase to improve track-before-detect
US8094060B2 (en) Method of detecting a target
US8405540B2 (en) Method for detecting small targets in radar images using needle based hypotheses verification
US20210213962A1 (en) Method for Determining Position Data and/or Motion Data of a Vehicle
US20170254896A1 (en) Tracking apparatus, tracking method, and computer-readable storage medium
US11061102B2 (en) Position estimating apparatus, position estimating method, and terminal apparatus
US20220114363A1 (en) Method and System for Indoor Multipath Ghosts Recognition
CN114415112A (zh) 多星多辐射源数据动态关联方法、装置及电子设备
Magraner et al. Detection in gamma-distributed nonhomogeneous backgrounds
RU2562616C1 (ru) Способ получения радиотехнической информации и радиотехнический комплекс для его осуществления
RU2516000C2 (ru) Способ распознавания и определения параметров образа объекта на радиолокационном изображении
Świerczyński et al. M-estimation as a tool supporting a vessel traffic controller in the VTS system
RU2514154C1 (ru) Способ распознавания ложных целей, вызванных собственными помехами подвижного носителя
Grasso et al. Performance assessment of a mathematical morphology ship detection algorithm for SAR images through comparison with AIS data
RU2596610C1 (ru) Способ поиска и обнаружения объекта
US11668835B2 (en) GNSS spoofing detection using carrier-to-noise based monitoring
Pyo et al. Acoustic beam-based man-made underwater landmark detection method for multi-beam sonar
RU2752863C1 (ru) Способ стробового отождествления сигналов с источниками радиоизлучения в многоцелевой обстановке
US20170299372A1 (en) Automated computation of a dimension of a moving platform
Santos et al. Ship Detection Using Sentinel-1 Amplitude SAR Data
Borghys et al. Contour detection in high-resolution polarimetric sar images
Ming et al. Research on Key Technique of Screen Spot Authenticity Detection Based on ARPA Ground-Based Radar
US11953613B2 (en) Position estimation for vehicles based on virtual sensor response
RU2814151C1 (ru) Гидроакустический способ определения параметров движения цели в режиме шумопеленгования

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150420