RU2515869C2 - Сотовое уплотнение и способ его изготовления - Google Patents

Сотовое уплотнение и способ его изготовления Download PDF

Info

Publication number
RU2515869C2
RU2515869C2 RU2011118450/02A RU2011118450A RU2515869C2 RU 2515869 C2 RU2515869 C2 RU 2515869C2 RU 2011118450/02 A RU2011118450/02 A RU 2011118450/02A RU 2011118450 A RU2011118450 A RU 2011118450A RU 2515869 C2 RU2515869 C2 RU 2515869C2
Authority
RU
Russia
Prior art keywords
coating
seal
base
honeycomb
mcraly
Prior art date
Application number
RU2011118450/02A
Other languages
English (en)
Other versions
RU2011118450A (ru
Inventor
Пол Мэтью УОЛКЕР
Дэвид ФЭЙРБОУРН
Original Assignee
Сименс Акциенгезелльшафт
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сименс Акциенгезелльшафт filed Critical Сименс Акциенгезелльшафт
Publication of RU2011118450A publication Critical patent/RU2011118450A/ru
Application granted granted Critical
Publication of RU2515869C2 publication Critical patent/RU2515869C2/ru

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H9/00Machining specially adapted for treating particular metal objects or for obtaining special effects or results on metal objects
    • B23H9/10Working turbine blades or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D11/00Preventing or minimising internal leakage of working-fluid, e.g. between stages
    • F01D11/08Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator
    • F01D11/12Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part
    • F01D11/127Preventing or minimising internal leakage of working-fluid, e.g. between stages for sealing space between rotor blade tips and stator using a rubstrip, e.g. erodible. deformable or resiliently-biased part with a deformable or crushable structure, e.g. honeycomb
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/4998Combined manufacture including applying or shaping of fluent material
    • Y10T29/49982Coating

Abstract

Изобретение относится к сотовому уплотнению, используемому для снижения до минимума утечек газа внутри двигателя, в частности, между статором и ротором турбин. Уплотнение для отделения вращающейся части от статора в реактивном двигателе или газотурбинном двигателе содержит сотовый элемент и опорную пластину, выполненные в виде одной целой детали, при этом сотовый элемент образован из основы с использованием электроэрозионной обработки, а также механически обработанной основы, которая имеет покрытие, содержащее железо (Fe), хром (Cr), алюминий (Al) и/или иттрий (Y). Основа уплотнения выполнена из стали или нержавеющей стали. При изготовлении предложенного уплотнения механически обработанную основу, образующую одно целое с сотовыми ячейками, покрывают железом (Fe), хромом (Cr), алюминием (Al) и/или иттрием (Y) путем осаждения из паровой фазы. Изобретение обеспечивает повышение коррозионной стойкости уплотнения в реактивном двигателе или газотурбинном двигателе при повышенных температурах, а выполнение сотовой ячейки за одно целое с основой устраняет необходимость использования пайки при изготовлении уплотнения. 2 н. и 18 з.п. ф-лы, 14 ил., 6 пр.

Description

Изобретение относится к сотовому уплотнению и способу его изготовления.
Сотовые уплотнения используются для снижения до минимума утечек газа внутри двигателя, в частности, между статором и ротором турбин.
Существующий способ производства заключается в создании отливки с углублением. Эти детали называются опорными пластинами (основой).
Сотовые материалы изготавливаются из очень тонких и легких листовых металлических деталей, которые сваривают и придают им такую форму, чтобы они походили на пчелиные соты. Эти конструкции нарезают на тонкие листы, имеющие толщину, равную глубине углубления, которое при литье создано в опорных пластинах. После чего сотовые детали впаивают в углубления. Иногда соту заполняют абразивными материалами, чтобы продлить срок службы.
Существуют определенные проблемы, связанные с сотовыми уплотнениями. Так как пайку выполняют на дне углубления, паяное соединение скрыто, и его невозможно легко проконтролировать. Иногда в паяном соединении возникают пустоты. Тогда эти уплотнения могут оторваться и попасть в легко повреждаемые ножевые уплотнения, которые установлены таким образом, чтобы они граничили с сотовой конструкцией. При этом уплотнение разрушается.
Во-вторых, ножевые уплотнения и сотовые конструкции подвержены воздействию коррозионной атмосферы газообразных продуктов сгорания в двигателе. В частности, на очень тонкие сотовые конструкции может влиять сера в топливе, подвергая их сульфидации. Если они становятся хрупкими, они могут разрушиться и вылететь из двигателя, приводя к более низкой, чем прежде, эффективности уплотнения с точки зрения контроля давлений газа. По этим причинам существует необходимость в более надежном способе изготовления и более стойких к коррозии уплотнений и материале уплотнения.
Таким образом, задачей настоящего изобретения является устранение этой проблемы. Проблема решается при помощи уплотнения из сотовых ячеек, соответствующего пункту 1 Формулы изобретения, и способа его изготовления, определенного в пункте 11 Формулы изобретения.
В зависимых пунктах Формулы изобретения указаны дополнительные предпочтительные варианты его реализации, которые могут быть произвольным образом объединены друг с другом, чтобы получить дополнительные преимущества.
Из чертежей:
на Фиг.1 показаны сотовые ячейки;
на Фиг.2 схематично показана технология изготовления сотового уплотнения;
на Фиг.3 показан инструмент для изготовления сотового уплотнения;
на Фиг.4 и 5 показаны примеры сотовых уплотнений;
на Фиг.6-11 показаны некоторые из вариантов сотового уплотнения с покрытием;
на Фиг.12 показана газовая турбина;
на Фиг.13 приведен общий вид лопатки; и
на Фиг.14 приведен список жаропрочных сплавов.
На Фиг.1 показано несколько сотовых ячеек 13, имеющих форму пчелиных сот (шестиугольную). Одна сотовая ячейка 13 в предпочтительном случае имеет шесть боковых стенок 10. Две сотовых ячейки 13 сотового уплотнения в предпочтительном случае имеют общую боковую стенку 10.
На Фиг.2 схематично показан один новаторский способ изготовления сотового уплотнения 1.
Согласно одному из аспектов настоящего изобретения, основу 4, в частности, отливку 4 изготавливают с такими же внешними размерами, что и при существующем уровне техники, за исключением того, что отсутствует углубление, заполняемое хрупким сотовым материалом. В этом случае сотовые ячейки, имеющие шестиугольную форму, в предпочтительном случае создают путем электроэрозионной обработки (EDM, Electrical Discharge Machining), и более предпочтительно - путем неоднократной электроэрозионной обработки, таким образом, как это сделал бы специалист в данной области. Так как уплотнение и отливка теперь составляют единое целое, невозможны нарушения при выполнении пайки или использовании другой технологии соединения. В целом уплотнение является более прочным.
Основа 4, в предпочтительном случае состоящая из обычной или нержавеющей стали, имеет толщину h. При механической обработке этой основы 4, предпочтительно - электроэрозионной обработке, сотовые ячейки 13 получают путем удаления материала с внешней поверхности 28 основы 4. Поэтому сотовые ячейки 13 составляют единое целое с основой 4′, что может следовать из того факта, что суммарная высота сотовых ячеек 13 и остающейся основы 4′ без сотовых ячеек 13 имеет прежнее значение h. Сотовые ячейки 13 не прикрепляются к основе 4′ при помощи пайки.
На Фиг.3 схематично показана конструкция, дополняющая сотовые ячейки 13, которая в предпочтительном случае используется как инструмент 25 для механической обработки. Такой инструмент 25 в предпочтительном случае содержит несколько штампов 7, имеющих ту же форму, что и полость одной сотовой ячейки 13 (шестиугольную форму) с определенным зазором 31 между штампами 7, который соответствует толщине боковых стенок 10 сотовой ячейки 13. Так как сотовое уплотнение 22 имеет изогнутую форму, например, кольцевую, инструмент 25 в предпочтительном случае также изогнут (не показано). Кроме того, для электроэрозионной обработки уплотнения может использоваться только один штамп 7.
Сотовое уплотнение 16 может быть создано на кольце 16 (Фиг.4) или на кольцевых сегментах 19 (Фиг.5), вместе образующих кольцо 16′, которое будет аналогично кольцу, показанному на Фиг.4. Оба кольца будут являться частью кожуха, работающего совместно с движущимися частями, например, лопатками 120. В сегменте 19 показано несколько сотовых ячеек 13.
Кроме того, после операции электроэрозионной обработки предпочтительно выполнить травление детали в целом (основы 4′) в смеси кислот, чтобы удалить перелитый слой, создаваемый при выполнении операции электроэрозионной обработки. Существует несколько смесей кислот для выполнения этой операции. Используемая смесь кислот зависит от материалов, из которых сделана отливка. Эти технологии хорошо известны специалистам в данной области техники. Единственное отличие заключается в том, что в предпочтительном случае будут использоваться принципы прямой связи по постоянному току с деталью, которая отлита. Применяются принципы электроэрозионной обработки детали из графита, соответствующие изложенным в патенте США № 6294072 В1, зарегистрированном 25 сентября 2001 года. Предпочтительно выполнять травление до удаления как можно большего количества перелитого материала.
Также можно использовать и другие инструменты для создания сотовых ячеек 13 путем механической обработки в основе 4, например, лазер и электронный луч.
После травления на основу 4′ в предпочтительном случае наносят покрытие, в частности, при помощи последующего химического осаждения из паровой фазы (CVD, Chemical Vapor Deposition), чтобы превратить литой сплав, имеющий некоторый химический состав, в предпочтительном случае в FeCrAlY. Чтобы выполнить эту операцию, предпочтительно защитить задние участки основы от газов процесса химического осаждения из паровой фазы.
Первая операция химического осаждения из паровой фазы в предпочтительном случае будет заключаться в нанесении большой по весу доли железа (Fe) на шестиугольные полости, прошедшие механическую обработку, если основа не содержит железо как главный компонент, в частности, если она содержит никель как главный компонент. После этой операции будет наноситься покрытие из паровой фазы (CrAlY или Cr, Al, Y или Cr+Y, Al или Al+Y, Cr, …). При таком нанесении покрытия в предпочтительном случае не будут использоваться маскирующие материалы, так как желательно полностью покрывать всю деталь полностью.
Было обнаружено, что железо или CrAlY как сорбенты лучше, чем жаропрочные сплавы на основе никеля. За этой операцией нанесения покрытия в предпочтительном случае следует термическая обработка с целью повышения пластичности и преобразования основных и характерных для него γγ′ фаз внутри жаропрочного сплава на основе никеля.
На Фиг.6 приведен разрез основы 4′, на котором показана одна сотовая ячейка 13, формирующая сотовое уплотнение 1. Согласно настоящему изобретению, боковые стенки 10 в предпочтительном случае содержат металлический материал на основе Fe, в частности, обычную или нержавеющую сталь, либо жаропрочный сплав на основе никеля. Эту сталь (в качестве иллюстративного примера) затем подвергают легированию химическими элементами Cr, Al и Y (Фиг.7), чтобы получить в результате диффузии FeCrAlY, в данном случае - диффузионную область 8 из FeCrAlY внутри боковой стенки 10 (Фиг.7 → Фиг.8). Диффузионная область 8 является только частью боковой стенки 10. В предпочтительном случае диффузия также может выполняться насквозь через стенку 10 (Фиг.7 → Фиг.9). Это означает, что не остается ничего от первоначального состава боковой стенки 10. В частности, боковая стенка 10′ состоит из сплава FeCrAlY.
В предпочтительном случае сначала путем осаждения может быть нанесен хром, а после него - алюминий, в частности, с добавлением иттрия (Y).
Алюминирование в предпочтительном случае может выполняться с использованием хорошо известного процесса пакетной цементации или других способов. В предпочтительном случае иттрий наносят вместе с алюминием. В предпочтительном случае можно добавлять другие легирующие элементы, такие как гафний, титан или кремний.
В предпочтительном случае легирующие элементы наносят на основу с использованием процесса с паровой фазой, предпочтительно - при помощи химического осаждения из паровой фазы. При нанесении эти элементы можно использовать одновременно, либо один после другого.
Так как обнаружено, что железо является сорбентом, по меньшей мере, для алюминия, то можно использовать нанесение толстого покрытия из алюминида или толстого покрытия из хромида с последующим нанесением покрытия из алюминида, чтобы обеспечить нужное содержание химических элементов, соответствующее требуемому химическому составу FeCrAlY внутри диффузионной области (8). После выполнения последующей термической обработки с целью прохождения диффузии относительно мягкая и пластичная сталь сотового уплотнения превращалась в относительно хрупкий FeCrAlY, составляющие которого были нанесены при химическом осаждении из паровой фазы.
Количество Cr, Al и Y, которые нужно диффундировать в основу, зависит от количества Cr, Al (других основных элементов), уже присутствующих в основе, в частности, стали или материале на основе Fe. Этим можно управлять посредством времени нанесения, температуры и концентрации.
Примеры
А:
1. Получение основы 4 с сотовыми ячейками 13
2. Алюминирование
3. Возможно, термическая обработка, чтобы способствовать диффузии Al в основу
4. Хромирование
5. Возможно, термическая обработка, чтобы способствовать диффузии Cr в Al и в основу
В:
1. Получение основы 4 с сотовыми ячейками 13
2. Алюминирование
3. Хромирование
4. Термическая обработка, чтобы способствовать диффузии Cr, Al
С:
1. Получение основы 4 с сотовыми ячейками 13, причем сотовые ячейки 13 соединены с основой 4 при помощи пайки
2. Хромирование
3. Алюминирование
4. Возможно, термическая обработка, чтобы способствовать диффузии Cr, Al
D:
1. Получение основы 4 с сотовыми ячейками 13, причем сотовые ячейки 13 соединены с основой 4 при помощи пайки
2. Алюминирование
3. Хромирование
4. Возможно, термическая обработка, чтобы способствовать диффузии Cr, Al
Е:
1. Получение основы 4 с сотовыми ячейками 13
2. Хромирование
3. Алюминирование
4. Термическая обработка, чтобы способствовать диффузии Cr, Al
F:
1. Получение основы 4 с сотовыми ячейками 13
2. Хромирование
3. Возможно, термическая обработка, чтобы способствовать диффузии Al в основу.
4. Алюминирование
5. Возможно, термическая обработка, чтобы способствовать диффузии Cr в Al и в основу.
При такой последовательности можно использовать преимущество пластичной и легко обрабатываемой стали, чтобы создать сотовые ячейки и встроить их в ободы. После этого сниженная пластичность больше не является проблемой, так как в дальнейшем не возникают изгиб или механические напряжения, обусловленные процессом изготовления.
В соответствии с другим примером изобретения, на служащие каркасом железные боковые стенки 10 наносят защитное покрытие 7 из FeCrAlY (Фиг.10) как накладываемое покрытие. Возможно также сочетание как накладываемого, так и диффузионного покрытия.
В состав покрытия 7 или диффузионной области 8 входит хром, алюминий (Al) и иттрий (Y), остальное - М, в частности железо (Fe). В частности, сплав FeCrAlY или покрытие 7 состоит из Fe, Cr, Al и Y. В качестве возможного варианта, сплав MCrAlY или покрытие 7, 8 может содержать титан (Ti), гафний (Hf) и/или кремний (Si), которые усиливают антикоррозионные/антиокислительные свойства легированной или имеющей покрытие стали. Гафний (Hf) стабилизирует оксид алюминия, который образуется на внешней поверхности сплава MCrAlY, при этом кремний (Si) сделает возможным образование фазы силиката алюминия.
Термин "содержит" означает, что количество такого химического элемента, по меньшей мере, в два раза превышает уровень содержания этого элемента в сплаве MCrAlY в виде примеси или, по меньшей мере, в два раза превышает точность измерения, в зависимости от того, что выше. В частности, сплав MCrAlY или покрытие 7 состоят из Fe, Cr, Al и Y, а также, по меньшей мере, одного элемента из группы, содержащей Ti, Hf и/или Si.
Предпочтительными диапазонами (в % по весу) для химических элементов являются следующие: 18-35% Cr, 3-15% Al, 0,2-2% иттрия и необязательное добавление до 3% титана, до 3% гафния и/или до 3% кремния. При минимальном добавлении на долю остающегося железа будет приходиться 80% по весу, а при максимальном - 39% по весу.
Все комбинации с необязательными элементами являются предпочтительными вариантами реализации настоящего изобретения:
Это означает: MCrAlY, в частности, M=Fe:
+ Ti
+ Hf
+ Si
+ Ti + Hf
+ Ti + Si
+ Hf + Si
+ Ti + Hf + Si
Эти семь комбинаций элементов сплава могут быть исключительным (состоит из) или неисключительным (содержит) перечнем для MCrAlY или покрытия 7.
Покрытие 7 из FeCrAlY или диффузионная область 8 в предпочтительном случае не содержит никеля (Ni) и/или не содержит кобальта (Co).
Покрытие 7 из MCrAlY может быть нанесено при помощи известного процесса нанесения покрытия или обработки с использованием подходящего сплава MCrAlY или в предпочтительном случае путем нанесения покрытия из элементов Cr, Al и Y и/или необязательных элементов по отдельности и создания за счет диффузии этой диффузионной области из MCrAlY. В частности, для нанесения покрытия на ячейки 13 сотового уплотнения 1 используется процесс химического осаждения из паровой фазы.
В частности, сотовая ячейка 13 может быть заполнена измельченным материалом, в особенности, керамикой 19, чтобы дополнительно улучшить стойкость сотового уплотнения 1 к абразивному износу (Фиг.11).
Материалом боковых стенок 10 сотовых ячеек 13 в предпочтительном случае является обычная или нержавеющая сталь.
На Фиг.12 в качестве примера показан местный разрез в продольном направлении газовой турбины 100. Внутри газовой турбины 100 имеется ротор 103, который установлен с возможностью вращения вокруг оси 102 вращения, имеет вал 101 и также называется ротором турбины. Вдоль ротора друг за другом расположены кожух 104 впуска, компрессор 105, например, тороидальная камера 110 сгорания, в частности, кольцевая камера сгорания, с множеством установленных соосно горелок 107, турбина 108 и кожух 109 выпуска отходящих газов. Кольцевая камера 110 сгорания сообщается с, например, кольцевым каналом 111 горячих газов, где, в качестве примера, четыре последовательных ступени 112 турбины образуют турбину 108. Каждая ступень 112 турбины образована, например, двумя венцами лопаток или направляющих лопаток. Если смотреть в направлении потока рабочего тела 113, в канале 111 горячих газов после ряда направляющих лопаток 115 следует ряд 125 из лопаток 120 ротора.
Направляющие лопатки 130 прикреплены к внутреннему кожуху 138 статора 143, в то время как лопатки 120 ротора из ряда 125 посажены на ротор 103, например, при помощи диска 133 турбины. С ротором 103 соединен генератор (не показан).
Во время работы газовой турбины 100 компрессор 105 всасывает воздух 135 через кожух 104 впуска и сжимает его. Сжатый воздух, имеющийся на стороне компрессора 105, обращенной к турбине, направляется в горелки 107, где он смешивается с топливом. Затем смесь сгорает в камере 110 сгорания, образуя рабочее тело 113. Оттуда рабочее тело 113 течет вдоль канала 111 горячих газов мимо направляющих лопаток 130 и лопаток 120 ротора. Рабочее тело 113 расширяется у лопаток 120 ротора, передавая свое количество движения, в результате чего лопатки 120 ротора приводят в действие ротор 103, а последний, в свою очередь, приводит в действие соединенный с ним генератор.
Во время работы газовой турбины 100 в компонентах, на которые воздействует горячее рабочее тело 113, возникают термические напряжения. В направляющих лопатках 130 и лопатках 120 ротора, расположенных на первой ступени 112 турбины, если смотреть в направлении потока рабочего тела 113, вместе с блоками тепловой защиты, которыми облицована кольцевая камера 110 сгорания, возникают наиболее высокие термические напряжения. Чтобы они имели возможность противостоять преобладающим там температурам, их можно охлаждать при помощи охладителя. Кроме того, основа компонентов может иметь направленную структуру, т.е. они могут быть в виде монокристалла (SX-структура) или иметь только продольно ориентированные зерна (DS-структура). Например, в качестве материала для компонентов, в частности, для лопатки или направляющей лопатки 120, 130 и элементов камеры 110 сгорания, используются жаропрочные сплавы на основе железа, никеля или кобальта. Жаропрочные сплавы этого типа известны, например, из документов ЕР 1204776 В1, ЕР 1306454, ЕР 1319729 А1, WO 99/67435 или WO 00/44949, которые являются частью этого описания, относящейся к химическому составу сплавов.
Направляющая лопатка 130 имеет хвостовик (здесь не показан), обращенный к внутреннему кожуху 138 турбины 108, и перо, расположенное на другом конце относительно хвостовика. Перо направляющей лопатки обращено к ротору 103 и прикреплено к монтажному кольцу 140 статора 143.
Основа 4 представляет собой кольцо или сегмент кольца, в которых путем механической обработки создана конструкция из сотовых ячеек. Это устраняет необходимость припаивания сот к основе и уменьшает количество соединений на такой окружности, которые могут являться путями утечки.
На Фиг.13 приведен общий вид лопатки 120 ротора или направляющей лопатки 130 турбомашины, проходящей вдоль оси 121.
Турбомашина может представлять собой газовую турбину воздушного судна или энергетической установки для генерации электричества, паровую турбину или компрессор.
Лопатка или направляющая лопатка 120, 130 имеет, в порядке следования вдоль продольной оси 121, зону 400 крепления, примыкающую к ней полку 403 лопатки или направляющей лопатки и основную часть 406 лопатки или направляющей лопатки, а также вершину 415 лопатки или направляющей лопатки. Что касается направляющей лопатки 130, она может иметь дополнительную полку (не показана) у своей вершины 415.
В зоне 400 крепления создан хвостовик 183 лопатки или направляющей лопатки, который используется для крепления лопаток 120, 130 ротора к валу или диску (не показаны). Хвостовик 183 лопатки или направляющей лопатки выполнен, например, в форме головки молотка. Возможны и другие конфигурации, например, елочка или ласточкин хвост. Лопатка или направляющая лопатка 120, 130 имеет входную кромку 409 и выходную кромку 412 для тела, которое течет мимо основной части 406 лопатки или направляющей лопатки.
В случае обычных лопаток или направляющих лопаток 120, 130, во всех зонах 400, 403, 406 лопатки или направляющей лопатки 120, 130 используются, например, твердые металлические материалы, в частности, жаропрочные сплавы.
Жаропрочные сплавы этого типа известны, например, из документов ЕР 1204776 В1, ЕР 1306454, ЕР 1319729 А1, WO 99/67435 или WO 00/44949, которые являются частью этого описания, относящейся к химическому составу сплавов. В этом случае лопатку или направляющую лопатку 120, 130 можно изготавливать при помощи литья, кроме того - с использованием направленной кристаллизации, при помощи штамповки, фрезерования или их комбинации.
При создании компонентов для машин, которые во время работы подвергаются высоким механическим, термическим и/или химическим напряжениям, используются заготовки с монокристаллической структурой или структурами. Монокристаллические заготовки этого типа изготавливают, например, путем направленной кристаллизации из расплава. Сюда входят процессы литья, в ходе которых жидкий металлический сплав затвердевает с образованием монокристаллической структуры, т.е. монокристаллической заготовки, или с прохождением направленной кристаллизации.
В этом случае дендритные кристаллы ориентируются вдоль направления теплового потока и создают либо столбчатую структуру кристаллических зерен (т.е. зерна, которые проходят по всей длине заготовки и называются в этом описании, в соответствии с обычно используемой терминологией, направленно кристаллизованными), либо монокристаллическую структуру, т.е. вся заготовка состоит из одного единственного кристалла. В ходе этих процессов необходимо не допустить перехода к кристаллизации с образованием шаровидных зерен (множества кристаллов), так как ненаправленный рост неизбежно приводит к возникновению поперечных и продольных границ между зернами, что не позволяет обеспечить выгодные свойства, имеющиеся у компонента с направленной кристаллизацией или в виде монокристалла. Если в тексте без уточнений упоминаются микроструктуры с направленной кристаллизацией, под этим должны пониматься как монокристаллы, которые вообще не имеют межзеренных границ или, самое большее, имеют межзеренные границы под небольшими углами, так и столбчатые кристаллические структуры, которые имеют межзеренные границы, проходящие в продольном направлении, но вообще не имеют межзеренных границ, проходящих в поперечном направлении. Эта вторая форма кристаллических структур также описывается как микроструктуры с направленной кристаллизацией (структуры с направленной кристаллизацией). Процессы этого типа известны из документов US 6024792 и ЕР 0892090 А1, которые являются частью этого описания, относящейся к процессу кристаллизации.
Лопатки или направляющие лопатки 120, 130 могут также иметь покрытия, защищающие от коррозии или окисления, например, MCrAlX (М - по меньшей мере, один химический элемент, выбираемый из группы, состоящей из железа (Fe), кобальта (Co), никеля (Ni), Х - активный химический элемент, который представляет собой иттрий (Y) и/или кремний и/или, по меньшей мере, один редкоземельный элемент, либо гафний (Hf)). Сплавы этого типа известны из документов ЕР 0486489 В1, ЕР 0786017 В1, ЕР 0412397 В1 или ЕР 1306454 А1, которые, как предполагается, являются частью данного описания, относящейся к химическому составу сплава. В предпочтительном случае плотность составляет 95% от теоретической. На слое MCrAlX (как промежуточном слое или внешнем слое) образуется защитный слой из оксида алюминия (TGO - слой термически выращенного оксида).
Также возможно наличие на слое MCrAlX покрытия - теплового барьера, состоящего, например, из ZrO2, Y2O3-ZrO2, т.е. нестабилизированного, частично стабилизированного или полностью стабилизированного оксидом иттрия и/или оксидом кальция и/или оксидом магния, которое в предпочтительном случае является внешним слоем. Покрытие - тепловой барьер покрывает весь слой MCrAlX. В покрытии - тепловом барьере при помощи подходящих процессов нанесения покрытия, например, физического осаждения из паровой фазы с использованием электронного луча (EB-PVD) создают столбчатые зерна. Приемлемы и другие процессы нанесения покрытия, например, воздушно-плазменное напыление (APS), плазменное напыление в среде низкого давления (LPPS, Low-Pressure Plasma Spraying), вакуумно-плазменное напыление (VPS, Vacuum Plasma Spraying) или химическое осаждение из паровой фазы. Покрытие - тепловой барьер может содержать пористые зерна, имеющие микро- или макротрещины, для улучшения его сопротивляемости тепловым ударам. Таким образом, покрытие - тепловой барьер в предпочтительном случае является более пористым, чем слой MCrAlX.
Лопатка или направляющая лопатка 120, 130 могут быть полыми или сплошными. Если лопатку или направляющую лопатку 120, 130 необходимо охлаждать, она сделана полой и также может иметь отверстия 418 для пленочного охлаждения (показаны пунктирными линиями).

Claims (20)

1. Уплотнение реактивного или газотурбинного двигателя (100) для отделения от статора вращающейся части двигателя, содержащее сотовый элемент (13) и опорную пластину, выполненные в виде одной целой детали, причем сотовый элемент (13) образован из основы (4) с использованием электроэрозионной обработки и механически обработанной основы (4′), которая имеет покрытие, содержащее железо (Fe), хром (Cr), алюминий (Al) и/или иттрий (Y), при этом основа (4, 4′) выполнена из стали или нержавеющей стали.
2. Уплотнение (22) по п.1, в котором механически обработанная основа (4′) выполнена в форме кольца (16).
3. Уплотнение (22) по п.1 или 2, содержащее несколько сегментов (19), образующих кольцо (16′).
4. Уплотнение по п.1 или 2, в котором покрытие представляет собой защитный слой на поверхности сотовых ячеек (13), в частности, являющийся сплавом MCrAlY (M=Fe, Cr, Ni).
5. Уплотнение по п.3, в котором покрытие представляет собой защитный слой на поверхности сотовых ячеек (13), в частности, являющийся сплавом MCrAlY (M=Fe, Cr, Ni).
6. Уплотнение по п.4, в котором сплав MCrAlY содержит Fe, предпочтительно M представляет собой, главным образом, Fe, наиболее предпочтительно M представляет собой только Fe.
7. Уплотнение по п.5, в котором сплав MCrAlY содержит Fe, предпочтительно M представляет собой, главным образом, Fe, наиболее предпочтительно M представляет собой только Fe.
8. Уплотнение по п.4, в котором защитное покрытие или покрытие из MCrAlY создано как накладываемое покрытие.
9. Уплотнение по любому из пп.5-7, в котором защитное покрытие или покрытие из MCrAlY создано как накладываемое покрытие.
10. Уплотнение по п.1, в котором защитное покрытие или покрытие из MCrAlY создано как диффузионное покрытие.
11. Уплотнение по п.4, в котором защитное покрытие или покрытие из MCrAlY создано как диффузионное покрытие.
12. Уплотнение по любому из пп.5-7, в котором защитное покрытие или покрытие из MCrAlY создано как диффузионное покрытие.
13. Уплотнение по п.8, в котором защитное покрытие или покрытие из MCrAlY создано как диффузионное покрытие.
14. Уплотнение по п.9, в котором защитное покрытие или покрытие из MCrAlY создано как диффузионное покрытие.
15. Уплотнение по п.1, в котором опорная пластина представляет собой литую опорную пластину.
16. Способ изготовления уплотнения (22) по любому из пп.1-15, в котором основу (4, 4′) подвергают механической обработке посредством электроэрозионного процесса для получения сотовых ячеек (13), выполненных в виде одного целого с механически обработанной основой (4′), при этом механически обработанную основу (4′) покрывают железом (Fe), хромом (Cr), алюминием (Al) и/или иттрием (Y) путем осаждения из паровой фазы.
17. Способ по п.16, в котором для механической обработки основы (4) используют инструмент (25), форма которого является ответной одной или более сотовых ячеек (13), так что образуют несколько шестиугольных ячеек (13) в основе (4) и так что образуют сотовую ячейку (13) или сотовые ячейки (13) за одно целое с механически обработанной основой (4′), при этом основа (4) выполнена из стали или нержавеющей стали.
18. Способ по п.16 или 17, в котором покрытие на механически обработанную основу (4′) наносят так, что сотовые ячейки (13) покрыты защитным слоем, в частности сплавом MCrAlY.
19. Способ по п.16 или 17, в котором в механически обработанную основу (4′) путем диффузии вводят по меньшей мере хром (Cr), алюминий (Al) и, при необходимости, железо (Fe) и/или иттрий (Y).
20. Способ по п.18, в котором в механически обработанную основу (4′) путем диффузии вводят по меньшей мере хром (Cr), алюминий (Al) и, при необходимости, железо (Fe) и/или иттрий (Y).
RU2011118450/02A 2008-10-08 2009-08-27 Сотовое уплотнение и способ его изготовления RU2515869C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08017669A EP2174740A1 (en) 2008-10-08 2008-10-08 Honeycomb seal and method to produce it
EP08017669.6 2008-10-08
PCT/EP2009/061054 WO2010040599A1 (en) 2008-10-08 2009-08-27 Honeycomb seal and method to produce it

Publications (2)

Publication Number Publication Date
RU2011118450A RU2011118450A (ru) 2012-11-20
RU2515869C2 true RU2515869C2 (ru) 2014-05-20

Family

ID=40279224

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011118450/02A RU2515869C2 (ru) 2008-10-08 2009-08-27 Сотовое уплотнение и способ его изготовления

Country Status (5)

Country Link
US (1) US20120126485A1 (ru)
EP (2) EP2174740A1 (ru)
CN (1) CN102176995A (ru)
RU (1) RU2515869C2 (ru)
WO (1) WO2010040599A1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812922C1 (ru) * 2023-04-14 2024-02-05 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ВИАМ) Материал на основе сплава системы Fe-Cr-Al-Y для сотового уплотнения турбины

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2098606A1 (en) * 2008-03-04 2009-09-09 Siemens Aktiengesellschaft A MCrAlY alloy, methods to produce a MCrAlY layer and a honeycomb seal
US8318251B2 (en) * 2009-09-30 2012-11-27 General Electric Company Method for coating honeycomb seal using a slurry containing aluminum
US20120317984A1 (en) * 2011-06-16 2012-12-20 Dierberger James A Cell structure thermal barrier coating
US20130139386A1 (en) * 2011-12-06 2013-06-06 General Electric Company Honeycomb construction for abradable angel wing
US9541148B1 (en) 2012-08-29 2017-01-10 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Process for forming a high temperature single crystal canted spring
CN103422912B (zh) * 2013-08-29 2015-04-08 哈尔滨工程大学 一种包括叶顶带有孔窝的动叶片的涡轮
CN103422913A (zh) * 2013-08-29 2013-12-04 哈尔滨工程大学 一种带有蜂窝状内壁机匣的涡轮
US8939706B1 (en) * 2014-02-25 2015-01-27 Siemens Energy, Inc. Turbine abradable layer with progressive wear zone having a frangible or pixelated nib surface
EP3029274B1 (en) 2014-10-30 2020-03-11 United Technologies Corporation Thermal-sprayed bonding of a ceramic structure to a substrate
CN105149710B (zh) * 2015-09-28 2018-08-10 北京动力机械研究所 一种用于蜂窝加工的电极及整体蜂窝的制备方法
US10731482B2 (en) 2015-12-04 2020-08-04 Raytheon Technologies Corporation Enhanced adhesion thermal barrier coating
EP3290642A1 (de) * 2016-08-31 2018-03-07 Siemens Aktiengesellschaft Ringsegment für eine turbine und anordnung zur äusseren be-grenzung eines strömungspfades einer turbine
CN108506490B (zh) * 2017-02-27 2021-01-26 西门子公司 蜂窝密封件及其制造方法和系统
CN109317769B (zh) * 2018-11-30 2021-03-02 中国航发沈阳黎明航空发动机有限责任公司 一种电火花加工蜂窝的装置及方法
CN110883592B (zh) * 2019-12-02 2021-04-20 大连理工大学 一种用于液氮中空输送的蜂窝密封结构刀柄
CN112404621B (zh) * 2020-11-06 2022-06-24 扬州大学 一种蜂窝零件填料电解磨削加工方法
CN113564521B (zh) * 2021-07-20 2023-06-09 西安理工大学 一种金属表面的蜂巢结构多层膜及其制备方法
WO2023117087A1 (en) * 2021-12-22 2023-06-29 Ceres Intellectual Property Company Limited Method for creating a passivating oxide layer on a stainless steel component of an electrochemical cell
CN114934914B (zh) * 2022-05-11 2024-04-09 江苏大学 一种对称叶片及其端面仿生结构

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080486A (en) * 1973-04-02 1978-03-21 General Electric Company Coating system for superalloys
US4825029A (en) * 1987-06-02 1989-04-25 Wickes Companies, Inc. Spark erosion system for reducing the height of a honeycomb seal
EP1146204A2 (en) * 2000-04-12 2001-10-17 ROLLS-ROYCE plc Abradable seals
RU2217617C2 (ru) * 1996-12-10 2003-11-27 Хромэллой Гэз Турбин Корпорейшн Притирающееся уплотнение
RU2277637C2 (ru) * 2000-11-27 2006-06-10 Неомет Лимитед Сотовая структура, истираемое уплотнение и способ его образования

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2248761A (en) * 1939-01-23 1941-07-08 Victor Mfg & Gasket Co Oil seal
US3042365A (en) * 1957-11-08 1962-07-03 Gen Motors Corp Blade shrouding
US3542530A (en) * 1968-05-23 1970-11-24 United Aircraft Corp Nickel or cobalt base with a coating containing iron chromium and aluminum
US3849801A (en) * 1972-12-20 1974-11-26 Medalist Ind Inc Protective gear with hydraulic liner
US4023213A (en) * 1976-05-17 1977-05-17 Pepsico, Inc. Shock-absorbing system for protective equipment
US4477089A (en) * 1982-07-26 1984-10-16 Avco Corporation Honeycomb seal for turbine engines
US4867639A (en) * 1987-09-22 1989-09-19 Allied-Signal Inc. Abradable shroud coating
US4933239A (en) * 1989-03-06 1990-06-12 United Technologies Corporation Aluminide coating for superalloys
EP0486489B1 (de) 1989-08-10 1994-11-02 Siemens Aktiengesellschaft Hochtemperaturfeste korrosionsschutzbeschichtung, insbesondere für gasturbinenbauteile
DE3926479A1 (de) 1989-08-10 1991-02-14 Siemens Ag Rheniumhaltige schutzbeschichtung, mit grosser korrosions- und/oder oxidationsbestaendigkeit
US5071138A (en) * 1989-12-21 1991-12-10 Allied-Signal Inc. Laminated finger seal
US5080934A (en) * 1990-01-19 1992-01-14 Avco Corporation Process for making abradable hybrid ceramic wall structures
US5064727A (en) * 1990-01-19 1991-11-12 Avco Corporation Abradable hybrid ceramic wall structures
US5346662A (en) * 1992-10-08 1994-09-13 Skf Usa Inc. Method of manufacturing a composite seal
US5618633A (en) * 1994-07-12 1997-04-08 Precision Castparts Corporation Honeycomb casting
DE59505454D1 (de) 1994-10-14 1999-04-29 Siemens Ag Schutzschicht zum schutz eines bauteils gegen korrosion, oxidation und thermische überbeanspruchung sowie verfahren zu ihrer herstellung
GB9426257D0 (en) * 1994-12-24 1995-03-01 Rolls Royce Plc Thermal barrier coating for a superalloy article and method of application
EP0861927A1 (de) 1997-02-24 1998-09-02 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
EP0892090B1 (de) 1997-02-24 2008-04-23 Sulzer Innotec Ag Verfahren zum Herstellen von einkristallinen Strukturen
US5890232A (en) * 1997-11-25 1999-04-06 Park; Nam-Tae Helmet with an air cushion buffer
US6977060B1 (en) * 2000-03-28 2005-12-20 Siemens Westinghouse Power Corporation Method for making a high temperature erosion resistant coating and material containing compacted hollow geometric shapes
US6641907B1 (en) * 1999-12-20 2003-11-04 Siemens Westinghouse Power Corporation High temperature erosion resistant coating and material containing compacted hollow geometric shapes
EP1306454B1 (de) 2001-10-24 2004-10-06 Siemens Aktiengesellschaft Rhenium enthaltende Schutzschicht zum Schutz eines Bauteils gegen Korrosion und Oxidation bei hohen Temperaturen
WO1999067435A1 (en) 1998-06-23 1999-12-29 Siemens Aktiengesellschaft Directionally solidified casting with improved transverse stress rupture strength
US6231692B1 (en) 1999-01-28 2001-05-15 Howmet Research Corporation Nickel base superalloy with improved machinability and method of making thereof
US6235370B1 (en) * 1999-03-03 2001-05-22 Siemens Westinghouse Power Corporation High temperature erosion resistant, abradable thermal barrier composite coating
DE19925390C1 (de) * 1999-06-02 2000-08-03 Emitec Emissionstechnologie Katalysator-Trägerkörper für Zweirad- oder Dieselanwendungen
JP2003529677A (ja) 1999-07-29 2003-10-07 シーメンス アクチエンゲゼルシヤフト 耐熱性の構造部材及びその製造方法
US6294072B1 (en) 1999-09-20 2001-09-25 Aeromet Technologies, Inc. Removal of metal oxide scale from metal products
US6585864B1 (en) * 2000-06-08 2003-07-01 Surface Engineered Products Corporation Coating system for high temperature stainless steel
US6670046B1 (en) * 2000-08-31 2003-12-30 Siemens Westinghouse Power Corporation Thermal barrier coating system for turbine components
DE10135974A1 (de) * 2001-07-24 2003-02-27 Rolls Royce Deutschland Verfahren zur Herstellung eines Dichtungselements
US6884384B2 (en) * 2001-09-27 2005-04-26 Siemens Westinghouse Power Corporation Method for making a high temperature erosion resistant material containing compacted hollow geometric shapes
US6821641B2 (en) * 2001-10-22 2004-11-23 General Electric Company Article protected by thermal barrier coating having a sintering inhibitor, and its fabrication
EP1319729B1 (de) 2001-12-13 2007-04-11 Siemens Aktiengesellschaft Hochtemperaturbeständiges Bauteil aus einkristalliner oder polykristalliner Nickel-Basis-Superlegierung
DE102004018994A1 (de) * 2004-04-20 2005-11-17 Mtu Aero Engines Gmbh Verfahren zur Herstellung einer Wabendichtung
US7597948B2 (en) * 2005-12-29 2009-10-06 Corning Incorporated Ceramic honeycomb structure having reduced stress web-skin joints
US20080260522A1 (en) * 2007-04-18 2008-10-23 Ioannis Alvanos Gas turbine engine with integrated abradable seal and mount plate
US20080260523A1 (en) * 2007-04-18 2008-10-23 Ioannis Alvanos Gas turbine engine with integrated abradable seal
EP2098606A1 (en) * 2008-03-04 2009-09-09 Siemens Aktiengesellschaft A MCrAlY alloy, methods to produce a MCrAlY layer and a honeycomb seal
WO2010146797A1 (ja) * 2009-06-16 2010-12-23 三菱重工業株式会社 軸シール装置
US8318251B2 (en) * 2009-09-30 2012-11-27 General Electric Company Method for coating honeycomb seal using a slurry containing aluminum

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4080486A (en) * 1973-04-02 1978-03-21 General Electric Company Coating system for superalloys
US4825029A (en) * 1987-06-02 1989-04-25 Wickes Companies, Inc. Spark erosion system for reducing the height of a honeycomb seal
RU2217617C2 (ru) * 1996-12-10 2003-11-27 Хромэллой Гэз Турбин Корпорейшн Притирающееся уплотнение
EP1146204A2 (en) * 2000-04-12 2001-10-17 ROLLS-ROYCE plc Abradable seals
RU2277637C2 (ru) * 2000-11-27 2006-06-10 Неомет Лимитед Сотовая структура, истираемое уплотнение и способ его образования

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2812922C1 (ru) * 2023-04-14 2024-02-05 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" Национального исследовательского центра "Курчатовский институт" (НИЦ "Курчатовский институт" - ВИАМ) Материал на основе сплава системы Fe-Cr-Al-Y для сотового уплотнения турбины

Also Published As

Publication number Publication date
EP2331283A1 (en) 2011-06-15
EP2174740A1 (en) 2010-04-14
US20120126485A1 (en) 2012-05-24
CN102176995A (zh) 2011-09-07
WO2010040599A1 (en) 2010-04-15
RU2011118450A (ru) 2012-11-20

Similar Documents

Publication Publication Date Title
RU2515869C2 (ru) Сотовое уплотнение и способ его изготовления
US10005160B2 (en) Repair methods for cooled components
EP2002030B1 (en) Layered thermal barrier coating with a high porosity, and a component
US7900458B2 (en) Turbine airfoils with near surface cooling passages and method of making same
US9216491B2 (en) Components with cooling channels and methods of manufacture
RU2509177C2 (ru) Подложка с керамическим покрытием, создающим термический барьер, с двумя керамическими слоями
US20060091546A1 (en) Layer system
US9249491B2 (en) Components with re-entrant shaped cooling channels and methods of manufacture
EP2537636B1 (en) Component with cooling channels and method of manufacture
JP2015129509A (ja) 多層冷却特徴を有する部品および製造方法
RU2521924C2 (ru) Сплав, защитный слой и деталь
US9222163B2 (en) Layered coating system with a MCrAlX layer and a chromium rich layer and a method to produce it
KR20140050714A (ko) 2겹의 MCrAlX 금속층을 포함하는 층 시스템
US20100028128A1 (en) Component with diagonally extending recesses in the surface and process for operating a turbine
KR20140094659A (ko) 합금, 보호층 및 부품
KR20070099675A (ko) 고온에서의 부식 및 산화에 대해 부품을 보호하기 위한조성을 갖는 합금, 이러한 합금으로 이루어진 보호층, 및이러한 보호층을 갖춘 부품
EP2728118A2 (en) Components with asymmetric cooling channels and methods of manufacture
EP2247765B1 (en) A MCrAlY ALLOY, METHODS TO PRODUCE A MCrAlY LAYER AND A HONEYCOMB SEAL
KR20140049548A (ko) 합금, 보호층 및 부품
KR101597924B1 (ko) 2겹 금속층을 포함하는 층 시스템
US8518485B2 (en) Process for producing a component of a turbine, and a component of a turbine

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20160828