RU2509057C2 - Способ включения квантовых точек методом соосаждения в пористые частицы карбоната кальция - Google Patents

Способ включения квантовых точек методом соосаждения в пористые частицы карбоната кальция Download PDF

Info

Publication number
RU2509057C2
RU2509057C2 RU2012110816/05A RU2012110816A RU2509057C2 RU 2509057 C2 RU2509057 C2 RU 2509057C2 RU 2012110816/05 A RU2012110816/05 A RU 2012110816/05A RU 2012110816 A RU2012110816 A RU 2012110816A RU 2509057 C2 RU2509057 C2 RU 2509057C2
Authority
RU
Russia
Prior art keywords
quantum dots
calcium carbonate
particles
water
solution
Prior art date
Application number
RU2012110816/05A
Other languages
English (en)
Other versions
RU2012110816A (ru
Inventor
Татьяна Владимировна Суханова
Светлана Викторовна Сизова
Вероника Владимировна Манохина
Александр Федорович Щапов
Владимир Александрович Олейников
Игорь Руфаилович Набиев
Original Assignee
Федеральное государственное бюджетное учреждение науки институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук (ИБХ РАН)
Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный исследовательский ядерный университет МИФИ (НИЯУ МИФИ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук (ИБХ РАН), Федеральное государственное автономное образовательное учреждение высшего профессионального образования Национальный исследовательский ядерный университет МИФИ (НИЯУ МИФИ) filed Critical Федеральное государственное бюджетное учреждение науки институт биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова Российской академии наук (ИБХ РАН)
Priority to RU2012110816/05A priority Critical patent/RU2509057C2/ru
Publication of RU2012110816A publication Critical patent/RU2012110816A/ru
Application granted granted Critical
Publication of RU2509057C2 publication Critical patent/RU2509057C2/ru

Links

Abstract

Изобретение может быть использовано в биологических и медицинских исследованиях. Пористые частицы карбоната кальция формируют в результате реакции CaCl2+2NaHCO3→CaCO3↓+2NaCl+2H+, причем водный раствор квантовых точек, модифицированных избыточным количеством меркаптоуксусной кислоты, имеющей концентрацию 0,05-4 мг/мл, при интенсивном перемешивании приливают к 0,3 М раствору NaHCO3. Полученную взвесь, содержащую пористые частицы карбоната кальция с включенными квантовыми точками, 1-3 раза промывают водой и однократно - этанолом, обрабатывая ультразвуком после каждой промывки. Затем полученные частицы покрывают полиэтиленимином или 6-ю слоями водорастворимых полиэлектролитов из ряда, включающего ДЭАЭ-декстран, хитозан, каррагинан. Изобретение обеспечивает сокращение времени получения пористых частиц карбоната кальция со 100% включенных квантовых точек. 1 з.п. ф-лы, 6 пр.

Description

Изобретение относится к области неорганической химии, в том числе к области применения флуоресцентных квантовых точек. Полученная конструкция предназначается для использования в качестве флуоресцентных реагентов (флуоресентных меток, носителей, биомаркеров) в биологических и медицинских исследованиях.
Сущность изобретения заключается в иммобилизации водорастворимых квантовых точек, модифицированных меркаптоэтанолом и меркаптоуксусной кислотой в объеме микрочастиц карбоната кальция методом совместного соосаждения в результате реакции CaCl2+2NaHCO3→CaCO3↓+2NaCl+2H+, в том числе с последующим покрытием полученных частиц слоем (слоями) полимера (противоположно заряженной пары полимеров) для стабилизации полученных частиц и ковалентного присоединения к ним других молекул. Допускается включение в частицы карбоната кальция квантовых точек с пришитыми к ним молекулами полимеров с целью их заякоривания в частице и снижения ее плотности.
Описание изобретения
Квантовые точки - неорганические полупроводниковые нанокристаллы диаметром 2-8 нм, обладающие уникальными оптическими свойствами, являются альтернативой органическим флуоресцентным меткам применяемым в биотехнологии и медицине благодаря высокой яркости, возможности регистрировать флуоресценцию по всему оптическому диапазону и доступности. Квантовые точки представлены атомами II и VI групп (CdSe, CdTe) или III и V групп (InP, InAs) периодической системы. [S.K. Vashist, R. Tewari, R.P. Bajpai, L.M. Bharadwaj and R. Raiteri. Review of Quantum Dot Technologies for Cancer Detection and Treatment, Journal of nanotechnology Online DOI: 10.2240/azojono0113, K.T. Lane, L.S. Beese Thematic review series: Lipid Posttranslational Modifications. Structural biology of protein famesyltransferase and geranylgeranyltransferase type I, Journal of Lipid Research Volume 47, 2006, 681-699].
Изобретение относится к способам включения квантовых точек в искусственно сформированные пористые частицы (ватерит) на основе карбоната кальция размером 3-5 мкм при совместном осаждении в реакции гидрокарбоната натрия и хлорида кальция CaCl2+2NaHCO3→CaCO3↓+2NaCl+2H+. Данная биосовместимая флуоресцентная конструкция предлагается для использования в качестве флуоресцентных реагентов (флуоресентных меток, носителей, биомаркеров) в различных областях биологических и медицинских исследований.
Известен способ получения пористых частиц карбоната кальция и покрытия их слоями противоположно заряженных полиэлектролитов [Petrov A.I., Volodkin D.V., Sukhorukov G.B. Protein-calcium carbonate coprecipitation: a tool for protein encapsulation, Biotechnol Prog., 2005; 21(3):918-925] для иммобилизации белков. Равные объемы растворов 0,33 М CaCl2 и Na2CO3 быстро смешивают и перемешивают на магнитной мешалке в течение 30 с.Затем образцы оставляют при комнатной температуре на 10-15 мин для формирования сферических частиц карбоната кальция, которые затем промывают последовательно водой и спиртом (ацетоном) и высушивают на воздухе. Полученные частицы поочередно покрывают 5 слоями полиситролсульфоната натрия и полиаллиламингидрохлорида, предварительно растворенные в 0,5 М NaCl. Нанесение каждого слоя осуществляли посредством инкубирования частиц в растворе полиэлектролита в течение 15 мин. Отмывка несвязавшихся полиэлектролитов осуществляется в 0,01 М NaCl 3 раза. Данные частицы не предназначаются для включения квантовых точек.
Известен способ получения пористых частиц карбоната кальция, содержащих белки (проназа) и ДНК. Смешивают 15 мл воды, 0,615 мл 1 М CaCl2, 0,615 мл 1М Na2CO3, 500 мкл раствора проназы (1, 3 или 5 мг/мл) и 500 мкл двухспиральной ДНК, затем в течение 20 с перемешивают на магнитной мешалке при комнатной температуре. Затем осадок выделяют центрифугированием и 3 раза промывают водой. Затем путем адсорбции из водных растворов было нанесено по 7 слоев p-Asp и p-Arg (2 мг/мл, 0,15 М NaCl). Однако данный способ тоже не предполагает включения квантовых точек [Tatiana Borodina, Elena Markvicheva, Stanislav Kunizhev, Helmuth Mo¨hwald, Gleb B. Sukhorukov, Oliver Kreft Controlled Release of DNA from Self-Degrading Microcapsules // Macromol. Rapid Commun. 2007, 28, 1894-1899].
Прототипом данного метода является способ, предложенный Won и др. Квантовые точки CdSe/ZnS предварительно солюбилизируют в воде за счет покрытия кремниевой оболочки путем формирования обратной наноэмульсии. Для этого 1 мл квантовых точек CdSe/ZnS приливают к смеси 7 мл гексана, 0,6 мл Igepal CO-520 и 0,1 мл гидрохлорида аммония. Приливаемый к раствору тетраэтилортосликат выполняет роль источника формирования кремниевой капсулы. Смесь перемешивают в течение 20 ч. Раствор осаждают метанолом, центрифугируют и диспергируют полученные наночастицы в деионизованной воде. Для получения сферических частиц карбоната кальция готовят растворы 0,33 М Na2CO3 и 0,33 М CaCl2∗Н2О в 10 мл деионизованной воды. Раствор Na2CO3 приливают к раствору CaCl2∗Н2О и перемешивают 10 мин на магнитной мешалке. Полученные частицы осаждают центрифугированием и высушивают на воздухе. Затем осуществляют отмывку несвязавшихся модифицированных квантовых точек [Y.-H. Won, H.S. Jang, D.-W. Chung, L. Stanciu Multifunctional calcium carbonate microparticles:
Synthesis and biological applications. Brick and NCN Publications, 2010, paper 622]. Недостатком данного метода является неполное включение квантовых точек в состав частиц и преимущественное их распределение по поверхности сферической частицы с проникновением в поры. Кроме того, метод требует длительного периода времени (20 ч), необходимого для модификации квантовых точек.
Задача изобретения заключается в обеспечении полного (100%) включения квантовых точек в пористые частицы карбоната кальция методом совместного соосаждения и сокращении периода времени, необходимого для получения таких флуоресцентных конструкций.
Техническим результатом изобретения является получение флуоресцентных конструкций, обеспечивающих 100% включение квантовых точек в частицы карбоната кальция с их достаточно равномерным распределением по объему частицы без последующего их вымывания при промывке. Степень включения квантовых точек контролируется измерением интенсивности флуоресценции. В результате получают равномерно окрашенные частицы карбоната кальция с цветом в зависимости от выбранного типа (длины волны испускаемой флуоресценции) квантовых точек. Размеры частиц составляют 3-5 мкм (контролируется с помощью оптического микроскопа и методом динамического светорассеяния), хотя отмечается более мелкая фракция порядка 1 мкм. При ряде концентраций в зависимости от характеристик квантовых точек интенсивность флуоресценции возрастает по сравнению с контролем, в то время как при использовании Са(NO3)2, наоборот, снижается почти в 2 раза. При использовании Са(NO3)2 квантовые точки при высоких концентрациях исходного раствора 3-5 мг/мл) включаются не полностью и наблюдается выход квантовых точек в раствор при промывке (регистрируется флуоресценция супернатантов после промывок, что свидетельствует о присутствии квантовых точек).
Способ осуществляют следующим образом:
Квантовые точки солюбилизируют согласно модифицированному протоколу, основанному на указанных работах [C.W. Chan, S. Nie, Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science. - 281. - 1998. - P.2016-2018; J. Aldana, Y.A. Wang, X. Peng, Photochemical instability of CdSe nanocrystalls coated by hydrophilic thiols //J. Am. Chem. Soc. - 2001. - V.123. - P.8844-8850; S.F. Wuister, I. Swart, F. van Driel, S.G. Hickey, C. de Mello Donega, Highly luminescent water-soluble CdTe quantum dots // Nano Lett. - 2003. - V.3. - P.503-507]. Приблизительно 3 мг полупроводниковых нанокристаллов (квантовых точек) очищают от избытка ТОФО (триоктилфосфиноксид) трехкратным растворением в хлороформе (500 мкл) и переосаждением метанолом (500 мкл). Очищенные квантовые точки диспергируют в 1 мл хлороформа и к полученной смеси добавляют 400 мкл 1М меркаптоуксусной кислоты и меркаптоэтанола (в соотношении 1:1 об.). Также для солюбилизации квантовых точек используют цистеин. Смесь интенсивно перемешивают, в результате чего НК из хлороформа переходят в водную фазу. Далее смесь центрифугируют, хлороформ удаляют. Полученные солюбилизированные квантовые точки очищают от избытка меркаптоуксуснои кислоты и меркаптоэтанола трехкратным растворением в 1 мл метанола, центрифугированием и удалением раствора, после этого квантовые точки сушат при комнатной температуре, диспергируют в очищенной воде и фильтруют через мембранный фильтр с размером пор 0,022 мкм. К раствору 0,3 М NaHCO3 приливают водный раствор модифицированных квантовых точек (0,05-4 мг/мл), интенсивно перемешивают в течение 60 сек., к смеси добавляют 0,2 М CaCl2 и интенсивно перемешивают в течение 90 сек. После этого инкубируют в течение 5 мин для формирования сферических пористых частиц карбоната кальция. Затем полученную взвесь частиц промывают очищенной водой 1-3 раза, 1 раз 96% этанолом и высушивают при комнатной температуре. Агрегация частиц устраняется с помощью обработки дисперсии карбонатных частиц с включенными квантовыми точками ультразвуком после каждой операции промывки. Эффективность включения квантовых точек в частицы контролируется с помощью флуориметра (измеряется интенсивность флуоресценции супернатантов каждой промывки).
При невозможности использования 0,2 М CaCl2 осуществляется его замещение эквимолярным количеством Са(NO3)2 в результате реакции Са(NO3)2+2NaHCO3→CaCO3↓+2NaCl+2H+, однако, как отмечено выше, это приводит к частичному вымыванию квантовых точек из карбонатных частиц при промывке.
С целью стабилизации флуоресцентных пористых частиц (для предотвращение слипания) и возможности последующего ковалентного присоединения к ним различных молекул (дополнительные флуорофоры, антитела, антигены, биотин и т.д.) их покрывают оболочкой из различных водорастворимых полимеров (в 0,9% NaCl), обладающих свойствами полиэлектролитов, в качестве положительно заряженных полиэлеткролитов используют„ хитозан, каррагинан, полилизин и т.д., в качестве отрицательно заряженных - полиакриловая кислота, альгинат натрия, полистиролсульфонат натрия, декстран-сульфат натрия и т.д. в диапазоне концентрациий 0,1-5 мг/мл), либо полимеров, растворяющихся в органических растворителях (полиэтиленимин, 0,1-5 мг/мл). Для предотвращения выхода квантовых точек из частицы и уменьшения ее удельной массы к квантовым точкам ковалентно пришивают молекулы полимеров, например, альгинат, имеющий сродство к пористым микросферам карбоната кальция.
Было установлено, что покрытие частиц водорастворимыми полимерами приводит к выходу части квантовых точек в раствор полиэлектролита, поэтому предлагается формировать ковалентные сшивки между квантовыми точками и молекулами полимеров, в т.ч. альгината натрия, для предотвращения выхода квантовых точек из пор карбонатных частиц.
В связи с высокой дисперсностью размеров получаемых флуоресцентных конструкций предполагается их фракционирование методами фильтрования или дифференциального центрифугирования с целью получения однородных по размерам фракций частиц.
Изобретение иллюстрируют следующие примеры.
Пример 1
К 1 мл 0,3 М раствора NaHCO3 приливают 0,5 мл дисперсии квантовых точек модифицированных меркаптоуксусной кислотой и меркаптоэтанолом (или цистеином) в воде очищенной (0,05-4 мг/мл),, интенсивно перемешивают в течение 60 сек, затем к полученной смеси добавляют 1,5 мл 0,2М раствора хлорида кальция (CaCl2). Полученную взвесь частиц промывают очищенной водой 1-3 раза, 1 раз 96% этанолом и высушивают при комнатной температуре. Агрегацию частиц устраняют с помощью обработки дисперсии карбонатных частиц с включенными квантовыми точками ультразвуком после каждой операции промывки. Эффективность включения квантовых точек в частицы контролируется с помощью флуориметра (измеряется интенсивность флуоресценции супернатантов каждой промывки).
Пример 2
Частицы карбоната кальция, содержащие квантовые точки, получают согласно Примеру 1 и инкубируют при перемешивании последовательно в течение 1-10 мин в растворе положительно заряженного полиэлектролита хитозана с концентрацией в диапазоне 0,1-5 мг/мл в водном растворе уксусной кислоты с последующей промывкой водой для удаления несвязавшихся молекул хитозана, затем в растворе отрицательно заряженного полиэлектролита полистиролсульфоната натрия в 0,9% NaCl с концентрацией в диапазоне 0,1-5 мг/мл в течение 1-10 мин с последующей промывкой водой для удаления несвязавшихся молекул. Суммарное количество слоев - от 2 до 8. После каждой операции (нанесение слоя полимеров, промывка) осуществляют обработку дисперсии карбонатных частиц с включенными квантовыми точками ультразвуком в течение 1-5 сек.
Пример 3
Поступают по П. 2, используя вместо раствора хитозана раствор полилизина в 0,9% NaCl с концентрацией 0,3 мг/мл, и раствор полистиролсульфоната натрия в концентрации 1 мг/мл в течение 1-10 мин с последующей промывкой водой для удаления несвязавшихся молекул. Суммарное количество слоев - от 2 до 8. После каждой операции (нанесение слоя полимеров, промывка) осуществляют обработку дисперсии карбонатных частиц с включенными квантовыми точками ультразвуком в течение 1-5 сек.
Пример 4
Поступают по П.2, используя вместо раствора хитозана раствор каратинана с концентрацией 2 мг/мл (содержащий 0.9% NaCl), а вместо полистиролсульфоната натрия -раствор полиакриловой кислоты с концентрацией 2 мг/мл.
Пример 5
Поступают по П.2, используя вместо раствора хитозана раствор полилизина в 0,9% NaCl с концентрацией 0,5 мг/мл, а вместо полистиролсульфоната натрия - раствор полиакриловой кислоты с концентрацией 1 мг/мл.
Пример 6
Частицы карбоната кальция, содержащие квантовые точки, получают согласно Примеру 1 и инкубируют 1 раз при перемешивании в растворе полиэтиленимина (1 мг/мл, этанол) с последующей отмывкой водой.

Claims (2)

1. Способ включения квантовых точек в пористые частицы карбоната кальция, отличающийся тем, что пористые частицы карбоната кальция формируют в результате реакции CaCl2+2NaHCO3→CaCO3↓+2NaCl+2H+, причем водный раствор квантовых точек, модифицированных избыточным количеством меркаптоуксусной кислоты, имеющей концентрацию 0,05-4 мг/мл, при интенсивном перемешивании приливают к 0,3 М раствору NаНСО3, полученную взвесь 1-3 раза промывают водой и однократно - этанолом, с обработкой ультразвуком после каждой промывки, затем полученные частицы покрывают полиэтиленимином или водорастворимыми полиэлектролитами из ряда, включающего ДЭАЭ-декстран, хитозан, каррагинан.
2. Способ по п.1, отличающийся тем, что полученные частицы покрывают 6-ю слоями указанных водорастворимых полиэлектролитов.
RU2012110816/05A 2012-03-22 2012-03-22 Способ включения квантовых точек методом соосаждения в пористые частицы карбоната кальция RU2509057C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012110816/05A RU2509057C2 (ru) 2012-03-22 2012-03-22 Способ включения квантовых точек методом соосаждения в пористые частицы карбоната кальция

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012110816/05A RU2509057C2 (ru) 2012-03-22 2012-03-22 Способ включения квантовых точек методом соосаждения в пористые частицы карбоната кальция

Publications (2)

Publication Number Publication Date
RU2012110816A RU2012110816A (ru) 2013-09-27
RU2509057C2 true RU2509057C2 (ru) 2014-03-10

Family

ID=49253678

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012110816/05A RU2509057C2 (ru) 2012-03-22 2012-03-22 Способ включения квантовых точек методом соосаждения в пористые частицы карбоната кальция

Country Status (1)

Country Link
RU (1) RU2509057C2 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113788984B (zh) * 2021-08-04 2023-05-05 广东碳紫科技有限公司 一种碳量子点-碳酸钙复合纳米颗粒及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2217378C1 (ru) * 2002-06-05 2003-11-27 Пойлов Владимир Зотович Способ получения карбоната кальция высокой чистоты из кальциевого и карбонатного растворов
EP1398356A2 (en) * 2002-08-30 2004-03-17 Hitachi Software Engineering Co., Ltd. Method for converting and purifying materials for modifying surfaces of semiconductor nanoparticles
US20080020051A1 (en) * 2004-03-19 2008-01-24 Lars Dahne Method For Producing Cs Particles And Microcapsules Using Porous Templates, Cs Particles And Microcapsules, And the Use Thereof
US20120004345A1 (en) * 2010-07-05 2012-01-05 Doris Pik-Yiu Chun Polymer-encapsulated colorant nanoparticles
CN102350281A (zh) * 2011-06-24 2012-02-15 东北师范大学 基于荧光介孔二氧化硅蛋黄-蛋壳纳米胶囊的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2217378C1 (ru) * 2002-06-05 2003-11-27 Пойлов Владимир Зотович Способ получения карбоната кальция высокой чистоты из кальциевого и карбонатного растворов
EP1398356A2 (en) * 2002-08-30 2004-03-17 Hitachi Software Engineering Co., Ltd. Method for converting and purifying materials for modifying surfaces of semiconductor nanoparticles
US20080020051A1 (en) * 2004-03-19 2008-01-24 Lars Dahne Method For Producing Cs Particles And Microcapsules Using Porous Templates, Cs Particles And Microcapsules, And the Use Thereof
US20120004345A1 (en) * 2010-07-05 2012-01-05 Doris Pik-Yiu Chun Polymer-encapsulated colorant nanoparticles
CN102350281A (zh) * 2011-06-24 2012-02-15 东北师范大学 基于荧光介孔二氧化硅蛋黄-蛋壳纳米胶囊的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
SHICHENG ZHANG et al. Photoluminescence properties of mercaptocarboxylic acid-stabilized CdSe nanoparticles covered with polyelectrolyte, Nanotechnology, 2004, v.15, p.p.1108-1112. *
YU-HO WON et al. Multifunctional calcium carbonate microparticles: Synthesis and bioilogical applications, J. Mater. Chem., 2010, v.20, p.p.7728-7733. *
YU-HO WON et al. Multifunctional calcium carbonate microparticles: Synthesis and bioilogical applications, J. Mater. Chem., 2010, v.20, p.p.7728-7733. SHICHENG ZHANG et al. Photoluminescence properties of mercaptocarboxylic acid-stabilized CdSe nanoparticles covered with polyelectrolyte, Nanotechnology, 2004, v.15, p.p.1108-1112. *

Also Published As

Publication number Publication date
RU2012110816A (ru) 2013-09-27

Similar Documents

Publication Publication Date Title
Ye et al. New loading process and release properties of insulin from polysaccharide microcapsules fabricated through layer-by-layer assembly
US6720007B2 (en) Polymeric microspheres
Yashchenok et al. Polyelectrolyte multilayer microcapsules templated on spherical, elliptical and square calcium carbonate particles
Yang et al. Fluorescent mesoporous silica nanotubes incorporating CdS quantum dots for controlled release of ibuprofen
Graf et al. A general method for the controlled embedding of nanoparticles in silica colloids
Volodkin et al. Matrix polyelectrolyte microcapsules: new system for macromolecule encapsulation
Joshi et al. Nano-in-micro alginate based hybrid particles
US9089498B2 (en) Multifunctional nanoparticle designs and applications
Song et al. Structural design and preparation of high-performance QD-encoded polymer beads for suspension arrays
GB2427157A (en) Coated microspheres
Feoktistova et al. Inter-protein interactions govern protein loading into porous vaterite CaCO 3 crystals
WO2007142316A1 (ja) 新規なナノシリカ粒子の製造方法と用途
Perton et al. Wrapped stellate silica nanocomposites as biocompatible luminescent nanoplatforms assessed in vivo
Nifontova et al. Next-generation theranostic agents based on polyelectrolyte microcapsules encoded with semiconductor nanocrystals: development and functional characterization
Zhou et al. Formation mechanism of chalcogenide nanocrystals confined inside genetically engineered virus-like particles
Xiong et al. Structure and properties of hybrid biopolymer particles fabricated by co-precipitation cross-linking dissolution procedure
WO2008032534A1 (fr) Ensemble microparticules semi-conductrices fluorescentes, ensemble agent de marquage fluorescent pour substances biologiques, et procédé de bio-imagerie et procédé d'analyse de substances biologiques au moyen de ces ensembles
Nifontova et al. Bioimaging tools based on polyelectrolyte microcapsules encoded with fluorescent semiconductor nanoparticles: Design and characterization of the fluorescent properties
JP5059312B2 (ja) 高分散性リン酸カルシウム系化合物ナノ粒子及びその製造方法
ES2932020T3 (es) Nanopartículas dopadas por puntos cuánticos, método para la producción de las mismas y bioplataforma que comprende nanopartículas dopadas por puntos cuánticos
Volodkin et al. Model system for controlled protein release: pH-sensitive polyelectrolyte microparticles
Yin et al. Fluorescent quantum dot− polymer nanocomposite particles by emulsification/solvent evaporation
JP4107873B2 (ja) 発光性微粒子
RU2509057C2 (ru) Способ включения квантовых точек методом соосаждения в пористые частицы карбоната кальция
Magnabosco et al. Effect of surface chemistry on incorporation of nanoparticles within calcite single crystals

Legal Events

Date Code Title Description
PC41 Official registration of the transfer of exclusive right

Effective date: 20150902

MM4A The patent is invalid due to non-payment of fees

Effective date: 20170323