RU2513963C1 - Способ разработки залежи нефти в отложениях баженовской свиты - Google Patents

Способ разработки залежи нефти в отложениях баженовской свиты Download PDF

Info

Publication number
RU2513963C1
RU2513963C1 RU2012142692/03A RU2012142692A RU2513963C1 RU 2513963 C1 RU2513963 C1 RU 2513963C1 RU 2012142692/03 A RU2012142692/03 A RU 2012142692/03A RU 2012142692 A RU2012142692 A RU 2012142692A RU 2513963 C1 RU2513963 C1 RU 2513963C1
Authority
RU
Russia
Prior art keywords
gas
injection
oil
wells
injected
Prior art date
Application number
RU2012142692/03A
Other languages
English (en)
Other versions
RU2012142692A (ru
Inventor
Анатолий Николаевич Дмитриевский
Сумбат Набиевич Закиров
Эрнест Сумбатович Закиров
Илья Михайлович Индрупский
Искандер Сумбатович Закиров
Даниил Павлович Аникеев
Равиль Рустамович Ибатуллин
Кристоф Израильич Якубсон
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Российской академии наук (ИПНГ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Российской академии наук (ИПНГ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Российской академии наук (ИПНГ РАН)
Priority to RU2012142692/03A priority Critical patent/RU2513963C1/ru
Application granted granted Critical
Publication of RU2012142692A publication Critical patent/RU2012142692A/ru
Publication of RU2513963C1 publication Critical patent/RU2513963C1/ru

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Изобретение относится к нефтедобывающей отрасли. Обеспечивает повышение эффективности разработки залежи нефти в отложениях баженовской свиты. Сущность изобретения: по способу осуществляют бурение добывающих и нагнетательных скважин с осуществлением закачки в пласт метансодержащего газа, попутного нефтяного или природного, с реализацией последовательности технологических операций в чередующихся циклах, каждый из которых включает три этапа. На первом этапе в нагнетательную скважину закачивают газ в течение времени T1, за которое обеспечивают повышение пластового давления, растворение жидких углеводородов и высвобождение их из связанного состояния в керогенсодержащей матрице. На втором этапе нагнетательная и добывающие скважины после времени Т1 простаивают в течение времени (Т21) для дальнейшего растворения указанных углеводородов и выравнивания пластового давления, сопровождающегося дальнейшим проникновением газа в низкопроницаемую керогенсодержащую матрицу. Во время третьего этапа в эксплуатацию вводят добывающие скважины на период времени (Т32). После этого вновь начинают процесс закачки газа в нагнетательную скважину. Время T1 принимают равным около 1-3 месяцев, а продолжительность периода (Т21) устанавливают на основе промысловых исследований из условия максимизации накопленной добычи нефти добывающими скважинами к моменту времени Т2 . Момент времени Т3 соответствует моменту, когда дебит добывающей скважины по нефти достигает нерентабельного значения, например 3 т/сут. Добываемые растворенный и закачиваемый газы после сепарации обратно закачивают в пласт, что способствует сокращению поставок стороннего газа. 10 з.п. ф-лы,

Description

Предлагаемое изобретение относится к области нефтедобывающей промышленности, а именно к повышению эффективности разработки проблемных залежей нефти в отложениях баженовской свиты.
Запасы нефти в баженовской свите, регионально представленной в Западной Сибири, по разным оценкам, исчисляются миллиардами тонн. Они до сих пор не разрабатываются в промышленных масштабах вследствие отсутствия адекватной технологии извлечения из них нефти.
Продуктивные отложения баженовской свиты считаются нефтематеринскими и представлены, в основном, переслаиванием двух литологических типов коллекторов: кероген-глинисто-кремнистых пород - баженитов, занимающих обычно основную долю толщины пласта, и трещиноватых глинистых известняков (см. на сайте Высшей аттестационной комиссии (ВАК) автореферат кандидатской диссертации Вертиевец Ю.А. "Геологическое обоснование освоения трудноизвлекаемых запасов нефти кероген-глинисто-силицитовых пород баженовской свиты района Красноленинского свода", 2011 г., с.13 и 14).
Бажениты характеризуются тем, что содержат углеводороды в двух различных формах. Во-первых, в виде легкой маловязкой нефти в пустотном пространстве. Во-вторых, в виде керогена - одной из породообразующих составляющих коллектора, соответствующей промежуточной стадии преобразования органического вещества и обладающей нефтегенерирующей способностью.
Характерный размер пор баженитов оценивается по аналогии с нефтесодержащими сланцами в 30-50 нм. То есть имеют место коллектора с наноразмерной структурой порового пространства. Коллекторские свойства баженитов очень низкие и связаны, в основном, с микрослоистостью и листоватостью глинистых пород. Относительно хорошей проницаемостью в отложениях баженовской свиты характеризуются интервалы трещиноватости известняков и отдельные зоны трещиноватости баженитов.
Таким образом, в фильтрационном отношении отложения баженовской свиты характеризуются наличием суперколлекторов в продуктивном разрезе. Слово суперколлектор характеризует здесь не величину проницаемости, а контраст проницаемостей между крайне низкопроницаемой матрицей баженитов и трещиноватыми прослоями. При этом известно, что наличие суперколлекторов предопределяет низкий коэффициент извлечения нефти (КИН), например, при заводнении пласта, вследствие быстрого прорыва воды к добывающим скважинам по суперколлекторам.
Традиционные способы разработки залежей в баженовской свите отличаются низкими (порядка 3-5%) значениями КИН (см. на сайте ВАК автореферат докторской диссертации Кокорева В.И. "Технико-технологические основы инновационных методов разработки месторождений с трудноизвлекаемыми и нетрадиционными запасами нефти", 2010 г.с.26).
Наиболее близкий к предлагаемому способ разработки залежей нефти в отложениях баженовской свиты характеризуется следующими особенностями (см. Лобусев А.В., Чоловский И.П., Лобусев М.А., Вертиевец Ю.А. Использование попутного газа для разработки залежей УВ баженовской свиты Западной Сибири // Газовая промышленность, 644/2010, с.61 или на сайте ВАК автореферат кандидатской диссертации Вертиевец Ю.А. "Геологическое обоснование освоения трудноизвлекаемых запасов нефти кероген-глинисто-силицитовых пород баженовской свиты района Красноленинского свода", 2011 г., с.22-23).
- На отложения баженовской свиты бурят систему добывающих и нагнетательных скважин.
- В нагнетательные скважины осуществляют закачку попутного газа, получаемого при добыче нефти из отложений баженовской свиты и других пластов рассматриваемого месторождения. Предполагается реализация в баженовской залежи режима смешивающегося вытеснения нефти газом.
- С целью расширения областей дренирования скважин применяют метод гидроразрыва пласта (ГРП) с созданием трещин максимальной длины.
- В отдельных зонах субвертикальной трещиноватости, обеспечивающей сообщаемость баженовской свиты и нижележащей абалакской свиты с улучшенными коллекторскими свойствами, дополнительно бурят горизонтальные скважины на абалакскую свиту с проведением ГРП для добычи нефти, поступающей из баженовской свиты.
Данный способ характеризуется следующими недостатками.
- Попутный газ при закачке в пласт будет с опережением прорываться по суперколлекторам в добывающие скважины, сокращая коэффициент охвата пласта вытеснением и, соответственно, снижая КИН. Известно, что негативное влияние неоднородности пласта на КИН в случае закачки маловязкого газа даже более значительное, чем при заводнении.
- При этом нагнетаемый газ не будет существенно воздействовать на бажениты, содержащие основные запасы углеводородов в виде легкой нефти в пустотах и в связанном виде в керогенсодержащей матрице, аналогично тому, как, согласно теоретическим исследованиям и опыту разработки, оказываются слабоохваченными заводнением запасы нефти в поровой матрице трещинно-порового коллектора вследствие прорыва воды по высокопроницаемым каналам (трещинам).
- Как показывают результаты лабораторных исследований и опытных промысловых работ, коллекторские свойства отложений баженовской свиты сильно чувствительны к изменению пластового давления. Поэтому в окрестности добывающих скважин в процессе их эксплуатации происходит существенное снижение проницаемости, что приводит к быстрому падению их дебитов.
В основу настоящего изобретения положена задача обоснования таких технологических решений, которые, с одной стороны, в качестве благоприятного фактора используют факт высоких термобарических условий в отложениях баженовской свиты и наличие маловязкой нефти. С другой стороны, приводят к повышению эффективности разработки залежи нефти в баженовских отложениях и конечного коэффициента извлечения нефти.
Выполнение поставленной задачи достигается тем, что предлагаемый способ разработки залежи нефти в отложениях баженовской свиты включает бурение добывающих и нагнетательных скважин и закачку в пласт метансодержащего - попутного нефтяного или природного газа, и отличается тем, что реализуют последовательность технологических операций в чередующихся циклах, каждый из которых включает три этапа.
На первом этапе в нагнетательную скважину газ закачивают в течение времени T1, за которое происходит повышение пластового давления, растворение жидких углеводородов и высвобождение их из связанного состояния в керогенсодержащей матрице.
На втором этапе нагнетательная и добывающие скважины после времени T1 простаивают в течение времени (T2-T1), за которое продолжается растворение указанных углеводородов и происходит выравнивание пластового давления, сопровождающееся дальнейшим проникновением газа в низкопроницаемую керогенсодержащую матрицу.
Во время третьего этапа в эксплуатацию вводят добывающие скважины на период времени (T3-T2). После этого вновь начинают процесс закачки газа в нагнетательную скважину.
Время T1 принимают равным около 1-3 месяцев, а продолжительность периода (T2-T1) устанавливают на основе промысловых исследований из условия максимизации накопленной добычи нефти добывающими скважинами к моменту времени T2, а момент времени T3 соответствует моменту, когда дебит добывающей скважины по нефти достигает заданного минимального значения.
Добываемые растворенный и закачиваемый газы после сепарации обратно закачивают в пласт, что способствует сокращению потребностей в использовании стороннего газа.
Для снижения затрат на рабочий агент и его компримирование в качестве закачиваемого газа используют попутный нефтяной газ, добываемый на месторождении.
Для повышения диффузионной способности газа и более эффективного проникновения его в керогенсодержащую матрицу для экстракции жидких углеводородов в качестве закачиваемого газа используют метан или сухой природный газ.
Для повышения эффективности вытеснения подвижной нефти за счет смешивающегося вытеснения и высвобождения связанных углеводородов в качестве закачиваемого газа используют углекислый газ.
Для повышения эффективности вытеснения подвижной нефти за счет смешивающегося вытеснения и высвобождения связанных углеводородов закачку газа сопровождают закачкой растворителей в виде оторочек или путем обогащения закачиваемого газа растворителем.
Для комплексного повышения эффективности процесса вытеснения чередуют закачку оторочек метана, углекислого газа, растворителей или обогащенного растворителями газа, а также газа сепарации.
Для увеличения коэффициента охвата при снижении эффективности рассматриваемых трех этапов, выраженной в накопленной добыче нефти за цикл, в нагнетательную скважину закачивают воду или полимерные, гелевые растворы в качестве потокоотклоняющего агента.
Для сокращения потерь в добыче нефти из-за простаивания добывающих скважин при наличии аномально высокого пластового давления - АВПД в первых циклах нагнетательные скважины эксплуатируют в качестве добывающих до снижения пластового давления не ниже гидростатического.
Для сокращения потерь в добыче нефти из-за простаивания добывающих скважин в первых циклах нагнетательную и добывающие скважины эксплуатируют одновременно, со своими функциями, до момента времени, когда дебиты нефти добывающих скважин не достигнут уровня заданных минимальных значений.
Для увеличения уровней добычи углеводородного сырья и потока наличности (динамики выручки) от их продажи на первых этапах начальных циклов производят одновременную закачку газа как в нагнетательную, так и в добывающие скважины.
Для увеличения коэффициента охвата, при достаточной толщине пласта (более 12-13 м), забои добывающих и нагнетательных скважин разносят по вертикали, как в способе вертикально-латерального заводнения (см. Закиров С.Н., Индрупский И.М., Закиров Э.С. и др. Новые принципы и технологии разработки месторождений нефти и газа: Часть 2. М.: Ижевск: Ин-т компьютер, исслед., 2009, с.83-100).
Способ осуществляют следующим образом
Для рассматриваемой залежи нефти создают сначала 3D геологическую, а затем и 3D гидродинамическую модель продуктивного пласта.
Тип закачиваемого газа выбирают с учетом результатов лабораторных экспериментов на керновом материале и технико-экономических расчетов, а также проведения опытных работ.
В качестве закачиваемого газа используют один из следующих вариантов:
- попутный нефтяной газ баженовской свиты или других залежей месторождения, а также соседних месторождений;
- чистый метан или сухой природный газ, при наличии на данном или соседних месторождениях залежей сухого газа;
- обогащенный растворителями или чередующийся с оторочками растворителей попутный нефтяной или иной газ, при этом в качестве растворителей используют, например, широкую фракцию легких углеводородов - ШФЛУ, толуол;
- углекислый газ;
- чередующиеся оторочки любых из перечисленных закачиваемых агентов, или попутный газ, обогащенный любыми из перечисленных агентов.
Осуществляют прогнозные расчеты с целью обоснования сетки скважин, типа скважин (вертикальные, горизонтальные, многозабойные), расстояния между скважинами по латерали и расстояния между стволами скважин по вертикали. Для повышения приемистости нагнетательных и продуктивности добывающих скважин в них могут выполнять ГРП.
Скорее всего, наиболее предпочтительной окажется площадная пятиточечная сетка скважин, или однорядная сетка. На примере элемента разработки при пятиточечной сетке соответствующие технологические решения выглядят следующим образом.
- Совокупность технологических операций идентична в чередующихся во времени циклах. Каждый из циклов подразделяется, в общем случае, на три этапа.
- Первый этап. В нагнетательную скважину в течение 1-3 месяцев производят закачку газа. Продолжительность закачки в течение времени T1, равного 1-3 месяцам, довольно характерна для проектов газового и водогазового воздействия на продуктивные нефтяные пласты.
В период закачки газа добывающие скважины простаивают.
В течение первого этапа высокоподвижный закачиваемый газ растворяет в себе в режиме, близком к смесимости, жидкие углеводороды, проникает в керогенсодержащую матрицу баженитов с наноразмерными порами и взаимодействует со связанными углеводородами за счет фильтрационных и диффузионных процессов, что приводит к их набуханию, высвобождению из матрицы и смесимости с закачиваемым газом.
- Второй этап. По прошествии указанного времени T1 закачку газа в нагнетательную скважину прекращают, а добывающие скважины продолжают простаивать в течение времени (T2-T1). В этот период продолжается насыщение закачанного в пласт газа жидкими и связанными углеводородами, высвобождаемыми из керогенсодержащей матрицы.
Продолжительность периода (T2-T1) будет разной для рассматриваемых залежей в связи с тем, что они характеризуются не одинаковыми термобарическими условиями, коллекторскими свойствами, а также физико-химическими свойствами нефти и баженитов. Поэтому, меняя продолжительность периода (T2-T1) в промысловых исследованиях, устанавливают такую ее величину, при увеличении которой не происходит существенного роста содержания нефти в добывающих скважинах при включении их в эксплуатацию. На продолжительность периода простоя (T2-T1) оказывает влияние также экономический фактор.
- Третий этап. Нагнетательная скважина продолжает простаивать. Добывающие скважины пускают в эксплуатацию с целью добычи нефти как в свободном виде, так и растворенной в закачанном газе. Со временем дебит скважин по нефти снижается и достигает заданного минимального уровня. Такой уровень устанавливается на основе предварительных технико-экономических расчетов, например, из условия рентабельности (самоокупаемости) эксплуатации скважин. С этого момента T3 эксплуатацию добывающих скважин прекращают и возобновляют закачку газа в нагнетательную скважину. То есть, наступает следующий цикл.
Возможные дополнения к способу заключаются в следующем.
- С целью увеличения коэффициента охвата при снижении доли нефти в добываемой продукции через нагнетательную скважину осуществляют закачку воды в пласт. Если в случае нефтяных скважин для увеличения коэффициента охвата закачивают, например, полимеры, то в предлагаемом способе порция воды выступает и в качестве рабочего агента. В случае значительной доли разбухающего глинистого материала в баженитах для выравнивания профиля приемистости используют минерализованные водные растворы, минимизирующие процесс разбухания, и широко применяемые в нефтяной практике гелевые, полимерные растворы, например растворы полиакриламида в воде, растворы биополимеров или любые водные растворы с добавлением водорастворимых веществ для повышения вязкости и/или придания вязкопластических свойств.
- С целью сокращения потерь в добыче нефти из-за простаивания добывающих скважин в условиях аномально высокого пластового давления - АВПД в начальные моменты реализации предлагаемого способа целесообразна лишь одновременная эксплуатация добывающих скважин и нагнетательной скважины в качестве добывающей. Такая альтернатива реализуется до снижения пластового давления не ниже гидростатического.
- С целью сокращения потерь в добыче нефти из-за простаивания добывающих скважин целесообразна в начальные моменты времени альтернатива в виде одновременной эксплуатации нагнетательной и добывающих скважин со своими функциями до момента, когда дебиты добывающих скважин достигнут заданного минимального уровня.
- С целью увеличения уровней добычи углеводородного сырья и потока наличности (динамики выручки) от их продажи на первых этапах начальных циклов целесообразна одновременная закачка газа как в нагнетательную, так и в добывающие скважины.
- При достаточной толщине пласта (более 12-13 метров) и наличии в нем вертикальной сообщаемости увеличению коэффициента охвата способствует разнесение забоев нагнетательной и добывающей скважин по вертикали, как в способе вертикально-латерального заводнения, а также при сайклинг-процессе на Карачаганакском месторождении (см. Кусанов Ж.К. Особенности разработки Карачаганакского месторождения // Нефтяное хозяйство, 2011, №6, с.100-103).
- В рассматриваемых основном способе и всех альтернативных его вариантах добываемый газ после промысловой обработки направляют вновь в нагнетательные скважины для закачки в пласт.
Обоснования предлагаемого способа и его достоинств
Пример реализации предлагаемого способа затруднительно привести по причине недоступности исходной геолого-промысловой информации по реальным объектам нефтяных компаний. Тем не менее, приводимая далее аргументация, по мнению авторов, будет достаточной применительно к заявленному способу разработки.
- Предлагаемый способ сродни известным способам разработки - сайклинг-процессу применительно к газоконденсатным залежам, а также газовому и водогазовому способам повышения конечного коэффициента извлечения нефти.
Поэтому способ не нуждается в специальном доказательстве его достоверности и реализуемости. Однако до промышленного внедрения предлагаемого способа необходим этап опытно-промышленных работ на рассматриваемом месторождении с целью выявления его экономической целесообразности и определения искомого периода (T2-T1) простаивания добывающих скважин.
- В отличие от известных сайклинг-процесса и газовых методов повышения КИН, а также способа-прототипа, в предлагаемом способе важной особенностью являются вводимые периоды простаивания добывающих скважин. Такое технологическое решение продиктовано особенностью наличия в баженитах как подвижной нефти, так и связанных или малоподвижных углеводородов в керогенсодержащей матрице. Ибо периоды простаивания скважин способствуют более полной смесимости закачиваемого газа и подвижной нефти, а также активизации связанных и малоподвижных углеводородов матрицы.
- Низкая эффективность многих способов воздействия на нефтяные пласты объясняется наличием значимой движущей силы - разностью забойных давлений в нагнетательной и добывающих скважинах.
Данный фактор присущ и способу-прототипу. В предлагаемом же способе эта движущая сила заметно меньше, так как нет источников низкого давления в добывающих скважинах. А именно, в период простаивания добывающих скважин указанная движущая сила сокращается на величину депрессии в добывающих скважинах.
Роль данного фактора практически обнуляется в альтернативном варианте, когда закачку газа осуществляют и в нагнетательную, и в добывающие скважины.
- Авторы способа-прототипа справедливо отмечают крайне низкую проницаемость керогенсодержащей матрицы. В результате баженовская свита при традиционном вытеснении нефти рабочим агентом (водой или газом) ведет себя как пласт с наличием в нем суперколлекторов. Именно такой контраст в проницаемостях и предопределяет низкие коэффициент охвата при заводнении и соответственно - КИН (Закиров С.Н. и др. Разработка месторождений нефти и газа с суперколлекторами в продуктивном разрезе. - М.: ООО "Контент-пресс", 2011. - 248 с.).
- Как уже отмечалось, способ-прототип практически не может обеспечить воздействия на основные запасы углеводородов в керогенсодержащей матрице. Поэтому далее дополнительные достоинства предлагаемого способа разработки рассмотрим по отношению к считающемуся сегодня наиболее перспективным для России термогазовому способу освоения ресурсов баженовской свиты (см. на сайте ВАК автореферат докторской диссертации Кокорева В.И. "Технико-технологические основы инновационных методов разработки месторождений с трудноизвлекаемыми и нетрадиционными запасами нефти", 2010 г., с.26-38).
Согласно термогазовому способу в нагнетательные скважины закачивают воздух и воду. Вследствие высокой пластовой температуры в баженовской свите самоинициируется процесс горения. Газообразные продукты горения и горячая вода обеспечивают процесс смешивающегося вытеснения нефти, находящейся в жидкой фазе. Продвигающийся в пласте фронт горения ведет к прогреву до температуры 250-300°С керогенсодержащей матрицы и процессам пиролиза и крекинга керогена с извлечением нефти и газообразных углеводородов. При этом утверждается, что на процесс горения расходуется в качестве топлива, в основном, кероген, а не нефть.
При термогазовом способе предполагают, что при создании высокой температуры "экстрагируемые" нефть и газ из керогенсодержащей матрицы получают возможность поступать в прослои с повышенной проницаемостью и далее - к скважинам за счет увеличения коллекторских свойств матрицы под воздействием температуры. Однако увеличение проницаемости матрицы сопровождается одновременным увеличением ее пористости, а фронт прогрева незначительно обгоняет фронт повышенного давления в дренируемом прослое от нагнетания воздуха и воды. Следовательно, термически "экстрагируемые" нефть и газ могут в значительной мере оставаться в керогенсодержащей матрице, не поступая в дренируемые прослои.
В предлагаемом способе закачиваемый газ в периоды T1 и (T2-T1) будет поступать за счет фильтрационных и диффузионных процессов в керогенсодержащую матрицу, взаимодействовать со связанными углеводородами, приводя к их набуханию и "выдавливанию" из матрицы в дренируемые прослои, при режиме смешивающегося вытеснения вследствие высоких термобарических условий в баженовской свите. То есть это альтернативный механизм воздействия на керогенсодержащую матрицу.
- Использование воды в термогазовом способе в качестве рабочего агента может приводить к разбуханию глинистых компонентов матрицы (каолинита и монтмориллонита) и полному "запечатыванию" низкопроницаемой матрицы. Эти процессы усугубляются высокими температурами, свойственными термогазовому способу.
- Предлагаемый способ характеризуется меньшими энергетическими затратами на компримирование рабочего агента. При термогазовом способе компримирование воздуха необходимо осуществлять с одной атмосферы до давления нагнетания около 300-350 атм. То есть коэффициент сжатия составляет 350 ед. В предлагаемом способе компримируют в начале, например, попутный нефтяной газ с давлением в несколько атм. Если это давление равняется, допустим, 2 атмосферам, то коэффициент сжатия составляет 175 единиц, или в 2 раза меньше.
По мере появления закачиваемого газа в продукции добывающих скважин и его дальнейшего использования давление на приеме компрессора можно будет задавать в 3-5 атм. То есть, коэффициент сжатия снижается до 70 единиц с соответствующим уменьшением затрат на компримирование.
Повышение давления на приеме компрессора до 3-5 атм будет означать, что в пласт закачивают жирный газ. Известно, что такой газ характеризуется большей способностью растворять в себе жидкие углеводороды. Дополнительно эффективность вытеснения подвижной нефти и высвобождения связанных углеводородов повышается при использовании растворителей, например толуола, ШФЛУ, и углекислого газа.
В случае использования в предлагаемом способе углекислого газа или растворителей также возможно снижение затрат на компримирование за счет обогащения ими попутного газа с более высоким давлением перед компримированием и последующей подачей в пласт.
Повышение диффузионной способности закачиваемого газа и его проникновения в керогенсодержащую матрицу обеспечивается при закачке метана или сухого природного газа с высоким содержанием метана. В последнем случае затраты на компримирование также значительно снижаются при использовании газа повышенного давления, добываемого из газовых залежей данного или соседних месторождений.
При использовании же воздуха в качестве рабочего агента давление на приеме компрессора, по определению, всегда составляет не более атмосферного. Увеличение энергетических затрат на закачку воздуха неизбежно сопровождается увеличением выбросов компрессорами в атмосферу диоксида углерода. Альтернативное решение в виде применения бустерных агрегатов для закачки в пласт водовоздушной смеси характеризуется низкой производительностью по газу и снижением эффективности процессов горения в пласте.
Кроме того, в случае термогазового способа попутно добываемый газ не используется в качестве рабочего агента. Это означает, что недропользователь вынужден будет реализовывать проект по утилизации добываемого газа. Известно, что одновременная реализация нефтяного и газового проектов ухудшает экономические показатели. Об этом говорит опыт, например, проектов Сахалин-1 и Сахалин-2.
То есть предлагаемый способ предпочтительнее и с экологической точки зрения. Ибо при термогазовом способе не только требуется процесс удаления из добываемого газа азота, диоксида углерода и других компонентов, но и приходится еще сбрасывать в атмосферу нежелательный диоксид углерода.
- При сопоставлении предлагаемого способа с термогазовым способом остается неясным лишь вопрос о сравнительной эффективности двух соответствующих механизмов извлечения углеводородов из керогенсодержащей матрицы. Достоверный ответ здесь возможен на основе сопоставительных как лабораторных, так и промысловых исследований.
Поэтому еще раз оговариваем целесообразность опытно-промышленных работ, так как выполнить сопоставительные лабораторные эксперименты, учитывающие все существенные факторы, применительно к термогазовому и предлагаемому способу представляется нереалистичным.
Таким образом, предлагаемый способ разработки залежи нефти в баженовской свите, с одной стороны, технологически реализуем, ибо он включает в себя известные и апробированные решения. С другой стороны, он характеризуется многими преимуществами по сравнению с термогазовым способом и способом-прототипом.

Claims (11)

1. Способ разработки залежи нефти в отложениях баженовской свиты, включающий бурение добывающих и нагнетательных скважин и закачку в пласт метансодержащего - попутного нефтяного или природного газа, отличающийся тем, что реализуют последовательность технологических операций в чередующихся циклах, каждый из которых включает три этапа; на первом этапе в нагнетательную скважину газ закачивают в течение времени T1, за которое обеспечивают повышение пластового давления, растворение жидких углеводородов и высвобождение их из связанного состояния в керогенсодержащей матрице; на втором этапе нагнетательная и добывающие скважины после времени T1 простаивают в течение времени (T2-T1), за которое продолжают растворение указанных углеводородов и выравнивают пластовое давление, сопровождающееся дальнейшим проникновением газа в низкопроницаемую керогенсодержащую матрицу; на третьем этапе в эксплуатацию вводят добывающие скважины на период времени (Т3-T2); после этого вновь начинают процесс закачки газа в нагнетательную скважину; время T1 принимают равным около 1-3 месяцев, продолжительность периода (T2-T1) устанавливают на основе промысловых исследований из условия максимизации накопленной добычи нефти добывающими скважинами к моменту времени T2, а момент времени Т3 соответствует моменту, когда дебит добывающей скважины по нефти достигает заданного минимального значения; добываемые растворенный и закачиваемый газы после сепарации обратно закачивают в пласт, что способствует сокращению поставок стороннего газа.
2. Способ по п.1, отличающийся тем, что в качестве закачиваемого газа используют попутный нефтяной газ, добываемый на месторождении.
3. Способ по п.1, отличающийся тем, что в качестве закачиваемого газа используют метан или сухой природный газ.
4. Способ по п.1, отличающийся тем, что в качестве закачиваемого газа используют углекислый газ.
5. Способ по п.1, отличающийся тем, что закачку газа сопровождают закачкой растворителей, в виде оторочек или путем обогащения закачиваемого газа растворителем.
6. Способ по п.1, отличающийся тем, что чередуют закачку оторочек метана, углекислого газа, растворителей или обогащенного растворителями газа, а также газа сепарации.
7. Способ по одному из пп.1-6, отличающийся тем, что при снижении эффективности рассматриваемых трех этапов в одном из циклов, выраженной в накопленной добыче нефти за цикл, в нагнетательную скважину закачивают воду или полимерные, гелевые растворы в качестве потокоотклоняющего агента.
8. Способ по одному из пп.1-6, отличающийся тем, что при наличии аномально высокого пластового давления - АВПД в первых циклах нагнетательные скважины эксплуатируют в качестве добывающих до снижения пластового давления не ниже гидростатического.
9. Способ по одному из пп.1-6, отличающийся тем, что в начальные моменты времени нагнетательную и добывающие скважины эксплуатируют одновременно, со своими функциями, до момента времени, когда дебиты нефти добывающих скважин не достигнут заданных минимальных значений.
10. Способ по одному из пп.1-6, отличающийся тем, что на первых этапах начальных циклов производят одновременную закачку газа как в нагнетательную, так и в добывающие скважины.
11. Способ по одному из пп.1-6, отличающийся тем, что при толщинах пласта более 12-13 м забои добывающих и нагнетательных скважин разносят по вертикали, как в способе вертикально-латерального заводнения.
RU2012142692/03A 2012-10-08 2012-10-08 Способ разработки залежи нефти в отложениях баженовской свиты RU2513963C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012142692/03A RU2513963C1 (ru) 2012-10-08 2012-10-08 Способ разработки залежи нефти в отложениях баженовской свиты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012142692/03A RU2513963C1 (ru) 2012-10-08 2012-10-08 Способ разработки залежи нефти в отложениях баженовской свиты

Publications (2)

Publication Number Publication Date
RU2012142692A RU2012142692A (ru) 2014-04-20
RU2513963C1 true RU2513963C1 (ru) 2014-04-20

Family

ID=50480325

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012142692/03A RU2513963C1 (ru) 2012-10-08 2012-10-08 Способ разработки залежи нефти в отложениях баженовской свиты

Country Status (1)

Country Link
RU (1) RU2513963C1 (ru)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597039C1 (ru) * 2015-07-13 2016-09-10 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ разработки залежи тяжелой нефти
RU2612063C1 (ru) * 2016-06-03 2017-03-02 Публичное акционерное общество "Татнефть" им. В.Д.Шашина Способ разработки нефтематеринских отложений
RU2625829C2 (ru) * 2015-12-30 2017-07-19 Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Российской академии наук (ИПНГ РАН) Способ разработки залежи углеводородов в низкопроницаемых отложениях
RU2627336C1 (ru) * 2016-11-25 2017-08-07 Публичное акционерное общество "Татнефть" им. В.Д.Шашина Способ разработки слабопроницаемых коллекторов периодичной закачкой углекислого газа
RU2683015C1 (ru) * 2018-03-12 2019-03-25 Общество с ограниченной ответственностью "Газпром проектирование" Способ разработки битуминозных аргиллитов и песчаников
RU2728753C1 (ru) * 2019-12-20 2020-07-30 Некоммерческое партнерство "Технопарк Губкинского университета" (НП "Технопарк Губкинского университета") Способ разработки нефтяной оторочки нефтегазового месторождения подошвенного типа
RU2732936C2 (ru) * 2019-01-29 2020-09-24 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки продуктивного низкопроницаемого пласта
RU2785575C1 (ru) * 2021-12-09 2022-12-08 Министерство науки и высшего образования Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН (ИПНГ РАН) Способ разработки газоконденсатной залежи

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066254B2 (en) * 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
RU2305175C2 (ru) * 2001-10-24 2007-08-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Термообработка углеводородсодержащего пласта по месту залегания и повышение качества получаемых флюидов перед последующей обработкой
RU2418944C1 (ru) * 2010-04-16 2011-05-20 Открытое акционерное общество "Российская инновационная топливно-энергетическая компания (ОАО "РИТЭК") Способ разработки нефтекерогеносодержащих месторождений

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7066254B2 (en) * 2001-04-24 2006-06-27 Shell Oil Company In situ thermal processing of a tar sands formation
RU2305175C2 (ru) * 2001-10-24 2007-08-27 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Термообработка углеводородсодержащего пласта по месту залегания и повышение качества получаемых флюидов перед последующей обработкой
RU2418944C1 (ru) * 2010-04-16 2011-05-20 Открытое акционерное общество "Российская инновационная топливно-энергетическая компания (ОАО "РИТЭК") Способ разработки нефтекерогеносодержащих месторождений

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ВЕРТИЕВИЦ Ю. А.,Геологические обоснования освоения трудноизвлекаемых запасов нефти кероген-глинисто-силицитовых пород баженовской свиты района Красноленинского свода, автореферат кандидатской диссертации, 2011, с. 22-23. *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2597039C1 (ru) * 2015-07-13 2016-09-10 Федеральное государственное бюджетное учреждение "Национальный исследовательский центр "Курчатовский институт" Способ разработки залежи тяжелой нефти
RU2625829C2 (ru) * 2015-12-30 2017-07-19 Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа Российской академии наук (ИПНГ РАН) Способ разработки залежи углеводородов в низкопроницаемых отложениях
RU2612063C1 (ru) * 2016-06-03 2017-03-02 Публичное акционерное общество "Татнефть" им. В.Д.Шашина Способ разработки нефтематеринских отложений
RU2627336C1 (ru) * 2016-11-25 2017-08-07 Публичное акционерное общество "Татнефть" им. В.Д.Шашина Способ разработки слабопроницаемых коллекторов периодичной закачкой углекислого газа
RU2683015C1 (ru) * 2018-03-12 2019-03-25 Общество с ограниченной ответственностью "Газпром проектирование" Способ разработки битуминозных аргиллитов и песчаников
RU2732936C2 (ru) * 2019-01-29 2020-09-24 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки продуктивного низкопроницаемого пласта
RU2728753C1 (ru) * 2019-12-20 2020-07-30 Некоммерческое партнерство "Технопарк Губкинского университета" (НП "Технопарк Губкинского университета") Способ разработки нефтяной оторочки нефтегазового месторождения подошвенного типа
RU2785575C1 (ru) * 2021-12-09 2022-12-08 Министерство науки и высшего образования Федеральное государственное бюджетное учреждение науки Институт проблем нефти и газа РАН (ИПНГ РАН) Способ разработки газоконденсатной залежи

Also Published As

Publication number Publication date
RU2012142692A (ru) 2014-04-20

Similar Documents

Publication Publication Date Title
RU2513963C1 (ru) Способ разработки залежи нефти в отложениях баженовской свиты
Sheng Critical review of field EOR projects in shale and tight reservoirs
Sheng Enhanced oil recovery in shale reservoirs by gas injection
Shakiba et al. Investigation of oil recovery and CO2 storage during secondary and tertiary injection of carbonated water in an Iranian carbonate oil reservoir
Lang et al. Experimental study and field demonstration of air-foam flooding for heavy oil EOR
CN105275442B (zh) 一种老井重复改造体积压裂工艺
CN102913221B (zh) 一种低渗储层的体积改造工艺
Ma et al. Study of cyclic CO2 injection for low-pressure light oil recovery under reservoir conditions
Cui et al. Research on microscopic oil displacement mechanism of CO2 EOR in extra-high water cut reservoirs
CA3000260C (en) Methods for performing fracturing and enhanced oil recovery in tight oil reservoirs
US20150204171A1 (en) Carbon dioxide energy storage and enhanced oil recovery
CN104653148A (zh) 废弃油井井群改造综合利用方法
US9840899B2 (en) Three-phase method for injecting carbon dioxide into oil reservoirs
CN106437823B (zh) 一种消除煤矿瓦斯爆炸突出超标的方法
Zhao et al. Importance of conformance control in reinforcing synergy of CO2 EOR and sequestration
Lee et al. Incorporation of multi-phase solubility and molecular diffusion in a geochemical evaluation of the CO2 huff-n-puff process in liquid-rich shale reservoirs
RU2478164C1 (ru) Способ разработки залежи нефти, расположенной над газовой залежью и отделенной от нее непроницаемым пропластком
Ji et al. Numerical investigation of CO2-carbonated water-alternating-gas on enhanced oil recovery and geological carbon storage
Mahdavi et al. Micro and macro analysis of carbonated water injection (CWI) in homogeneous and heterogeneous porous media
Da et al. Investigation on microscopic invasion characteristics and retention mechanism of fracturing fluid in fractured porous media
Trivedi et al. Experimental investigations on the flow dynamics and abandonment pressure for CO2 sequestration and oil recovery in artificially fractured cores
Zhao et al. Performance improvement of CO2 flooding using production controls in 3D areal heterogeneous models: Experimental and numerical simulations
CN103939072A (zh) 液氧强刺激点火空气驱高温裂解混相气体复合驱油技术
RU2625829C2 (ru) Способ разработки залежи углеводородов в низкопроницаемых отложениях
RU2490444C1 (ru) Способ кислотной обработки околоскважинной зоны

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181009