RU2505787C2 - Датчик расхода с подвижным магнитом - Google Patents

Датчик расхода с подвижным магнитом Download PDF

Info

Publication number
RU2505787C2
RU2505787C2 RU2010103931/28A RU2010103931A RU2505787C2 RU 2505787 C2 RU2505787 C2 RU 2505787C2 RU 2010103931/28 A RU2010103931/28 A RU 2010103931/28A RU 2010103931 A RU2010103931 A RU 2010103931A RU 2505787 C2 RU2505787 C2 RU 2505787C2
Authority
RU
Russia
Prior art keywords
magnet
flow
fluid
flow sensor
magnetic field
Prior art date
Application number
RU2010103931/28A
Other languages
English (en)
Other versions
RU2010103931A (ru
Inventor
Грегори Ричард ХЕЛЛЕР
Виктор Генри КВИТТНЕР
Original Assignee
Дзе Кока-Кола Компани
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Дзе Кока-Кола Компани filed Critical Дзе Кока-Кола Компани
Publication of RU2010103931A publication Critical patent/RU2010103931A/ru
Application granted granted Critical
Publication of RU2505787C2 publication Critical patent/RU2505787C2/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/22Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters
    • G01F1/24Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by variable-area meters, e.g. rotameters with magnetic or electric coupling to the indicating device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/28Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow by drag-force, e.g. vane type or impact flowmeter

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Abstract

Настоящая заявка относится к датчику расхода текучей среды и более конкретно относится к датчику расхода, пригодному для использования с текучими средами переменной вязкости. Заявленная группа изобретений содержит датчик расхода для определения расхода текучей среды, протекающей через него, а также способ определения расхода текучей среды, протекающей по линейному проточному каналу. Датчик расхода может содержать камеру для текучей среды, протекающей через нее, подвижный магнит, размещенный в камере, неподвижный магнит, размещенный вокруг камеры, и по меньшей мере один датчик, размещенный вокруг камеры, для определения положения подвижного магнита в камере. Способ определения расхода текучей среды, протекающей по линейному проточному каналу, согласно которому размещают в линейном проточном канале первый магнит, размещают вокруг линейного проточного канала постоянный второй магнит, пропускают через линейный проточный канал текучую среду, определяют магнитное поле вокруг первого магнита и определяют расход текучей среды на основе определенного магнитного поля. Технический результат, достигаемый от реализации заявленной группы изобретений, заключается в улучшенном датчике расхода для применения в заявленном способе определения расхода текучей среды, который может быть приспособлен для широкого диапазона вязкостей. При этом датчик расхода является надежным, обеспечивает соответствующую обратную связь и простой в очистке. 2 н. и 12 з.п. ф-лы, 6 ил.

Description

ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Настоящая заявка относится в общем к датчику расхода текучей среды и более конкретно относится к датчику расхода, пригодному для использования с текучими средами переменной вязкости.
УРОВЕНЬ ТЕХНИКИ
Дозаторы напитков в общем комбинируют различные текучие среды в заданных отношениях и/или количествах для изготовления необходимого напитка. Эти текучие среды в целом могут быть описаны как микроингредиенты, макроингредиенты и разбавители. Микроингредиенты в общем характеризуются возможностью значительного разбавления, а макроингредиенты добавляются неразбавленными или немного разбавленными, обычно в диапазоне от примерно 1:1 до примерно 6:1 по отношению к разбавителю. Макроингредиенты имеют широкий диапазон вязкостей 1-10000 сП (сантипуазов). Макроингредиенты включают фруктовые соки, концентрированные экстракты, молочные продукты, сахарный сироп, концентрированную фруктозную кукурузную патоку и тому подобные ингредиенты.
Для обнаружения неправильного дозирования дозатор напитков может содержать насосы для подачи напитка, сообщающиеся с датчиками расхода, выполненными с возможностью обратной связи и обнаружения случаев "отсутствия расхода", таких как отсутствие упаковки или блокирование линий. Датчики расхода, которые используют с насосами для макроингредиентов, должны быть приспособлены к работе в широком диапазоне вязкостей, указанных выше. Однако известные датчики расхода обычно работают в узком диапазоне вязкостей.
Следовательно, существует потребность в улучшенном датчике расхода, который может быть приспособлен для различных вязкостей. Датчик расхода должен быть надежным, обеспечивать соответствующую обратную связь и быть простым в очистке.
В патентной заявке US 2004/0045368 описано устройство для определения расхода текучей среды, содержащее магнитный образец, установленный подвижным образом внутри полого тела. Магнитный образец может быть приведен в движение текучей средой под рабочим давлением. Данное устройство дополнительно содержит датчик положения и электромагнит. Основываясь на информации от датчика положения, осуществляют управление электромагнитом для удержания магнитного образца в определенном положении, причем расход текучей среды определяют в зависимости от тока, необходимого для удержания магнитного образца в указанном положении.
РАСКРЫТИЕ ИЗОБРЕТЕНИЯ
Таким образом, настоящая заявка описывает датчик расхода для определения расхода текучей среды, протекающей через него. Датчик расхода может содержать камеру для текучей среды, протекающей через нее, подвижной магнит, расположенный в камере, неподвижный магнит, расположенный вокруг камеры, и по меньшей мере один датчик, расположенный вокруг камеры для определения положения подвижного магнита в ней.
Камера внутри может содержать поддерживающие ребра для поддержки подвижного магнита. Подвижной магнит и неподвижный магнит могут проявлять присущее им отталкивание. Текучая среда, протекающая в камере, преодолевает естественное отталкивание магнитов на основе величины расхода через нее. Подвижной магнит и неподвижный магнит могут быть постоянными магнитами. Датчики могут быть датчиками на основе эффекта Холла или датчиками напряженности магнитного поля другого типа. Датчики могут быть размещены вокруг камеры для определения положения подвижного магнита в камере путем обнаружения магнитного поля вокруг подвижного магнита.
Датчик расхода также может содержать несколько неподвижных магнитов с изменяющимися магнитными полями, каждый из которых приспособлен к текучей среде данной вязкости. Датчик расхода также может содержать оболочку, размещенную на неподвижном магните. Оболочки могут использоваться для изменения магнитного поля неподвижного магнита для приспособления к текучей среде с данной вязкостью.
Подвижной магнит может содержать кольцевой магнит. Камера может содержать внутренний стержень, на котором кольцевой магнит может быть размещен с возможностью перемещения.
Далее описан способ определения расхода текучей среды, протекающей по проточному каналу. Предложенный способ может содержать этапы, на которых размещают в проточном канале первый магнит; размещают вокруг проточного канала второй магнит; пропускают через проточный канал текучую среду; определяют магнитное поле вокруг первого магнита и определяют расход текучей среды на основе магнитного поля.
Датчик расхода также может содержать несколько вторых магнитов с различными магнитными полями, и способ может содержать этап, на котором выбирают один из вторых магнитов на основе данной вязкости текучей среды. Способ также может содержать этап, на котором размещают стальную оболочку на втором магните для изменения магнитного поля второго магнита.
КРАТКОЕ ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1 показывает перспективный вид описанного здесь датчика расхода текучей среды.
Фиг.2 показывает сечение датчика расхода текучей среды, показанного на фиг.1.
Фиг.3А показывает еще одно сечение датчика расхода текучей среды, показанного на фиг.1.
Фиг.3В показывает еще одно сечение датчика расхода текучей среды, показанного на фиг.1.
Фиг.4 показывает еще одно сечение датчика расхода текучей среды, показанного на фиг.1.
Фиг.5 показывает сечение еще одного варианта реализации датчика расхода текучей среды, показанного на фиг.1.
Фиг.6 показывает сечение еще одного варианта реализации датчика расхода текучей среды, показанного на фиг.1.
ОСУЩЕСТВЛЕНИЕ ИЗОБРЕТЕНИЯ
На сопровождающих чертежах, на которых подобные позиционные номера относятся к подобным элементам, изображенным на нескольких видах, фиг.1-4 показывают примерное выполнение датчика 100 расхода, описанного далее. В общем, датчик 100 содержит камеру 110 с входным патрубком 120 и выходным патрубком 130. Камера 110 датчика расхода может быть выполнена из формованной под давлением пластмассы или других материалов подобного типа, по существу стойких к коррозии.
Камера 110 может иметь расширенный диаметр по сравнению с входным патрубком 120 или выходным патрубком 130 для обеспечения сквозного протекания текучей среды. Камера 110 может иметь размещенные в ней выравнивающие ребра 140. Хотя может быть использовано любое количество или расположение ребер 140, на чертеже показаны четыре (4) ребра 140, размещенных под углом примерно девяносто градусов (90°) между ними. Камера 110 также может иметь интегрированный ограничитель 150, в то время как входной патрубок 120 может иметь наконечник 160, описанные более подробно далее. Камера 110 предпочтительно имеет в общем гладкую внутреннюю геометрию с большими радиусами и малым количеством углов.
Внутри камеры 110 размещен подвижной магнит 170, проходящий в направлении к входному патрубку 120. Подвижной магнит 170 может иметь сердечник из магнитного материал с постоянной намагниченностью, такого как неодим-ферробор (NdFeB), феррит, или магнитный материал подобного типа с постоянной намагниченностью. Подвижной магнит 170 также может иметь пластиковое внешнее покрытие, совместимое с обтекающими его текучими средами. Подвижной магнит 170 может быть по существу цилиндрическим и капсулообразным по форме, но может иметь и любую другую подходящую форму. Подвижной магнит 170 может иметь напряженность магнитного поля примерно 3000-5000 гауссов, хотя также могут быть использованы другие диапазоны напряженности. Подвижной магнит 170 может быть намагничен в осевом направлении и в направлении потока текучей среды.
Вокруг камеры 110 может быть размещен неподвижный кольцевой магнит 180. Кольцевой магнит 180 может окружать камеру 110 полностью или частично. Как показано на чертеже, неподвижный кольцевой магнит 180 расположен за пределами камеры 110 для удобства его очистки. Однако может быть использовано любое местоположение. Кольцевой магнит 180 может быть выполнен из неодима-ферробора (NdFeB), феррита или магнитных материалов подобных типов с постоянной намагниченностью. Кольцевой магнит 180 может иметь напряженность поля примерно 3000-5000 гауссов, хотя также могут быть использованы другие диапазоны. Подвижной магнит 170 может быть намагничен в осевом направлении и в направлении потока текучей среды.
Подвижной магнит 170 и неподвижный кольцевой магнит 180 проявляют присущее им взаимное отталкивание вблизи друг друга в эксплуатационном диапазоне перемещения подвижного магнита 170 таким образом, что сила отталкивания увеличивается с приближением подвижного магнита 170 к неподвижному кольцевому магниту 180. Отталкивание между магнитами 170, 180 создает силу, действующую в направлении, противоположном направлению потока текучей среды, проходящего через входной патрубок 120. Величина силы отталкивания по существу увеличивается в нелинейной зависимости от увеличения потока текучей среды и сближения магнитов 170, 180 друг с другом.
Подвижной магнит 170 может перемещаться между интегрированным ограничителем 150 на одном конце камеры 110 и наконечником 160 на входном патрубке 120 на другом конце. Подвижной магнит 170 может быть удержан в пределах камеры 110 выравнивающими ребрами 140. Магниты 170, 180 и датчик 100 в целом могут быть использованы в любой ориентации.
Вокруг входного патрубка 120 может быть размещен по меньшей мере один обнаруживающий датчик 190. В этом примере обнаруживающие датчики 190 могут представлять собой по меньшей мере один датчик, действующий на основе эффекта Холла, или датчик напряженности магнитного поля другого типа. Другие типы датчиков 190 включают магнитострикционные датчики и устройства подобного типа. Датчики 190 обнаруживают перемещение подвижного магнита 170 в камере 110 как изменение магнитного поля вблизи подвижного магнита 170, как описано выше. Сигналы от нескольких отдельных датчиков 190 могут быть усреднены для минимизации помех при измерении, вызванных вибрацией подвижного магнита 170, или другими помехами. Датчики 190 определяют магнитное поле и обеспечивают обратную связь с контроллером 195 насоса. Контроллер 195 может быть обычным микропроцессором или управляющим устройством другого типа. Контроллер 195 может использовать таблицу преобразования или иной тип структурированных данных для определения расхода текучей среды на основе измеренного магнитного поля.
При использовании датчика 100 текучая среда протекает через него через входной патрубок 120, камеру 110 и выходной патрубок 130. Текучая среда может быть водой, макроингредиентом, микроингредиентом и/или их комбинациями в жидкой или газообразной форме. Поток преодолевает отталкивание между подвижным магнитом 170 и кольцевым магнитом 180. Эта сила перемещает подвижной магнит 170 к кольцевому магниту 180. Увеличение расхода текучей среды перемещает подвижной магнит 170 ближе к кольцевому магниту 180. На фиг.3А показано положение подвижного магнита 170 при слабом потоке, в то время как на фиг.3В показано положение подвижного магнита 170 при сильном потоке. Изменение положения подвижного магнита 170 обнаруживается датчиками 190 на основе напряженности магнитного поля. Таким образом датчики 190 могут передавать контроллеру 195 данные о напряженности магнитного поля, а также уведомление об отсутствии расхода. В результате контроллер 195 может определять расход текучей среды и другие ее параметры.
Датчик 100 может быть использован в широком диапазоне вязкостей. Выбор нужной вязкости может быть обеспечен изменением напряженности неподвижного кольцевого магнита 180. Таким образом, для изменения напряженности магнитного поля может быть использовано несколько неподвижных кольцевых магнитов 180. В другом варианте реализации изобретения вокруг кольцевого магнита 180 может быть размещена стальная оболочка 200, как показано на фиг.5. Стальная оболочка 220 ослабляет магнитное поле для использования с подобными воде ингредиентами, вязкости которых близки примерно к одному (1) сантипуазу. Такие подобные воде ингредиенты могут не отклонить подвижной магнит 170 на соответствующее расстояние, достаточное для обеспечения возможности определения расхода, когда подвижной магнит 170 отталкивается полным магнитным полем от неподвижного кольцевого магнита 180. Стальная оболочка 200 частично замыкает линии магнитного поля, уменьшая его напряженность и отталкивающую силу, действующую на подвижной магнит 170, для приспособления к таким различным вязкостям.
На фиг.6 показан другой вариант выполнения датчика 210 расхода. Датчик 210 подобен датчику 100, описанному выше, за исключением того, что здесь отсутствуют выравнивающие ребра 140. Вместо этого внутри камеры 110 может быть установлен внутренний стержень 220. На стержне может быть размещен подвижной магнит 230 в форме кольца. Подвижной магнит 230 может перемещаться вдоль стержня 220 в зависимости от параметров проходящего потока. Также здесь могут быть использованы другие подобные магнитные конструкции.

Claims (14)

1. Датчик расхода для определения расхода протекающей через него текучей среды, содержащий:
камеру для текучей среды, протекающей через нее;
подвижный магнит, размещенный внутри камеры;
постоянный неподвижный магнит, размещенный вокруг камеры; и
по меньшей мере один датчик, размещенный вокруг камеры для определения положения подвижного магнита в ней, определяющий магнитное поле вокруг указанного подвижного магнита.
2. Датчик расхода по п.1, в котором камера содержит ребра для поддержки в ней подвижного магнита.
3. Датчик расхода по п.1, в котором подвижной магнит и неподвижный магнит проявляют присущее им отталкивание.
4. Датчик расхода по п.3, в котором текучая среда, протекающая в камере, преодолевает присущее магнитам отталкивание на основе расхода текучей среды через нее.
5. Датчик расхода по п.1, в котором указанный по меньшей мере один датчик содержит датчик на основе эффекта Холла или датчик напряженности магнитного поля.
6. Датчик расхода по п.1, дополнительно содержащий несколько постоянных неподвижных магнитов с изменяющимися магнитными полями, каждый из которых приспособлен к текучей среде данной вязкости.
7. Датчик расхода по п.1, дополнительно содержащий оболочку, размещенную на постоянном неподвижном магните.
8. Датчик расхода по п.7, дополнительно содержащий несколько оболочек, каждая из которых изменяет магнитное поле постоянного неподвижного магнита для приспособления к текучей среде данной вязкости.
9. Датчик расхода по п.1, в котором подвижной магнит содержит кольцевой магнит.
10. Датчик расхода по п.9, в котором камера содержит внутренний стержень, на котором кольцевой магнит размещен с возможностью перемещения.
11. Датчик расхода по п.1, в котором подвижной магнит содержит постоянный магнит.
12. Способ определения расхода текучей среды, протекающей по проточному каналу, согласно которому:
размещают в проточном канале первый магнит;
размещают вокруг проточного канала постоянный второй магнит;
пропускают через проточный канал текучую среду;
размещают по меньшей мере один датчик вокруг проточного канала для определения положения первого магнита, определяющий магнитное поле вокруг первого магнита, и
определяют расход текучей среды на основе определенного магнитного поля.
13. Способ по п.12, в котором дополнительно имеется несколько постоянных вторых магнитов с различными магнитными полями и согласно которому дополнительно выбирают один из указанных постоянных вторых магнитов на основе вязкости текучей среды.
14. Способ по п.12, согласно которому на постоянном втором магните дополнительно размещают стальную оболочку для изменения магнитного поля постоянного второго магнита.
RU2010103931/28A 2007-07-13 2008-06-17 Датчик расхода с подвижным магнитом RU2505787C2 (ru)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/777,303 2007-07-13
US11/777,303 US7584657B2 (en) 2007-07-13 2007-07-13 Magnetic flow sensor
PCT/US2008/067214 WO2009012012A1 (en) 2007-07-13 2008-06-17 Flow sensor with moveable magnet

Publications (2)

Publication Number Publication Date
RU2010103931A RU2010103931A (ru) 2011-08-20
RU2505787C2 true RU2505787C2 (ru) 2014-01-27

Family

ID=39865184

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2010103931/28A RU2505787C2 (ru) 2007-07-13 2008-06-17 Датчик расхода с подвижным магнитом

Country Status (10)

Country Link
US (1) US7584657B2 (ru)
EP (1) EP2174100B1 (ru)
JP (1) JP5183738B2 (ru)
CN (1) CN101688797B (ru)
AU (1) AU2008276392B2 (ru)
BR (1) BRPI0813585A2 (ru)
HK (1) HK1142671A1 (ru)
RU (1) RU2505787C2 (ru)
WO (1) WO2009012012A1 (ru)
ZA (1) ZA201000232B (ru)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8251258B2 (en) 2007-09-06 2012-08-28 The Coca-Cola Company Systems and methods of selecting and dispensing products
FR2944597B1 (fr) * 2009-04-21 2011-05-13 Airindex Detecteur de debit de fluide ameliore
WO2011044387A2 (en) * 2009-10-07 2011-04-14 The Board Of Regents Of The University Of Texas System Pressure-sensing medical devices, systems and methods, and methods of forming medical devices
US8590562B2 (en) 2010-12-17 2013-11-26 Lincoln Industries Corporation Fluid flow detection device
ITFI20120081A1 (it) * 2012-04-20 2013-10-21 Enrico Raddi "flussostato magnetico e metodo per la rilevazione della presenza di flusso di liquido in un condotto"
WO2014003905A1 (en) 2012-05-22 2014-01-03 The Coca-Cola Company Ingredient mixing module with a brushless motor for a beverage dispenser
WO2013176921A1 (en) 2012-05-22 2013-11-28 The Coca-Cola Company Dispenser for beverages having a rotary micro-ingredient combination chamber
KR20160074203A (ko) * 2014-12-18 2016-06-28 주식회사 엘지화학 점도 측정 장치
US10028820B2 (en) 2015-04-14 2018-07-24 Cook Medical Technologies Llc Carotid artery blood filter plugging alarm
CN105910659A (zh) * 2015-12-17 2016-08-31 上海安钧电子科技有限公司 转板式磁力流量计
US9664547B1 (en) * 2016-01-05 2017-05-30 Medtronic Xomed, Inc. Flow management system
CN107907171B (zh) * 2017-12-22 2024-04-16 中山市晶威电子科技有限公司 一种流量传感器
CN109297548A (zh) * 2018-09-29 2019-02-01 山东科尔自动化仪表股份有限公司 一种磁力流量计及测量方法
CH718073A1 (fr) * 2020-11-17 2022-05-31 Droople Sa Débitmètre et méthode de mesure de consommation d'eau.
CN114920199B (zh) * 2021-12-30 2024-04-09 北京恒合信业技术股份有限公司 磁感式流量传感器
CN117490782A (zh) * 2023-12-29 2024-02-02 福建哈德仪表有限公司 一种可防磁干扰的涡轮流量计

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079943A (en) * 1988-02-05 1992-01-14 Cte Chem Tec Equipment Co. Inc. Method of calibrating a volumetric fluid flow sensor
RU2134405C1 (ru) * 1997-02-10 1999-08-10 Казанский государственный технический университет им.А.Н.Туполева Расходомер-счетчик газа
US20040045368A1 (en) * 2002-08-16 2004-03-11 Levitronix Llc Measuring apparatus to determine the flow of a fluid

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2254698A (en) * 1940-10-04 1941-09-02 Gen Electric Magnetic system
US3662598A (en) * 1969-06-09 1972-05-16 Jordan L Spencer Flow control system
JPS559642B2 (ru) * 1972-10-14 1980-03-11
US4227409A (en) * 1979-01-12 1980-10-14 Milton Roy Company Flowmeter
US4507976A (en) * 1982-07-14 1985-04-02 Morris Shamos Flow meter with hall effect sensor and method
US4694161A (en) * 1985-11-04 1987-09-15 Sackett Robert R Fluid flow and level detector
US4963857A (en) 1989-06-26 1990-10-16 Sackett Robert L Translatable dual magnets
JPH0321772U (ru) * 1989-07-13 1991-03-05
US4953857A (en) * 1989-07-27 1990-09-04 Lemire Brett J Orthopedic back support attachment for a weight lifter's bench
DE4027028C2 (de) * 1990-08-27 1994-09-15 Prominent Dosiertechnik Gmbh Verfahren und Vorrichtung zur Bestimmung der Durchflußmenge eines Fluids mit einer pulsierenden Strömung
GB9027256D0 (en) * 1990-12-17 1991-02-06 Minnesota Mining & Mfg Device
JP2929158B2 (ja) * 1993-12-29 1999-08-03 東京計装株式会社 面積式流量計
DE19616281C2 (de) * 1995-04-26 2001-04-19 Murray F Feller Magnetischer Durchflußsensor
US5578763A (en) * 1995-06-22 1996-11-26 The Trustees Of Columbia University In The City Of New York Electromagnetic flow meter
US5655568A (en) * 1995-08-08 1997-08-12 Bhargava; Raj Passive flow regulating device
JPH09251029A (ja) * 1996-03-14 1997-09-22 Tokyo Rika Kogyosho:Kk 流体検出装置
JPH10288542A (ja) * 1997-04-16 1998-10-27 Somic Ishikawa:Kk 流量検出装置
US6619139B2 (en) * 2001-02-16 2003-09-16 Enginuity, Llc Gas flow sensor and high pressure gaseous fuel injection system
ITMI20010632A1 (it) * 2001-03-23 2002-09-23 Pettinaroli Flii Spa Misuratore ottico di portata
US6673051B2 (en) * 2001-04-02 2004-01-06 Hook Research Foundation Magnetic valve bladder cycler drainage system and use method with urinary catheters
US6591694B2 (en) * 2001-06-14 2003-07-15 Taiwan Semiconductor Manufacturing Co., Ltd. Flow meter with a self-illuminating floater
US6881507B2 (en) * 2003-06-04 2005-04-19 Milos Milacic Method and apparatus for measuring the mass flow of hydrogen in a fuel cell
US7130750B1 (en) * 2005-03-22 2006-10-31 Racine Federated, Inc. Flow meter with magnetoresistive sensors and method of measuring flow
DE102006008595A1 (de) * 2006-02-24 2007-08-30 Abb Patent Gmbh Schwebekörper-Durchflussmesser
US7798783B2 (en) * 2006-04-06 2010-09-21 Micropump, Inc. Magnetically driven valveless piston pumps

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5079943A (en) * 1988-02-05 1992-01-14 Cte Chem Tec Equipment Co. Inc. Method of calibrating a volumetric fluid flow sensor
RU2134405C1 (ru) * 1997-02-10 1999-08-10 Казанский государственный технический университет им.А.Н.Туполева Расходомер-счетчик газа
US20040045368A1 (en) * 2002-08-16 2004-03-11 Levitronix Llc Measuring apparatus to determine the flow of a fluid
US6898984B2 (en) * 2002-08-16 2005-05-31 Levitronix Llc Measuring apparatus to determine the flow of a fluid

Also Published As

Publication number Publication date
CN101688797B (zh) 2013-05-29
BRPI0813585A2 (pt) 2014-12-30
CN101688797A (zh) 2010-03-31
HK1142671A1 (en) 2010-12-10
AU2008276392B2 (en) 2014-06-26
RU2010103931A (ru) 2011-08-20
JP2010533839A (ja) 2010-10-28
AU2008276392A1 (en) 2009-01-22
US7584657B2 (en) 2009-09-08
JP5183738B2 (ja) 2013-04-17
EP2174100B1 (en) 2015-05-06
WO2009012012A1 (en) 2009-01-22
EP2174100A1 (en) 2010-04-14
ZA201000232B (en) 2010-09-29
US20090013797A1 (en) 2009-01-15

Similar Documents

Publication Publication Date Title
RU2505787C2 (ru) Датчик расхода с подвижным магнитом
JP5926192B2 (ja) 計測デバイス及び計測方法
JP6605199B2 (ja) 磁気アクチュエータが設けられた弁
US8264309B2 (en) Adjustable magnetic target
WO2006044468A2 (en) Multiple port dual diameter pumps
US7690625B2 (en) Valve comprising a magnetic control device
EP2694850B1 (en) Electric valve device, in particular for a device for forming ice in a fridge
US10534012B2 (en) Bidirectional flow switch
WO2009127952A1 (en) Volumetric flow measuring device for coffee machines
WO2012122103A2 (en) Venturi apparatus
US10107404B2 (en) Linear hydraulic valve
EP2312278A1 (en) Fluid meter
CN101484700B (zh) 泵元件和具有这种泵元件的泵
JP2006329190A (ja) 磁力駆動ポンプユニット
KR101230502B1 (ko) 혼합밸브
EP3898496B1 (en) A filling device for filling a receptacle and a filling machine
US11448238B2 (en) Pneumatic landfill pump cycle counter
US20070122295A1 (en) Fluid measurement/division device and process
JPH04232473A (ja) 流動スペース内における流動性媒体の通流を監視するための装置
US20070243089A1 (en) Check Valve for Displacement-Type Pump
US10184562B2 (en) Device including an anti-rotation mechanism for a piston and a method of using the same
BRPI0813585B1 (pt) Sensor de fluxo e método para determinar a vazão de um fluido
WO2009048733A2 (en) Fixed displacement pump
EP3702047A1 (en) Apparatus for dispensing liquid material to a substrate