RU2510010C1 - Способ измерения анизотропных коэффициентов вязкости жидких кристаллов и устройство для его осуществления - Google Patents

Способ измерения анизотропных коэффициентов вязкости жидких кристаллов и устройство для его осуществления Download PDF

Info

Publication number
RU2510010C1
RU2510010C1 RU2012148091/28A RU2012148091A RU2510010C1 RU 2510010 C1 RU2510010 C1 RU 2510010C1 RU 2012148091/28 A RU2012148091/28 A RU 2012148091/28A RU 2012148091 A RU2012148091 A RU 2012148091A RU 2510010 C1 RU2510010 C1 RU 2510010C1
Authority
RU
Russia
Prior art keywords
viscosity
coefficients
flow
orientation
capillary
Prior art date
Application number
RU2012148091/28A
Other languages
English (en)
Inventor
Сергей Вениаминович Пасечник
Ольга Александровна Сёмина
Александр Владимирович Дубцов
Дина Владимировна Шмёлева
Валентин Алексеевич Цветков
Владимир Григорьевич Чигринов
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики" filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Московский государственный университет приборостроения и информатики"
Priority to RU2012148091/28A priority Critical patent/RU2510010C1/ru
Application granted granted Critical
Publication of RU2510010C1 publication Critical patent/RU2510010C1/ru

Links

Images

Landscapes

  • Liquid Crystal Substances (AREA)

Abstract

Изобретение относится к измерительной технике, в частности к измерениям вязкости анизотропных жидкостей, т.е. жидкостей, которые имеют разные величины вязкости в зависимости от геометрии измерений и скорости сдвигового потока. К таким жидкостям относятся, например, жидкие кристаллы (ЖК). Способ измерения анизотропных коэффициентов вязкости жидких кристаллов, включает процедуру перекачки измеряемого вещества из одной емкости в другую под действием избыточного давления через плоский капилляр, на стенки которого нанесены прозрачные электроды и ориентирующие слои из светочувствительного материала, способного задать молекулам ЖК последовательно 3 различные ориентации относительно направления потока при экспозиции светочувствительного материала актиничным линейно поляризованным светом с тремя направлениями плоскости поляризации (ПП). Четвертая ориентация ЖК, необходимая для измерения четвертого коэффициента вязкости, создается приложением электрического напряжения. При создании в одной из емкостей избыточного давления возникает медленно спадающий по экспоненте поток ЖК. Производят измерение скорости снижения высоты мениска ЖК от времени при различных ориентациях, строят экспоненциальную кривую, находят характеристическое время течения при одной из ориентаций ЖК и по нему вычисляют один из коэффициентов вязкости. Для измерений других коэффициентов вязкости светочувствительные слои экспонируют светом с другими направлениями ПП без удаления ЖК из капилляра. Вновь создается избыточное давление, строят новые кривые спада, находят новые характеристические времена и вычисляют остальные коэффицие

Description

Изобретение относится к измерительной технике, в частности к измерениям вязкости анизотропных жидкостей, т.е. жидкостей, которые имеют разные величины вязкости в зависимости от геометрии измерений и скорости сдвигового потока. К таким жидкостям относятся, например, жидкие кристаллы (ЖК).
Они обладают свойством ориентироваться в потоке длинными осями молекул вдоль потока, и степень ориентации зависит от скорости потока. Кроме того, известно, что коэффициенты вязкости ЖК анизотропны и зависят от направления длинных осей молекул относительно направления потока. Известен способ и устройство для измерения анизотропных коэффициентов вязкости ЖК, описанные в [1].
Способ измерения коэффициентов вязкости заключается в том, что ЖК под действием перепада давления перегоняется из одной емкости в другую через плоский горизонтальный капилляр, при этом измеряется время перетекания определенного объема жидкости. Зная геометрические параметры капилляра и время перетекания определенного объема жидкости, можно вычислить значение определенного коэффициента вязкости. Для того, чтобы измерять анизотропные коэффициенты вязкости ЖК, до начала перетекания ЖК его молекулы ориентируют определенным образом относительно направления потока. Ориентация производится постоянным магнитным полем.
Если силовые линии магнитного поля перпендикулярны плоскости капилляра, то при малом перепаде давления и, следовательно, малой скорости сдвига основная масса ЖК течет таким образом, что молекулы его перпендикулярны плоскости капилляра и направлению потока. Таким образом, будет измерено значение коэффициента вязкости η1.
Если силовые линии магнитного поля параллельны плоскости капилляра и перпендикулярны потоку, то при малой скорости сдвига основная масса ЖК течет таким образом, что молекулы его перпендикулярны плоскости потока и параллельны плоскости капилляра. Таким образом, будет измерено значение коэффициента вязкости η3.
Если скорость сдвига велика (при большом перепаде давления), то независимо от наличия магнитного поля основная масса ЖК течет таким образом, что его молекулы ориентированы вдоль потока. Таким образом, будет измерено значение коэффициента вязкости η2.
Для измерения коэффициента вязкости η12 магнитное поле направляют таким образом, что молекулы ЖК ориентируются под углом 45° относительно потока и параллельно стенкам плоского капилляра.
Устранение неньютоновского характера течения обеспечивается выбором скорости течения (сдвига) вдали от той скорости, при которой значения коэффициентов вязкости уже начинают зависеть от скорости. Так, для измерения коэффициентов вязкости η1, η12 и η3 скорости сдвига выбираются меньше предела, после которого начинается заметное их уменьшение вследствие ориентации молекул ЖК потоком.
Для измерения коэффициента вязкости η2 скорость сдвига выбирается больше предела, после которого начинается заметное его уменьшение вследствие молекул ЖК в потоке.
Недостатками известного способа измерения анизотропных коэффициентов вязкости являются громоздкость аппаратуры, обусловленная наличием магнитов с достаточно большой напряженностью и необходимостью изменять направление магнитного поля.
Известный способ измерений не может обеспечить высокую точность измерений вследствие невозможности полной переориентации молекул ЖК вдоль силовых линий даже в полях высокой напряженности. Пристеночные слои ЖК в капилляре сохраняют ориентацию, задаваемую поверхностью капилляра, и их доля в общем объеме может быть значительной, что увеличивает погрешность измерений. Кроме того, объем вещества, необходимый для измерений, достаточно велик, что не всегда допустимо, поскольку обычно вновь синтезируемые ЖК соединения с неизвестными параметрами синтезируются, как правило, в малых или микроскопических количествах.
Отмеченные в известном способе недостатки устраняются в способе измерения анизотропных коэффициентов вязкости с устройством для его осуществления [2] - прототип.
Указанный технический результат достигается тем, что поток измеряемой жидкости под давлением пропускается сквозь плоский капилляр, стенки которого обработаны для создания исходной ориентации ЖК в одном из фиксированных направлений. Для измерения каждого из анизотропных коэффициентов вязкости используется отдельный капилляр с соответствующей исходной ориентацией.
Так, для измерения коэффициента вязкости η1 стенки капилляра обработаны таким образом, что задают ЖК исходную гомеотропную ориентацию. Для измерения коэффициента вязкости η2 стенки капилляра обработаны так, что задают ЖК исходную планарную ориентацию с направлением длинных осей молекул вдоль потока. Для измерения коэффициента вязкости η3 стенки капилляра обработаны так, что задают ЖК исходную планарную ориентацию с направлением длинных осей молекул перпендикулярно потоку и параллельно стенкам капилляра. Для измерения коэффициента вязкости η12 стенки капилляра обработаны так, что задают ЖК исходную планарную ориентацию с направлением длинных осей молекул под углом 45° относительно потока и параллельно стенкам капилляра.
Таким образом, в отсутствие громоздких магнитов в предлагаемом техническом решении обеспечиваются 4 геометрии образца, позволяющие измерять 4 анизотропных коэффициента вязкости.
Поскольку каждая из ориентации ЖК в каждом из капилляров задается стенками, то такая ориентация является совершенной по всему объему, в том числе и в пристеночных областях, в то время как при использовании для ориентации магнитов эти области могли иметь ориентацию ЖК иную, чем основной объем ЖК. Следовательно, точность измерения каждого из анизотропных коэффициентов будет выше, поскольку устранены Пристеночные области с иной ориентацией. Устранение неньютоновского характера течения обеспечивается выбором скорости течения (сдвига) вдали от той скорости, при которой значения коэффициентов вязкости уже начинают зависеть от скорости.
Последовательность действий при измерении одного из анизотропных коэффициентов следующая:
- 1) задают некоторую разность уровня измеряемого ЖК в одной из емкостей, создавая избыточное медленно спадающее давление, например, путем введения в нее дополнительного количества ЖК; под действием этого давления в ЖК возникает затухающий поток, стремящийся сравнять уровни ЖК в обеих емкостях,
- 2) снимают зависимость интенсивности света, проходящего сквозь слой ЖК в скрещенных поляроидах при течении ЖК в капилляре с определенной исходной ориентацией под действием избыточного медленно спадающего давления до полного прекращения течения при выравнивании уровней,
- 3) по снятой зависимости интенсивности света строят зависимость фазовой задержки от времени,
- 4) по наклону зависимости фазовой задержки от времени вычисляют значение одного коэффициента вязкости,
- 5) повторяют пп.1), 2), 3), 4) для каждого из 4 капилляров с разной исходной ориентацией ЖК.
Поскольку ориентация ЖК для измерения каждого из анизотропных коэффициентов задается стенками капилляров и потому совершенна, то точность измерений значительно выше, чем у прототипа, и достигается эта точность без применения громоздких магнитов. Расход вещества на измерения всех 4 коэффициентов вязкости ощутим, поскольку для измерений необходимо заполнять 4 капилляра с подводящими каналами и патрубками. Основная масса измеряемого вещества сосредоточена в каналах и патрубках.
После измерений одного коэффициента вязкости в одном капилляре измеряемое вещество легко может быть выкачано и перемещено в другие капилляры для измерения остальных коэффициентов.
Недостатками предложенного в [2] решения являются значительные и безвозвратные потери измеряемого вещества, обусловленные тем фактом, что для измерений используются 4 ячейки, и возможность полного извлечения ЖК из каждой из них ограничена. Кроме того, точность измерений имеет ограничения вследствие невозможности точно обеспечить равенство зазоров в каждой из 4 измерительных ячеек, а величина зазора непосредственно входит в расчет вязкости.
Ближайшим по технической сущности и достигаемому эффекту к известным вискозиметрам является вискозиметр в виде одной кюветы, образованной прозрачными подложками с прозрачными электродами, имеющими ориентирующие слои. Ориентирующие слои выполнены из светочувствительного материала, способного по-разному ориентировать молекулы ЖК в прилегающих слоях в зависимости от направления плоскости поляризации света, которым был экспонирован ориентирующий слой. За счет ориентирующих слоев обеспечиваются 3 необходимые для измерений 3-х коэффициентов вязкости планарные ориентации ЖК с разными азимутальными направлениями молекул ЖК на поверхности ориентирующего слоя: параллельно направлению потока ЖК, перпендикулярно направлению потока и под углом 45° к направлению потока. Четвертая, гомеотропная ориентация ЖК (перпендикулярная направлению потока и стенкам кюветы), необходимая для измерения четвертого коэффициента вязкости, обеспечивается приложением управляющего напряжения достаточной величины. Наличие 4-х ориентаций ЖК позволяет измерить 4 коэффициента вязкости.
Формирование 3 различных планарных ориентации в одной ячейке осуществляется путем экспонирования светочувствительного ориентирующего слоя поляризованным актиничным светом соответствующей поляризации.
Предлагаемый способ и устройство для его осуществления позволяют повысить точность измерений и уменьшить расход измеряемого материала.
Предлагаемые способ измерения вязкости ЖК и устройство для его осуществления поясняются чертежом, где на:
Фиг.1а приведена конструкция ЖК ячейки, вид сверху,
Фиг.1в - источник УФ излучения,
Фиг.1с - лучи с плоскостью поляризации, перпендикулярной чертежу.
Фиг.2 - разрез ячейки по линии А-А,
Фиг.3 - три различные ориентации молекул ЖК при трех направлениях плоскости поляризации экспонирующего излучения.
Предлагаемый вискозиметр состоит из двух емкостей в виде патрубков 1 и 2 соединенных плоским капилляром 3 (Фиг.1a). Плоский капилляр составлен из двух прозрачных подложек 4, на внутренних сторонах которых нанесены прозрачные электроды 5 и светочувствительные ориентирующие слои 6. Подложки скреплены компаундом 7, расположены одна от другой на некотором расстоянии d, задаваемом прокладками 8. Полость, образованная подложками 4, заполнена ЖК 9. Патрубки 1 и 2 и прокладки 8 обеспечивают возможность протекания ЖК сквозь капилляр 3 (Фиг.2).
Для функционирования вискозиметра и реализации предлагаемого способа необходим источник ультрафиолетового (УФ) излучения 10 (Фиг.1в) с возможностью создавать плоско поляризованный свет 11 с различными положениями плоскости поляризации (ПП) - не входит в состав настоящего изобретения.
На Фиг.1в приведена одна из них - с плоскостью поляризации, лежащей в плоскости чертежа (S-поляризация), а на Фиг.1с - с плоскостью ПП, перпендикулярной плоскости чертежа (Р-поляризация).
Источник УФ излучения 10 может быть реализован многими вариантами. Один из них приведен на Фиг.1в и включает лампу УФ света 12, которая испускает неполяризованный свет 13, который после прохождения поляризатора 14, например призмы Глана, становится плоско поляризованным светом 11. Направление ПП света 11 может принимать любое положение, например, за счет вращения поляризатора относительно оси.
В исходном состоянии измеряемый ЖК вводится в патрубки 1, 2 до одинакового исходного уровня 15. Перед началом измерений светочувствительные ориентирующие слои 6 экспонируются актиничным УФ светом с определенным направлением ПП, например горизонтальным, как это показано на Фиг.2 в пределах области abcd. Экспонирование производится от источника 10 на оба ориентирующих слоя 6, причем один из слоев экспонируется сквозь другой ориентирующий слой и слой ЖК, предпочтительно нагретый до температуры выше перехода в изотропную фазу. И, как было установлено экспериментально, это позволяет получить необходимую совершенную исходную ориентацию.
Реализуется предложенный способ измерений следующим образом.
В один из патрубков, например, 1 вводится некоторое количество ЖК 16, которое создает дополнительное давление ΔР=pgΔH, где ρ - плотность ЖК, ΔН - высота дополнительного столба ЖК, g - ускорение свободного падения. Под действием этого давления сквозь плоский капилляр 3 возникает сдвиговый затухающий поток, который стремится уравнять уровни ЖК. Поскольку избыточное давление невелико, ЖК течет медленно и сохраняет ориентацию молекул, задаваемую ориентирующими слоями. При течении ЖК в соответствии с Фиг.2 (молекулы ориентированы вдоль потока) будет измерен коэффициент вязкости η2. Для получения его величины измеряют высоту мениска ЖК в патрубке 1 через определенные (необязательно равные) промежутки времени и строят характеристическую кривую.
Как было экспериментально нами установлено, мгновенный перепад давления ΔР(t) изменяется со временем по закону: ΔР(t)=ΔР0 ехр(-t/τΔP), где характеристическое время:
τ Δ P = K * η / ρ , ( 1 )
Figure 00000001
,
здесь К* - постоянная вискозиметра, зависящая от геометрических параметров капилляра и площади поперечного сечения патрубка, которая может быть рассчитана или экспериментально определена из калибровочных измерений вязкости известной жидкости с известными коэффициентами вязкости, например воды или этилового спирта, η - коэффициент сдвиговой вязкости жидкого кристалла при определенной ориентации последнего.
При найденной постоянной вискозиметра К* и зная характеристическое время τΔP для конкретного ЖК по формуле (1) вычисляют значение одного из коэффициентов вязкости.
Для измерения второго коэффициента вязкости ожидают некоторое время, в течение которого уровни ЖК в патрубках сравняются, и повторяется следующая последовательность действий:
1) Производят новую экспозицию ориентирующих слоев для придания слою ЖК в капилляре другой ориентации, например планарную, при которой молекулы ЖК ориентированы перпендикулярно потоку (Фиг.3а).
2) Вводят в патрубок некоторое количество измеряемого ЖК.
3) Измеряют исходную высоту мениска и его высоту через определенные промежутки времени (5-10 замеров).
4) По измеренным значениям высоты мениска строят характеристическую кривую и вычисляют характеристическое время τΔP для новой ориентации ЖК.
5) По формуле (1) вычисляют второй коэффициент вязкости - η3 (Фиг.3в).
Для измерения третьего коэффициента вязкости после установления одинакового уровня ЖК в патрубках повторяют последовательности 1)- 5), только при экспозиции ориентирующих слоев используют свет с плоскостью поляризации, составляющей 45° с направлением потока (Фиг.3в). В результате будет измерен коэффициент вязкости η12.
Для измерения четвертого коэффициента вязкости после установления одинакового уровня ЖК в патрубках к прозрачным электродам 5 (Фиг.1) прикладывают управляющее электрическое напряжение порядка 50 В 50-100 Гц и повторяют последовательности 2)- 5).
После приложения электрического напряжения молекулы ЖК с положительной диэлектрической выстраиваются длинными осями вдоль силовых линий (перпендикулярно подложкам или гомеотропная ориентация). Если измеряемый ЖК имеет отрицательную диэлектрическую анизотропию, управляющее напряжение должно иметь частоту не менее 1000 Гц, и тогда также будет получена гомеотропная ориентация ЖК. Поскольку величина избыточного давления невелика, скорость потока незначительна и поток ЖК не в состоянии изменить гомеотропную ориентацию, заданную приложенным напряжением. В результате будет измерен коэффициент вязкости η1.
После четырехкратного повторения операций 1) -5) будут измерены 4 коэффициента вязкости ЖК. Расход ЖК на измерение 4 коэффициентов незначителен: основная часть ЖК сосредоточена в капилляре и патрубках с одинаковым уровнем и 4 незначительные добавки для создания добавочного давления в одном из патрубков. После всех 4-х измерений ЖК может быть извлечен практически без потерь и использоваться для других целей, поскольку его чистота не нарушена.
Точность измерений составляет 2-3% (точность измерений прототипа составляет 5-6%). Этот факт обеспечен благодаря тому, что ориентация молекул ЖК за счет светочувствительного слоя совершенна, и все измерения производятся в одном и том же капилляре, т.е. отсутствует эффект разнотолщинности, присущий прототипу.
Таким образом, заявленный технико-экономический эффект: увеличение точности измерений и снижение расхода измеряемого ЖК достигнут.
Пример исполнения предлагаемого вискозиметра.
Был изготовлен экспериментальный образец вискозиметра. В качестве подложек использовались стекла толщиной 2 мм с прозрачными электродами из смеси двуокиси олова индия. На поверхность прозрачных электродов методом центрифугирования из спиртового раствора дихроичного азокрасителя был нанесен светочувствительный ориентирующий слой. Рабочая площадь измерительной ячейки составляла 2×2 см. В качестве патрубков использовались стеклянные капилляры с металлическими наконечниками диаметром 3 мм с внутренним диаметром 2,5 мм. Подложки при помощи кусков тефлоновых прокладок толщиной 100 мкм были размещены на расстоянии 100 мкм одна от другой, и боковые грани смещены на 5 мм, образуя уступ. В образовавшийся выступ были помещены отрезки полых трубок с отверстиями. Патрубки и подложки были скреплены эпоксидной смолой в монолитную конструкцию, и после ее затвердевания были проведены измерения 4 коэффициентов вязкости известного ЖК - пентил-циано бифенил (5СВ). Для этого до начала измерений ЖК экспериментально была найдена постоянная вискозиметра К*. В капилляр была введена контрольная жидкость -этиловый спирт, имеющий известную вязкость 1,19 сП. После выравнивания уровней жидкости в патрубках в один из них было дополнительно введено 0,3 см3 спирта. В процессе перетекания жидкости 5 раз при помощи фотографирования произведено измерение высоты мениска и по вычисленному характеристическому времени и известной вязкости постоянная К* оказалась равной 2,05·106 с22. После удаления контрольной жидкости и просушки вискозиметра была произведена экспозиция ориентирующих слоев от источника УФ излучения с длиной волны 354 нм сквозь поляризатор - призму Глана в течение 5 мин. Направление плоскости поляризации при первом измерении было горизонтальным (вдоль потока). В капилляр при помощи шприца ввели 0,5 см3 ЖК. По истечении 10 мин уровни ЖК в обоих патрубках сравнялись, и в один из патрубков было введено 0,2 см3 ЖК. Под действием избыточного давления ЖК начал перетекать сквозь капилляр в другой патрубок. Через интервалы времени 1 мин производили фотографирование высоты мениска. По результатам 6 измерений была построена кривая спада высоты и вычислено характеристическое время τ=210 с. По формуле (1) находим коэффициент вязкости η2=20,6 сП (табличное значение - 20,4 сП).
Изменяя ориентацию ЖК путем экспозиции ориентирующего слоя с двумя другими направлениями ориентации находим коэффициенты вязкости η3 и η12, равные соответственно 32,8 и 6,4 сП (табличные значения 32,4 и 6,1 сП соответственно).
После приложения напряжения 50В 100 Гц по описанной выше методике измеряем коэффициент вязкости η1=102 сП (табличное значение - 105 сП).
Как видно из измерений, расхождения измеренных и табличных не превышают 1%, что подтверждает достижение заявленной цели изобретения: повышение точности. Общий расход ЖК составил 0,7 см3, причем для использования в других целях можно извлечь до 90% ЖК.
Источники информации
1. Ch. Gahwiller, Mol. Cryst. Liq. Cryst. (1973) v.20, p.301-308.
2. Способ измерения вязкости и устройство для его осуществления. Пат. России №RU 2279662 С1. МКИ8 G01N 011/04, приор. 10.07.2006.

Claims (2)

1. Способ измерения анизотропных коэффициентов вязкости жидких кристаллов, включающий процедуру перекачивания измеряемого жидкого кристалла между двумя емкостями, соединенными плоским капилляром, под действием избыточного медленно спадающего давления в одной из емкостей, отличающийся тем, что для измерения 4 анизотропных коэффициентов вязкости используют один плоский капилляр, имеющий на внутренних поверхностях прозрачные электроды и светочувствительные ориентирующие слои, которые последовательно придают слою ЖК 3 различные ориентации относительно направления потока ЖК при 3 положениях плоскости поляризации экспонирующего излучения, а четвертую ориентацию создают за счет приложения к электродам управляющего напряжения, измеряют скорость снижения высоты мениска ЖК в одной из емкостей для каждой из 4 ориентаций ЖК, строят зависимость спада высоты мениска ЖК для каждой из 4 ориентаций, находят характеристическое время спада высоты мениска и по нему вычисляют каждый из 4 коэффициентов.
2. Устройство для измерения анизотропных коэффициентов вязкости ЖК, содержащее две емкости в виде патрубков, соединенных плоским капилляром, состоящим из прозрачных подложек с прозрачными электродами и ориентирующими слоями, отличающееся тем, что ориентирующие слои выполнены из светочувствительного материала, способного ориентировать молекулы ЖК вдоль направления плоскости поляризации при экспозиции светочувствительного материала и способного обратимо менять ориентацию молекул ЖК при изменении плоскости поляризации без удаления ЖК после каждого измерения.
RU2012148091/28A 2012-11-13 2012-11-13 Способ измерения анизотропных коэффициентов вязкости жидких кристаллов и устройство для его осуществления RU2510010C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012148091/28A RU2510010C1 (ru) 2012-11-13 2012-11-13 Способ измерения анизотропных коэффициентов вязкости жидких кристаллов и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012148091/28A RU2510010C1 (ru) 2012-11-13 2012-11-13 Способ измерения анизотропных коэффициентов вязкости жидких кристаллов и устройство для его осуществления

Publications (1)

Publication Number Publication Date
RU2510010C1 true RU2510010C1 (ru) 2014-03-20

Family

ID=50279726

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012148091/28A RU2510010C1 (ru) 2012-11-13 2012-11-13 Способ измерения анизотропных коэффициентов вязкости жидких кристаллов и устройство для его осуществления

Country Status (1)

Country Link
RU (1) RU2510010C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2700714C2 (ru) * 2018-01-23 2019-09-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ определения коэффициента вязкости вещества малого объема и устройство для его осуществления

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3912817A1 (de) * 1989-04-19 1990-10-25 Peter Dipl Ing Braun Kapillarrheometerduese zur bestimmung des fliessverhaltens von kunststoffschmelzen
EP1186880A1 (fr) * 2000-09-09 2002-03-13 Societe Des Produits Nestle S.A. Viscosimètre et procédé pour déterminer la viscosité de substances
RU2279662C2 (ru) * 2003-02-20 2006-07-10 Сергей Вениаминович Пасечник Способ измерения вязкости жидких кристаллов и устройство для его осуществления

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3912817A1 (de) * 1989-04-19 1990-10-25 Peter Dipl Ing Braun Kapillarrheometerduese zur bestimmung des fliessverhaltens von kunststoffschmelzen
EP1186880A1 (fr) * 2000-09-09 2002-03-13 Societe Des Produits Nestle S.A. Viscosimètre et procédé pour déterminer la viscosité de substances
RU2279662C2 (ru) * 2003-02-20 2006-07-10 Сергей Вениаминович Пасечник Способ измерения вязкости жидких кристаллов и устройство для его осуществления

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Белов В.В. Физические методы измерения коэффициентов вязкости нематических жидких кристаллов, Успехи физических наук, том 171, No.3, с.268-297, 2001. *
Белов В.В. Физические методы измерения коэффициентов вязкости нематических жидких кристаллов, Успехи физических наук, том 171, №3, с.268-297, 2001. Ларионов А.Н. и др. АНИЗОТРОПНОЕ РАСПРОСТРАНЕНИЕ УЛЬТРАЗВУКА И ВЯЗКОСТЬ НЕМАТИЧЕСКИХ ЖИДКИХ КРИСТАЛЛОВ ПРИ ВАРИАЦИИ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ СОСТОЯНИЯ, ВЕСТНИК ВГУ, СЕРИЯ: ФИЗИКА. МАТЕМАТИКА, № 1, с.39-47, 2008. *
Ларионов А.Н. и др. АНИЗОТРОПНОЕ РАСПРОСТРАНЕНИЕ УЛЬТРАЗВУКА И ВЯЗКОСТЬ НЕМАТИЧЕСКИХ ЖИДКИХ КРИСТАЛЛОВ ПРИ ВАРИАЦИИ ТЕРМОДИНАМИЧЕСКИХ ПАРАМЕТРОВ СОСТОЯНИЯ, ВЕСТНИК ВГУ, СЕРИЯ: ФИЗИКА. МАТЕМАТИКА, No. 1, с.39-47, 2008. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2700714C2 (ru) * 2018-01-23 2019-09-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кемеровский государственный медицинский университет" Министерства здравоохранения Российской Федерации Способ определения коэффициента вязкости вещества малого объема и устройство для его осуществления

Similar Documents

Publication Publication Date Title
US10459293B2 (en) Methods and apparatus for liquid crystal photoalignment
Bogi et al. Elastic, dielectric and optical constants of 4'-pentyl-4-cyanobiphenyl
Pieranski et al. Instability of certain shear flows in nematic liquids
Kim et al. Surface alignment, anchoring transitions, optical properties, and topological defects in the thermotropic nematic phase of organo-siloxane tetrapodes
Iglesias et al. Alignment by Langmuir/Schaefer monolayers of bent-core liquid crystals
Oswald et al. Droplet relaxation in Hele-Shaw geometry: Application to the measurement of the nematic-isotropic surface tension
RU2510010C1 (ru) Способ измерения анизотропных коэффициентов вязкости жидких кристаллов и устройство для его осуществления
Susser et al. Transition from escaped to decomposed nematic defects, and vice versa
Wee et al. Tunable optofluidic birefringent lens
Toyooka et al. Determination of twist elastic constant K22 in 5CB by four independent light-scattering techniques
Sathyanarayana et al. Rotational viscosity of a bent-core nematic liquid crystal
Jewell et al. Flow-driven transition and associated velocity profiles in a nematic liquid-crystal cell
US20110116020A1 (en) Surface programming method and light modulator devices made thereof
Dubtsov et al. Electrically switchable polymer membranes with photo-aligned nematic structures for photonic applications
KR101769011B1 (ko) 다중 도메인 액정 배향을 위한 유방성 크로모닉 액정 코팅막의 제조방법
Holmes et al. Small Surface Pretilt Strikingly Affects the Director Profile during Poiseuille Flow<? format?> of a Nematic Liquid Crystal
Van Dijk et al. Viscoelastic twist properties of some nematic liquid crystalline azoxybenzenes
RU2279662C2 (ru) Способ измерения вязкости жидких кристаллов и устройство для его осуществления
Zheng et al. Direct measurements of structural forces and twist transitions in cholesteric liquid crystal films with a surface force apparatus
Choi et al. Visual evaluation of surface anchoring strength by electrohydrodynamic convection of a nematic liquid crystal
Pasechnik et al. Electrorheology of liquid crystals
Urbach et al. Marangoni effect in nematic liquid crystals
Pasechnik et al. Orientational instability in a nematic liquid crystal in a decaying Poiseuille flow
Pasechnik et al. Rheological properties of liquid crystals in porous polymer films with submicron sizes of pores
Dessaud et al. Modelling of the formation of non-uniform polymer networks in devices

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181114