RU2511546C2 - Cathode material based on nanocrystalline cementite, method of its production, cathode for electrolytic obtaining of hydrogen from water alkaline and acidic solutions and method of its manufacturing - Google Patents

Cathode material based on nanocrystalline cementite, method of its production, cathode for electrolytic obtaining of hydrogen from water alkaline and acidic solutions and method of its manufacturing Download PDF

Info

Publication number
RU2511546C2
RU2511546C2 RU2011150714/02A RU2011150714A RU2511546C2 RU 2511546 C2 RU2511546 C2 RU 2511546C2 RU 2011150714/02 A RU2011150714/02 A RU 2011150714/02A RU 2011150714 A RU2011150714 A RU 2011150714A RU 2511546 C2 RU2511546 C2 RU 2511546C2
Authority
RU
Russia
Prior art keywords
cathode
hydrogen
nanocrystalline
manufacturing
cementite
Prior art date
Application number
RU2011150714/02A
Other languages
Russian (ru)
Other versions
RU2011150714A (en
Inventor
Сергей Максимович Решетников
Светлана Федоровна Ломаева
Александр Вячеславович Сюгаев
Наталья Васильевна Лялина
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Удмуртский государственный университет" (ФГБОУ ВПО "УдГУ")
Федеральное государственное бюджетное учреждение науки Физико-технический институт Уральского отделения РАН
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Удмуртский государственный университет" (ФГБОУ ВПО "УдГУ"), Федеральное государственное бюджетное учреждение науки Физико-технический институт Уральского отделения РАН filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Удмуртский государственный университет" (ФГБОУ ВПО "УдГУ")
Priority to RU2011150714/02A priority Critical patent/RU2511546C2/en
Publication of RU2011150714A publication Critical patent/RU2011150714A/en
Application granted granted Critical
Publication of RU2511546C2 publication Critical patent/RU2511546C2/en

Links

Images

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

FIELD: chemistry.
SUBSTANCE: group of inventions relates to production of electrodes for electrolytic obtaining of hydrogen from water alkaline and acidic solutions. Method of obtaining nanocrystalline composite material of cathode includes carrying out mechanical activation of mixture of iron and graphite powders in atom ratio 75:25 in argon medium for 15÷20 h with obtaining powder mixture from nano-sized grains of cementite Fe3C and α-Fe with their ratio in wt %:(90÷95):(10÷5). Method of cathode manufacturing includes preliminary exposure of said.
EFFECT: nanocrystalline composite material in vacuum 5÷10 Pa for 1÷2 h at temperature 450÷550°C, after which its magnetic-impulse pressing is carried out with amplitude 1÷2 GPa and duration of pressure pulses 300÷400 mcs.
EFFECT: manufacturing of cathode with lower overtension of reaction of electrochemical hydrogen release is ensured
5 cl, 1 ex, 5 dwg

Description

Изобретение относится к способам приготовления нанокристаллического композиционного материала и способам изготовления катода для электролитического получения водорода из водных щелочных и кислотных растворов.The invention relates to methods for preparing a nanocrystalline composite material and methods for manufacturing a cathode for the electrolytic production of hydrogen from aqueous alkaline and acid solutions.

В промышленных электролизерах для электролитического получения водорода из водных щелочных и кислотных растворов используют в качестве материала для катодов железо и/или никель. Известно использование железоникелевых сплавов разного состава. Однако данные металлические электроды обладают высоким перенапряжением реакции выделения водорода. Данные по активности железа, никеля и их сплавов в качестве катодных материалов обобщены в литературе [1]. В случае платиновых металлов перенапряжение низкое, но эти металлы не используются, поскольку являются дорогими и имеют склонность к отравлению каталитическими ядами [1].In industrial electrolyzers, for the electrolytic production of hydrogen from aqueous alkaline and acid solutions, iron and / or nickel are used as a material for cathodes. It is known to use iron-nickel alloys of different compositions. However, these metal electrodes have a high overvoltage reaction of hydrogen evolution. Data on the activity of iron, nickel and their alloys as cathode materials are summarized in the literature [1]. In the case of platinum metals, the overvoltage is low, but these metals are not used because they are expensive and tend to be poisoned by catalytic poisons [1].

В качестве альтернативы металлическим материалам катодов были исследованы карбиды ряда металлов. Одним из наиболее перспективных оказался карбид вольфрама, в частности, в виде спеченных композитов. Однако дефицитность данного материала и вольфрама [2] не позволили использовать карбид вольфрама в качестве материала катода.As an alternative to the metallic materials of the cathodes, carbides of a number of metals were investigated. One of the most promising was tungsten carbide, in particular, in the form of sintered composites. However, the scarcity of this material and tungsten [2] did not allow the use of tungsten carbide as a cathode material.

Известен способ электролитического получения водорода из растворов электролитов с использованием растворимых анодов по патенту RU №2089670 [3]. Электролиз ведут постоянным током с использованием в качестве растворимых анодов магния или его сплавов. Недостатком данного способа является использование дорогих и дефицитных анодов из магния или его сплавов, а также потери части электроэнергии, связанные с преобразованием переменного тока в постоянный.A known method of electrolytic production of hydrogen from electrolyte solutions using soluble anodes according to patent RU No. 2089670 [3]. Electrolysis is carried out by direct current using magnesium or its alloys as soluble anodes. The disadvantage of this method is the use of expensive and scarce anodes of magnesium or its alloys, as well as the loss of part of the electricity associated with the conversion of alternating current to direct.

Известен способ изготовления наноструктурированного катодного материала на основе никеля для электрохимического водного выделения по полезной модели UA 65397 [4], который включает размещение на горизонтальной поверхности никеля с одной стороны наноструктурированных элементов в виде конусов. На вершины конусов дозированно осаждают платину с насеченного K2[PtC16]. Подают импульсами постоянное напряжение. Недостатком данного способа является необходимость использования дорогостоящей платины.A known method of manufacturing a nanostructured cathode material based on Nickel for electrochemical water separation according to utility model UA 65397 [4], which includes placing on a horizontal surface of nickel on one side of the nanostructured elements in the form of cones. Platinum from the incised K2 [PtC16] is precipitated dosed on top of the cones. They provide pulses of constant voltage. The disadvantage of this method is the need to use expensive platinum.

Была поставлена задача подбора недорогого материала, обладающего пониженным перенапряжением реакции электрохимического выделения водорода, и приготовления на его основе нанокристаллического композиционного материала катода для электролитического получения водорода из водных щелочных и кислотных растворов. Данный материал был получен в результате лабораторных исследований с использованием дешевых исходных компонентов (железа и графита), которые были подвергнуты механохимической обработке для получения метастабильной карбидной фазы (цементита) Fe3C. Известно, что механохимический синтез является традиционным методом получения метастабильных фаз и нанокристаллических композиционных материалов [5].The task was to select an inexpensive material with a reduced overstrain of the reaction of electrochemical hydrogen evolution, and to prepare a nanocrystalline composite cathode based on it for the electrolytic production of hydrogen from aqueous alkaline and acid solutions. This material was obtained as a result of laboratory studies using cheap starting components (iron and graphite), which were subjected to mechanochemical processing to obtain a metastable carbide phase (cementite) Fe 3 C. It is known that mechanochemical synthesis is a traditional method of obtaining metastable phases and nanocrystalline composite materials [5].

Кроме того, известно, что получить индивидуальную фазу цементита путем высокотемпературного сплавления железа с углеродом невозможно. Известен метод изготовления электродов из белого чугуна путем обогащения его поверхности цементитом [6]. Сложность получения такого материала не позволяет использовать его в качестве катодного материала.In addition, it is known that it is impossible to obtain an individual cementite phase by high-temperature alloying of iron with carbon. A known method of manufacturing electrodes of white cast iron by enriching its surface with cementite [6]. The complexity of obtaining such a material does not allow its use as a cathode material.

Поставленная задача решалась тем, что проводят механоактивацию смеси порошков железа и графита в атомном отношении 75:25 в среде аргона в течение 15÷20 ч с получением порошка из наноразмерных зерен цементита и α-Fe при их соотношении (90÷95):(10÷5) мас.% в шаровой планетарной мельнице [7].The problem was solved in that they mechanically activate a mixture of powders of iron and graphite in an atomic ratio of 75:25 in argon for 15 ÷ 20 hours to obtain a powder from nanoscale grains of cementite and α-Fe with their ratio (90 ÷ 95) :( 10 ÷ 5) wt.% In a ball planetary mill [7].

Далее материал для изготовления катода предварительно выдерживают в вакууме (остаточное давление 5-10 Па) в течение 1÷2 ч при температуре не более 450÷550°C, а затем ведут его магнитно-импульсное прессование при амплитуде 1÷2 ГПа и длительности импульсов давления 300÷400 мкс [8].Further, the material for the manufacture of the cathode is preliminarily kept in vacuum (residual pressure 5-10 Pa) for 1 ÷ 2 hours at a temperature of not more than 450 ÷ 550 ° C, and then it is magnetically pulsed at an amplitude of 1 ÷ 2 GPa and pulse duration pressure 300 ÷ 400 μs [8].

Полученный нанокристаллический композиционный материал сохраняет наноразмерность объемных элементов и обладает электрокаталитической активностью, что дает возможность изготовить из него катод для электролитического получения водорода из водных щелочных и кислотных растворов при перенапряжении электрохимической водородной реакции, например, всего 200 мВ. При этом скорость выделения водорода находится на том же уровне, что и при электролизе кислых сред с помощью платинового катода.The obtained nanocrystalline composite material retains the nanoscale size of bulk elements and has electrocatalytic activity, which makes it possible to make a cathode from it for the electrolytic production of hydrogen from aqueous alkaline and acid solutions when the electrochemical hydrogen reaction is overstressed, for example, only 200 mV. The rate of hydrogen evolution is at the same level as in the electrolysis of acidic media using a platinum cathode.

Пример конкретного осуществления предлагаемого изобретения. Механоактивацию проводили в шаровой планетарной мельнице “Fritsch P-7” с ускорением 25 g. В мельницу загружали 10 г смеси порошков железа и графита в атомном соотношении 75:25. Время синтеза составляло 16 ч. Сосуды мельницы (объем 45 см3) и размольные шары диаметром 10 мм (20 шт.) были изготовлены из стали ШХ15 (1% C и 1,5% Cr), отличающейся высокой твердостью, чтобы свести к минимуму загрязнения порошков посторонними примесями. Полученную порошковую смесь цементита Fe3C и α-Fe, находящихся в нанокристаллическом состоянии, подвергали магнитно-импульсному прессованию, которое позволило получить объемный материал катода с сохранением нанокристаллического состояния [5]. Прессование проводили в вакууме (остаточное давление 5-10 Па) при температуре 500°C, амплитуда импульса ~1.5 ГПа и длительность импульса 300 мкс. Предварительно осуществляли дегазацию порошковой смеси в вакууме в течение 1 ч при температуре 500°C.An example of a specific implementation of the invention. Mechanical activation was carried out in a Fritsch P-7 ball planetary mill with an acceleration of 25 g. The mill was loaded with 10 g of a mixture of powders of iron and graphite in an atomic ratio of 75:25. The synthesis time was 16 hours. Mill vessels (volume 45 cm 3 ) and grinding balls with a diameter of 10 mm (20 pcs.) Were made of steel ШХ15 (1% C and 1.5% Cr), which is characterized by high hardness in order to minimize contamination of powders with impurities. The obtained powder mixture of cementite Fe 3 C and α-Fe in the nanocrystalline state was subjected to magnetic pulse pressing, which made it possible to obtain bulk cathode material while maintaining the nanocrystalline state [5]. The pressing was carried out in vacuum (residual pressure 5–10 Pa) at a temperature of 500 ° C, a pulse amplitude of ~ 1.5 GPa, and a pulse duration of 300 μs. Preliminarily, the powder mixture was degassed in vacuum for 1 h at a temperature of 500 ° C.

Полученный в результате магнитно-импульсного прессования композит имел форму диска с диаметром 15 мм и толщиной от 1 до 2 мм. Рентгеновская дифрактометрия показала наличие в нем нанокристаллической структуры со средним размером зерна 40 нм (фиг.1) и содержанием не более 5 мас.% железа.The composite obtained as a result of magnetic pulse pressing was in the form of a disk with a diameter of 15 mm and a thickness of 1 to 2 mm. X-ray diffractometry showed the presence of a nanocrystalline structure with an average grain size of 40 nm (Fig. 1) and a content of not more than 5 wt.% Iron.

Поляризационные измерения были выполнены в потенциодинамическом режиме на потенциостате IPC-Pro в стандартной электрохимиической ячейке ЯСЭ-2 при комнатной температуре в условиях естественной аэрации. Для сравнения использовали хлорид-серебряный электрод. Измерения проводили для следующих электродов: из заявляемого материала и платины. Измеренные потенциалы приводились относительно стандартного водородного электрода, токи пересчитывались на видимую площадь поверхности образцов. Подготовка поверхности образцов перед электрохимическими исследованиями заключалась в зачистке их поверхности на шлифовальной бумаге и дополнительной шлифовке поверхности порошком Al2O3, смоченным дистиллированной водой. Рабочий Pt-электрод не зачищали, а для удаления примесей его выдерживали в кипящей смеси концентрированной серной кислоты и перекиси водорода (1:1).Polarization measurements were performed in potentiodynamic mode on an IPC-Pro potentiostat in a standard electrochemical cell of YaSE-2 at room temperature under natural aeration conditions. For comparison, a silver chloride electrode was used. The measurements were carried out for the following electrodes: from the inventive material and platinum. The measured potentials were given relative to a standard hydrogen electrode, the currents were converted to the apparent surface area of the samples. Preparation of the surface of the samples before electrochemical studies consisted in cleaning their surface on sanding paper and additional grinding the surface with Al 2 O 3 powder moistened with distilled water. The working Pt electrode was not cleaned, and to remove impurities it was kept in a boiling mixture of concentrated sulfuric acid and hydrogen peroxide (1: 1).

Модельными электролитами служили кислые и щелочные сульфатные растворы: C ( S O 4 2 ) = 0.5 M

Figure 00000001
с pH=0.4 и 1.9; C ( S O 4 2 ) = 1,0 M
Figure 00000002
с pH=12.3. В кислых средах поляризацию проводили от стационарного потенциала в катодную сторону; в щелочных средах для удаления поверхностных оксидов - после предварительной выдержки образцов при -1200 мВ в анодную сторону. Скорость изменения потенциала составляла 0.5 мВ/с. При исследовании склонности электродов к отравлению образцы выдерживали 15 мин в насыщенном растворе сероводорода, тщательно промывали водой, затем проводили поляризацию. Для определения выхода по току реакции выделения водорода (РВВ) объем выделившегося газа измеряли с использованием бюретки по объему вытесненной жидкости.Acid and alkaline sulfate solutions served as model electrolytes: C ( S O four 2 - ) = 0.5 M
Figure 00000001
with pH = 0.4 and 1.9; C ( S O four 2 - ) = 1,0 M
Figure 00000002
with pH = 12.3. In acidic media, polarization was carried out from the stationary potential to the cathode side; in alkaline media to remove surface oxides - after preliminary exposure of the samples at -1200 mV to the anode side. The rate of change of potential was 0.5 mV / s. When studying the tendency of the electrodes to poison, the samples were kept for 15 min in a saturated solution of hydrogen sulfide, washed thoroughly with water, and then polarized. To determine the current efficiency of the hydrogen evolution (RHE) reaction, the volume of gas evolved was measured using a burette according to the volume of the displaced fluid.

Электрохимическая активность заявленного материала катода измерялась с помощью поляризационных кривых в кислых и щелочных сульфатных растворах. На фиг.2, 3 представлены кривые катодной поляризации ряда материалов - заявленного материала катода, материала катода из железа и гладкой платины в кислых (фиг.2) и щелочных сульфатных (фиг.3) электролитах. В кислых средах при перенапряжении водородной реакции |η|=300 мВ скорость выделения водорода на катоде из заявляемого материала на 3 порядка выше, чем на железе. В щелочных средах скорость выделения водорода на катоде из заявляемого материала в 3 раза выше скорости выделения водорода на электроде из железа. В кислых электролитах в широком диапазоне катодных потенциалов (при перенапряжении реакции выделения водорода |η|>200 мВ) скорости выделения водорода на катоде из заявляемого материала и гладкой платине практически совпадают.The electrochemical activity of the claimed cathode material was measured using polarization curves in acidic and alkaline sulfate solutions. Figure 2, 3 shows the cathodic polarization curves of a number of materials - the claimed cathode material, cathode material of iron and smooth platinum in acidic (figure 2) and alkaline sulfate (figure 3) electrolytes. In acidic media, when the hydrogen reaction is overstressed, | η | = 300 mV, the rate of hydrogen evolution at the cathode from the claimed material is 3 orders of magnitude higher than that on iron. In alkaline media, the rate of hydrogen evolution at the cathode from the inventive material is 3 times higher than the rate of hydrogen evolution at the electrode from iron. In acidic electrolytes in a wide range of cathodic potentials (with an overstressed reaction of hydrogen evolution | η |> 200 mV), the rates of hydrogen evolution at the cathode from the claimed material and smooth platinum practically coincide.

Отдельными экспериментами показано, что катодное выделение водорода в кислом сульфатном растворе (pH=0.45) при потенциале 800 мВ идет с выходом по току, близким к 100% (фиг.4), и разрушения катода из заявляемого материала не происходит. Заявляемый материал катода значительно более активен в кислых средах, чем в щелочных средах.Separate experiments have shown that the cathodic evolution of hydrogen in an acidic sulfate solution (pH = 0.45) at a potential of 800 mV occurs with a current efficiency close to 100% (Fig. 4), and the cathode does not break from the inventive material. The inventive cathode material is much more active in acidic environments than in alkaline environments.

Одновременно он более коррозионно стоек в кислых средах по сравнению с железом, что делает возможным его использование для электролиза кислых сред.At the same time, it is more corrosion resistant in acidic environments compared to iron, which makes it possible to use it for electrolysis of acidic environments.

Дополнительными экспериментами показано, что предлагаемый катод не проявляет склонности к отравлению серосодержащими соединениями по сравнению с катодом из платины (фиг.5).Additional experiments showed that the proposed cathode does not show a tendency to poisoning with sulfur-containing compounds compared with the cathode of platinum (figure 5).

Таким образом, использование признаков заявляемого изобретения дало возможность приготовить недорогой нанокристаллический композиционный материал катода для электролитического получения водорода из водных щелочных и кислотных растворов, обладающий пониженным перенапряжением реакции электрохимического выделения водорода.Thus, the use of the features of the claimed invention made it possible to prepare an inexpensive nanocrystalline cathode composite material for the electrolytic production of hydrogen from aqueous alkaline and acid solutions, which has a reduced overstrain of the electrochemical hydrogen evolution reaction.

Источники информации, принятые во вниманиеSources of information taken into account

1. Якименко Л.М. Электрохимическое процессы в химической промышленности: Производство водорода, кислорода, хлора и щелочей. М.: Химия, 1981. 52-60 с. (прототип).1. Yakimenko L.M. Electrochemical processes in the chemical industry: Production of hydrogen, oxygen, chlorine and alkalis. M .: Chemistry, 1981. 52-60 s. (prototype).

2. Цирлина Г.А., Петрий О.А. // В сб. Итоги науки и техники. Серия Электрохимия. М.: ВИНИТИ, 1987. Т.24. С.154.2. Tsirlina G.A., Petriy O.A. // Sat Results of science and technology. Series Electrochemistry. M .: VINITI, 1987.V.24. S.154.

3. Патент RU №2089670. Алиев З.М., Гусейнов М.А. Способ получения водорода. C25B 1/02, 1/12. - 3 с.3. Patent RU No. 2089670. Aliev Z.M., Huseynov M.A. The method of producing hydrogen. C25B 1/02, 1/12. - 3 p.

4. Патент на полезную модель UA №65397. Шевченко А.П., Аксиментьева Е.И., Лут Е.А., Белый А.В. Способ изготовления наноструктурированного катодного материала на основе никеля для электрохимического водного выделения. C25B 1/02, 12.12.2011. - 6 с.4. Patent for utility model UA No. 65397. Shevchenko A.P., Aksimentieva E.I., Lut E.A., Bely A.V. A method of manufacturing a nanostructured cathode material based on Nickel for electrochemical water separation. C25B 1/02, 12/12/2011. - 6 p.

5. Suryanarayana С. Mechanical alloying and milling // Proc. Mater. Sci. - 2001. - V.46. - №1-2. Р.1-184.5. Suryanarayana C. Mechanical alloying and milling // Proc. Mater. Sci. - 2001. - V.46. - No. 1-2. R.1-184.

6. Коростылева Т.К., Подобаев Н.И., Девяткина Т.С. и др. // Защита металлов. 1982. Т.18. №4. С.551.6. Korostyleva TK, Podobaev NI, Devyatkina TS and others // Protection of metals. 1982.V. 18. Number 4. S.551.

7. Елсуков Е.П., Дорофеев Г.А., Фомин В.М., Коныгин Г.Н., Загайнов А.В., Маратканова А.Н. Механически сплавленные порошки Fe(100-x)C(x); x=5-25 ат.%. I. Структура, фазовый состав и температурная стабильность // ФММ. - 2002. - Т.94. - №4. - С.43-54.7. Elsukov E.P., Dorofeev G.A., Fomin V.M., Konygin G.N., Zagainov A.V., Maratkanova A.N. Mechanically Fused Fe (100-x) C (x) Powders; x = 5-25 at.%. I. Structure, phase composition, and temperature stability // FMM. - 2002. - T. 94. - No. 4. - S. 43-54.

8. Иванов В.В., Паранин А.С., Вихрев А.Н. // Патент России №2083328, МПК B22F 3/087, приоритет от 25.10.94. Бюл. №25. 1996. С.4.8. Ivanov V.V., Paranin A.S., Vikhrev A.N. // Patent of Russia No. 2083328, IPC B22F 3/087, priority from 10.25.94. Bull. Number 25. 1996. P. 4.

Claims (5)

1. Способ получения нанокристаллического композиционного материала катода для электролитического получения водорода из водных щелочных и кислотных растворов, отличающийся тем, что проводят механоактивацию смеси порошков железа и графита в атомном отношении 75:25 в среде аргона в течение 15÷20 ч с получением порошковой смеси из наноразмерных зерен цементита Fe3C и α-Fe при их соотношении в мас.%: (90÷95):(10÷5). 1. A method of producing a nanocrystalline cathode composite material for the electrolytic production of hydrogen from aqueous alkaline and acid solutions, characterized in that they mechanically activate a mixture of powders of iron and graphite in an atomic ratio of 75:25 in argon for 15 ÷ 20 hours to obtain a powder mixture of nanosized grains of cementite Fe 3 C and α-Fe with their ratio in wt.%: (90 ÷ 95) :( 10 ÷ 5). 2. Способ по п.1, отличающийся тем, что механоактивацию смеси порошков железа и графита проводят в шаровой планетарной мельнице.2. The method according to claim 1, characterized in that the mechanical activation of the mixture of powders of iron and graphite is carried out in a planetary ball mill. 3. Нанокристаллический композиционный материал катода для электролитического получения водорода из водных щелочных и кислотных растворов, характеризующийся тем, что он получен способом по любому из пп.1, 2.3. Nanocrystalline cathode composite material for the electrolytic production of hydrogen from aqueous alkaline and acid solutions, characterized in that it is obtained by the method according to any one of claims 1, 2. 4. Способ изготовления катода для электролитического получения водорода из водных щелочных и кислотных растворов, характеризующийся тем, что нанокристаллический композиционный материал по п.3 предварительно выдерживают в вакууме 5÷10 Па в течение 1÷2 ч при температуре 450÷550°С и затем проводят его магнитно-импульсное прессование при амплитуде 1÷2 ГПа и длительности импульсов давления 300÷400 мкс. 4. A method of manufacturing a cathode for the electrolytic production of hydrogen from aqueous alkaline and acid solutions, characterized in that the nanocrystalline composite material according to claim 3 is previously kept in a vacuum of 5 ÷ 10 Pa for 1 ÷ 2 hours at a temperature of 450 ÷ 550 ° C and then carry out its magnetic pulse pressing at an amplitude of 1 ÷ 2 GPa and a duration of pressure pulses of 300 ÷ 400 μs. 5. Катод для электролитического получения водорода из водных щелочных и кислотных растворов, характеризующийся тем, что он изготовлен способом по п.4. 5. The cathode for the electrolytic production of hydrogen from aqueous alkaline and acid solutions, characterized in that it is made by the method according to claim 4.
RU2011150714/02A 2011-12-13 2011-12-13 Cathode material based on nanocrystalline cementite, method of its production, cathode for electrolytic obtaining of hydrogen from water alkaline and acidic solutions and method of its manufacturing RU2511546C2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011150714/02A RU2511546C2 (en) 2011-12-13 2011-12-13 Cathode material based on nanocrystalline cementite, method of its production, cathode for electrolytic obtaining of hydrogen from water alkaline and acidic solutions and method of its manufacturing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011150714/02A RU2511546C2 (en) 2011-12-13 2011-12-13 Cathode material based on nanocrystalline cementite, method of its production, cathode for electrolytic obtaining of hydrogen from water alkaline and acidic solutions and method of its manufacturing

Publications (2)

Publication Number Publication Date
RU2011150714A RU2011150714A (en) 2013-06-20
RU2511546C2 true RU2511546C2 (en) 2014-04-10

Family

ID=48785113

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011150714/02A RU2511546C2 (en) 2011-12-13 2011-12-13 Cathode material based on nanocrystalline cementite, method of its production, cathode for electrolytic obtaining of hydrogen from water alkaline and acidic solutions and method of its manufacturing

Country Status (1)

Country Link
RU (1) RU2511546C2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006108A1 (en) * 1985-04-12 1986-10-23 Oronzio De Nora Impianti Elettrochimici S.P.A. Electrodes for use in electrochemical processes and method for preparing the same
RU2089670C1 (en) * 1995-01-17 1997-09-10 Дагестанский Государственный Университет Им.В.И.Ленина Process of generation of hydrogen
UA65397U (en) * 2011-04-07 2011-12-12 Львівський Національний Університет Імені Івана Франка Method for producing of nanostructure cathode material based on nickel for electrochemical extraction of hydrogen

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1986006108A1 (en) * 1985-04-12 1986-10-23 Oronzio De Nora Impianti Elettrochimici S.P.A. Electrodes for use in electrochemical processes and method for preparing the same
RU2089670C1 (en) * 1995-01-17 1997-09-10 Дагестанский Государственный Университет Им.В.И.Ленина Process of generation of hydrogen
UA65397U (en) * 2011-04-07 2011-12-12 Львівський Національний Університет Імені Івана Франка Method for producing of nanostructure cathode material based on nickel for electrochemical extraction of hydrogen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ЛОМАЕВА С.Ф. и др., Структура и свойства нанокомпозитов, полученных механоактивацией железа в кремнийорганической среде, Химическая физика и мезоскопия, Том 10, N2, 2008, стр.186-199 *

Also Published As

Publication number Publication date
RU2011150714A (en) 2013-06-20

Similar Documents

Publication Publication Date Title
Subramanya et al. Novel Co–Ni–graphene composite electrodes for hydrogen production
Xue et al. PtRu nanocubes as bifunctional electrocatalysts for ammonia electrolysis
Keerthiga et al. Electrochemical reduction of carbon dioxide on zinc-modified copper electrodes
EP2776607B1 (en) Manufacturing method for an electrode for electrochemistry
Santos et al. Nickel and nickel-cerium alloy anodes for direct borohydride fuel cells
EP2757179B1 (en) Chlorine-generating positive electrode
Cardoso et al. Hydrogen evolution on nanostructured Ni–Cu foams
Krstajic et al. Non-noble metal composite cathodes for hydrogen evolution. Part I: The Ni-MoOx coatings electrodeposited from Watt's type bath containing MoO3 powder particles
Kalathil et al. Gold nanoparticles produced in situ mediate bioelectricity and hydrogen production in a microbial fuel cell by quantized capacitance charging.
CN110923776A (en) Mixing CO2Conversion to metal carbide coating and O2Molten salt electrochemical process of
Krstajic et al. Nonnoble metal composite cathodes for hydrogen evolution. Part II: the NieMoO2 coatings electrodeposited from nickel chlorideeammonium chloride bath containing MoO2 powder particles
JPS59166689A (en) Cathode for electrolytic production of hydrogen
JP5816802B2 (en) Methanol generating apparatus, method for generating methanol, and electrode for methanol generation
Elias et al. Modification of Ni–P alloy coatings for better hydrogen production by electrochemical dissolution and TiO 2 nanoparticles
Zhang et al. Approaches to construct high-performance Mg–air batteries: from mechanism to materials design
JP6036154B2 (en) Insoluble electrode material and insoluble electrode
Liu et al. Mechanism of corrosion and sedimentation of nickel electrodes for alkaline water electrolysis
Gupta et al. Oxygen reduction reaction on anisotropic silver nanoparticles in alkaline media
KR102360423B1 (en) Anode for Alkaline Water Electrolysis having Porous Ni-Fe-Al Catalyst Layer and Preparation Method thereof
RU2511546C2 (en) Cathode material based on nanocrystalline cementite, method of its production, cathode for electrolytic obtaining of hydrogen from water alkaline and acidic solutions and method of its manufacturing
Dominguez-Crespo et al. Influence of Fe contamination and temperature on mechanically alloyed Co–Ni–Mo electrodes for hydrogen evolution reaction in alkaline water
Rivera et al. Electrochemical study in acid aqueous solution and ex-situ X-ray photoelectron spectroscopy analysis of metallic rhenium surface
Mukouyama et al. Fabrication of uniformly sized gold nanoparticles on Glassy Carbon by simple Electrochemical Method
RU2009110234A (en) METHOD FOR PRODUCING POWDERS OF METALS AND ALLOYS
JP5949792B2 (en) Crystalline electrode material and insoluble electrode

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151214