RU2505675C1 - Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи - Google Patents

Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи Download PDF

Info

Publication number
RU2505675C1
RU2505675C1 RU2012137226/03A RU2012137226A RU2505675C1 RU 2505675 C1 RU2505675 C1 RU 2505675C1 RU 2012137226/03 A RU2012137226/03 A RU 2012137226/03A RU 2012137226 A RU2012137226 A RU 2012137226A RU 2505675 C1 RU2505675 C1 RU 2505675C1
Authority
RU
Russia
Prior art keywords
well
formation
spectrum
quantitative
indicator
Prior art date
Application number
RU2012137226/03A
Other languages
English (en)
Inventor
Аркадий Юрьевич Сегал
Original Assignee
Шлюмберже Текнолоджи Б.В.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Шлюмберже Текнолоджи Б.В. filed Critical Шлюмберже Текнолоджи Б.В.
Priority to RU2012137226/03A priority Critical patent/RU2505675C1/ru
Priority to US14/015,919 priority patent/US20140060822A1/en
Application granted granted Critical
Publication of RU2505675C1 publication Critical patent/RU2505675C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/128Adaptation of pump systems with down-hole electric drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/06Measuring temperature or pressure
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/10Locating fluid leaks, intrusions or movements
    • E21B47/107Locating fluid leaks, intrusions or movements using acoustic means

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Acoustics & Sound (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

Изобретение относится к мониторингу свойств углеводородных пластов и свойств добываемых флюидов во время добычи, особенно в ходе механизированной добычи. Техническим результатом является определение характеристик параметров призабойной зоны и получение более качественных характеристик пласта на границе раздела пласта и скважины. Для определения свойств углеводородного пласта и добываемых флюидов в процессе добычи, в соответствии с которым по меньшей мере один раз регистрируют акустический сигнал, представляющий собой отклик системы скважина-пласт на акустические импульсы давления. Источником импульсов давления является электрический погружной насос, расположенный внутри скважины. Акустический сигнал регистрируют по меньшей мере одним датчиком, размещенным в забойной камере скважины и измеряющим по меньшей мере один количественный физический показатель системы скважина-пласт, характеризующий процесс распространения акустического импульса в скважине. Создают математическую модель распространения акустических импульсов давления в забойной камере и сравнивают данные, полученные путем моделирования, с данными, полученными путем регистрации акустического сигнала, представляющего собой отклик системы скважина-пласт. Регулируют параметры пласта в математической модели для обеспечения соответствия по меньшей мере одного количественного физического показателя системы скважина-пласт, полученного путем моделирования, тому же количественному физическому показателю, полученному путем регистрации, и определяют свойства пласта и добываемых флюидов как параметры, обеспечивающие соответствие. 18 з.п. ф-лы, 3 ил.

Description

Настоящее изобретение относится к мониторингу свойств углеводородных пластов и свойств добываемых флюидов во время добычи, особенно в ходе механизированной добычи.
Механизированная добыча представляет собой операцию, направленную на повышение добычи углеводородов из пласта путем создания отрицательного перепада давления между пластом и скважиной, и далее - между призабойной зоной скважины и поверхностью так, чтобы сначала вызвать поток флюидов из пласта в скважину, а затем вытолкнуть их на поверхность. Это осуществляется повсеместно, в частности, путем установки электрического погружного насоса (ESP) внутри добывающей скважины. Электрический погружной насос обычно состоит из последовательности нескольких электроцентробежных насосов, сепаратора, электродвигателя и силового кабеля для питания двигателя. Система питания может включать в себя Привод Регулировки Скорости (Variable Speed Drive), способный регулировать управляющий электрический сигнал и, таким образом, при необходимости изменять эксплуатационные характеристики электрического погружного насоса.
Во время добычи важно оценивать изменения пластовых условий (например, давления, проницаемости в призабойной зоне скважины и локального снижения проницаемости) и изменения свойств скважинных флюидов (например, содержание в них различных фаз) и оперативно регулировать параметры электрического погружного насоса и расположенной на поверхности системы с целью создания оптимального режима добычи, недопущения поломок оборудования, а также получения дополнительных данных для инженерных моделей.
Из уровня техники известны способы получения информации о свойствах углеводородных пластов, представляющие собой гармонические испытания (см., например, Hollaender, F., Hammond P.S. and Gringarten, A., Harmonic Testing for Continuous Well and Reservoir Monitoring, SPE 77692, 2002), предусматривающие сообщение пласту нагрузки, связанной с циклическим изменением расхода жидкости, с варьированием периода цикла в некотором диапазоне, с целью установления "функции отклика" пласта, представляющей собой отношение давления в частотной области к расходу в частотной области (здесь и далее, упоминание какой-либо величины «в частотной области» означает ссылку на комплексные коэффициенты преобразования Фурье данной величины, параметризуемые частотой), на пересечении пласта и скважины. С точки зрения акустики функция отклика совпадает с сосредоточенным полным гидравлическим сопротивлением пласта в зоне его примыкания к скважине. Если расход задан, функция отклика позволяет рассчитать давление в частотной области. Были рассмотрены аналитические модели функции отклика для различных конфигураций "скважина-пласт": линейный источник, скважина с учетом влияния сжимаемости ствола и зоны локального снижения проницаемости в бесконечном однородном пласте, скважины с гидроразрывом, пласты с двойной пористостью или составные пласты с учетом влияния сжимаемости ствола и зоны локального снижения проницаемости.
Периоды циклов гармонических испытаний соотносятся с необходимой глубиной изучения резервуара и варьируются от 0,1 сек до нескольких месяцев; таким образом, расчетный диапазон частот функции отклика не превышает 10 Гц. Соответствующие изменения расхода необходимо производить при помощи специального устройства для изменения расхода, что усложняет компоновку скважины.
В отличие от стандартных гармонических испытаний предлагаемый способ касается более высокого диапазона частот (10-100 Гц) и оценивает функцию отклика пласта опосредованно, через его гидравлическое сопротивление в точке измерений, например, на входе электрического погружного насоса. Переход к другому диапазону частот позволяет изучить не только свойства пласта вдали от скважины, но и определить характеристики параметров призабойной зоны и получить более качественные характеристики пласта на границе раздела пласта и скважины. Он также позволяет основывать интерпретацию данных на явлениях, которые отсутствуют в случае более низких частот, например, на частотах и скоростях затухания резонансных мод в зоне под насосом.
В соответствии с предлагаемым способом по меньшей мере один раз регистрируют акустический сигнал, представляющий собой отклик системы скважина-пласт на акустические импульсы давления, источником которых является электрический погружной насос, расположенный внутри скважины. Акустический сигнал регистрируют по меньшей мере одним датчиком, размещенным в забойной камере скважины и измеряющим по меньшей мере один количественный физический показатель системы скажина-пласт, характеризующий процесс распространения акустического импульса в скважине. Создают математическую модель распространения акустических импульсов давления в забойной камере, сравнивают данные, полученные путем моделирования, с данными, полученными путем регистрации акустического сигнала, представляющего собой отклик системы скважина-пласт. Регулируют параметры пласта в математической модели для обеспечения соответствия по меньшей мере одного количественного физического показателя системы скважина-пласт, полученного путем моделирования, тому же количественному физическому показателю, полученному путем регистрации, и определяют свойства пласта и добываемых флюидов как параметры, обеспечивающие соответствие.
Количественные физические показатели системы скважина-пласт включают в себя давление, производную давления по времени, компоненту скорости флюида, компоненту ускорения флюида или их сочетание.
В соответствии с одним из вариантов осуществления изобретения для регистрации акустического сигнала используют две группы датчиков, расположенных близко друг к другу. В первой группе по меньшей мере один датчик измеряет давление или производную давления по времени или их комбинацию, во второй группе по меньшей мере один датчик измеряет скорость или ускорение флюида в направлении оси скважины в месте измерения. Определяют отношение спектра первого измеренного физического количественного показателя к спектру второго измеренного физического количественного показателя, используют указанное отношение спектра первого измеренного физического количественного показателя к спектру второго измеренного физического количественного показателя в качестве исходных данных для расчета функции отклика пласта с использованием математической модели распространения акустического импульса в забойной камере скважины. Используют полученный из моделирования набор функций откликов пласта, связанный с определенной геометрией пласта и параметрами среды пласта, для регулирования параметров пласта в математической модели.
Для определения отношения спектра первого измеренного физического количественного показателя к спектру второго измеренного физического количественного показателя рассчитывают спектр первого измеренного физического количественного показателя для первой группы датчиков и спектр второго измеренного количественного показателя для второй группы датчиков. При этом расчет спектра измеренного физического количественного показателя представляет собой обработку зарегистрированного акустического сигнала, состоящую в представлении сигнала как линейной комбинации функций, параметризованных спектральным параметром, с коэффициентами линейной комбинации, представляющими собой указанный спектр.
В частности, определение спектра зарегистрированного акустического сигнала может быть осуществлен при помощи дискретного преобразования Фурье.
Зарегистрированный акустический сигнал может быть подвергнут предварительной обработке, включающей, например, исключение трендов и удаление шумов.
Отношение спектра первого измеренного физического количественного показателя к спектру второго измеренного физического количественного показателя может быть рассчитано как линейный фильтр.
В случае, если акустический сигнал регистрируют более одного раза, рассчитывают спектр физического количественного показателя, измеренного датчиком в каждый момент времени, и определяют изменения по меньшей мере одного параметра математической модели путем сопоставления результирующих изменений спектров с изменениями параметров модели.
В соответствии с другим вариантом осуществления изобретения по меньшей мере один раз изменяют скорость вращения ротора электрического погружного насоса путем изменения управляющего входного электрического сигнала погружного насоса, определяют спектр по меньшей мере одного количественного физического показателя, измеренного датчиками, при дискретном множестве частот, на котором амплитуды спектра погружного насоса имеют локальные максимумы. Скорость вращения ротора электрического погружного насоса может быть изменена с использованием преобразователя скорости вращения.
Изменение скорости вращения ротора может представлять собой частотную модуляцию скорости вращения ротора модулирующей частотой.
Скорость вращения ротора электрического погружного насоса может быть изменена несколько раз с набором различных модулирующих параметров так, чтобы спектральные максимумы скорости вращения ротора покрывали диапазон частот.
Так, изменение скорости вращения ротора может представлять собой частотную модуляцию, при которой изменение модулирующего параметра приводит к тому, что спектральные максимумы охватывают диапазон
sh-nνmod, νsh+nνmod),
где νsh - скорость вращения ротора электрического погружного насоса,
νmod- модулирующий параметр,
n=1, 2 ….
В соответствии с еще одним вариантом осуществления изобретения по меньшей мере одним датчиком измеряют давление или его производную по времени, или их сочетание, и определяют фазовую скорость флюида, заполняющего забойную камеру скважины, путем соотнесения резонансных и антирезонансных частот по меньшей мере одного количественного показателя с соответствующими частотами математической модели. Определяют объемную долю газа, представляющую собой отношение объема, занятого газом, к общему объему флюида, путем соотнесения фазовой скорости, определенной при данном давлении с фазовой скоростью, прогнозируемой при помощи модели.
Изменение объемной доли газа также может быть определено качественно путем наблюдения одновременного уменьшения или увеличения резонансных или антирезонансных частот.
Акустические сигналы, зарегистрированные датчиками, измеряющими по меньшей мере один количественный физический показатель системы скажина-пласт, могут быть подвергнуты обработке в скважине так, что информация о количественном или качественном поведении физических количественных показателей вырабатывается путем такой обработки и либо передается на поверхность при помощи телеметрической связи, либо сохраняется в памяти для считывания в дальнейшем.
Изобретение поясняется чертежами, где на фиг. 1 приведен пример частотной модуляции скорости вращения ротора, на фиг.2 проиллюстрировано уравнение сохранения массы на стыке нескольких сегментов, на фиг. 3 приведен пример полного гидравлического сопротивления на входе электрического погружного насоса, рассчитанный в модели линии передачи для геометрии, изображенной слева.
Изобретение основано на использовании электрического погружного насоса в качестве источника колебаний давления, наполняющих скважинное пространство акустической энергией; при этом учитывается, что область скважины под электрическим погружным насосом представляет собой прекрасно изолированный объем, что делает ее идеальной для акустических испытаний.
Интерпретация этих колебаний позволяет охарактеризовать свойства пласта или скважинного флюида на основании, в частности, динамического отклика давления.
Было установлено, что существует возможность оценки некоторых свойств свойства пласта или скважинного флюида путем направления импульса давления в нижнюю часть скважины и интерпретации отклика системы, который является чувствительным к гидравлической коммуникации скважины и резервуара и коэффициентам сжимаемости скважинных флюидов, при этом последние являются индикаторами содержания различных фаз во флюиде. Для создания таких колебаний давления можно использовать электрический погружной насос. Применение скважинного датчика давления или датчика для измерения колебаний расхода (например, однокомпонентного геофона) или обоих датчиков позволяет регистрировать отклик системы. Датчики размещают в забойной камере скважины; понятие "забойная камера" означает гидравлически связную область ниже электрического погружного насоса и может представлять собой группу сегментов скважины, либо гидравлически отделенных от среды, окружающей скважину, либо соединенных с этой средой, и может включать в себя как минимум один пласт, пересекающий скважину, а также может включать в себя заполненную флюидом область под пакером, если последний присутствует.
Создают математическую модель распространения импульса давления в пласте, примыкающем к зоне скважины, расположенной ниже электрического погружного насоса, ее параметры можно настроить таким образом, чтобы результаты моделирования соответствовали измеренным данным. Модель должна включать набор параметров пласта, например, произведение проницаемости пласта на высоту пласта, локальное снижение проницаемости в призабойной зоне, средний радиус зоны снижения проницаемости, и параметров флюида, например плотность, вязкость и объемную доля газа.
Электрический погружной насос представляет собой один из видов центробежного насоса, в котором вращательное движение профилированной крыльчатки в сочетании с фасонным корпусом насоса или улитой, сообщает центробежную силу для выброса жидкости из насоса. Жидкость поступает в насос и затягивается в лопаточное пространство или в центр крыльчатки, а затем вытесняется из него через лопатки (лопасти) под действием центробежной силы, вырабатываемой вращательным действием крыльчатки. Затем жидкость вытесняется во внешний контур насоса и выходит с выкида насоса.
На валу можно установить несколько ступеней крыльчаток, за счет чего образуется многоступенчатый центробежный насос, который обычно используется при механизированной добыче (см., например, http://belpumps.by/inoxpa-nasos-ms.html).
Центробежный насос выполняет работу над жидкостью, сообщая силу путем ускорения жидкости до определенной скорости и перемещая ее от состояния низкого давления (на приеме) до состояния высокого давления (на выкиде). Работа выполняется над жидкостью путем вращения крыльчатки, закрепленной на валу и соединенной с источником питания - электрическим двигателем, дизельным двигателем и т.д.
По мере вращения вала жидкость поступает в "лопаточное пространство" крыльчатки (зону, ближайшую к валу) и выходит через лопатки, расположенные на кромке или на внешнем диаметре. Жидкость выходит с кромки лопатки с определенной скоростью и под определенным давлением, и направляется с внешнего диаметра крыльчатки через диффузор и возвращается во внешний диаметр ("лопаточное пространство") другой крыльчатки или на выкид насоса. Диффузор является стационарным и имеет лопатки, которые создают проходной канал для изменения направления движения жидкости.
Таким образом, из самого принципа работы центробежного насоса вытекает, что существуют две основные частоты, характеризующие работу насоса: частота вращения крыльчатки ("частота вала") и частота "межлопаточного канала", представляющая собой частоту вращения крыльчатки, умноженную на количество лопаток. Эти частоты проявляются в виде пиков в спектре колебаний давления, создаваемого насосом. Ввиду того, что временная зависимость скорости вращения вала никогда не представляет собой совершенную синусоиду и ввиду того, что отклик давления на вращение ротора может быть нелинейным, спектр отклика давления обычно также содержит гармонические составляющие основных частот ("гармоники").
Таким образом, электрический погружной насос способен вырабатывать сильные акустические сигналы на множестве "тонов", пропорциональных частоте вращения вала. Имеется также значительное количество широкополосных шумов более низкой амплитуды. В то время, как выработка сигнала внутри насоса может быть осложнена и представлять собой нелинейный процесс, его последующее распространение внутри скважинного флюида и пласта можно достоверно описать при помощи линейной аппроксимации. Тогда сигнал можно рассматривать как сумму гармонических мод, в которой каждый частотный компонент распространяется независимо, этот подход в значительной части аналогичен реализации преобразования Фурье и переходу к количественным показателям частотной области. Пространственный профиль каждой моды можно рассчитать в рамках математической модели типа модели линии передачи, которая рассматривает скважину, как совокупность одномерных сегментов, поддерживающих направленные вверх и вниз трубные волны, а пласт - как нуль-мерный элемент сосредоточенного полного сопротивления, определяющий отклик пласта на изменения давления/ расхода.
Важно иметь возможность изменения частот спектральных максимумов в спектре давления насоса с целью обеспечения возможности сканирования некоего частотного диапазона. Это можно проделать естественным образом путем модуляции характеристик вращения насоса. Одной из возможностей является использование частотного преобразователя, представляющего собой систему управления электроприводом, способную регулировать входной электрический сигнал и, за счет этого, частоту вращения вала насоса.
Частотный преобразователь (VSD) представляет собой устройство для преобразования входной энергии переменного тока фиксированной частоты в выходную энергию переменного тока переменной частоты. Для достижения этого частотный преобразователь преобразует входящий сигнал переменного тока в сигнал постоянного тока, который удерживается на заданном уровне в шине постоянного тока. На выходе из этой шины, с использованием инвертора, постоянный ток конвертируется обратно в энергию переменного тока необходимой частоты.
Медленное гармоническое изменение частоты вращения вала νsh с частотой νmod преобразует исходный гармонический сигнал в последовательность гармонических сигналов с частотами νsh±nνmod, n= 0, 1, 2, …. Таким образом, сконцентрировавшись на зоне n=1, можно покрыть диапазон νshmodshmod путем изменения модулирующей частоты νmod.
Figure 00000001
Это проиллюстрировано на фиг.1, где верхний график относится к временной области, а нижний - к частотной области. Пунктирные линии характеризуют исходный гармонический сигнал с частотой ν0=60 Гц, сплошные линии - его частотно-модулированный аналог ν1=10 Гц.
В данном случае модулированный сигнал характеризуется одним параметром ν1 и дискретным частотным спектром. Возможны другие модулирующие последовательности, характеризуемые более общим спектром со своим набором основных частот. Мы называем модулирующую последовательность, характеризуемую конкретным спектром, модулирующим циклом, а частоты соответствующих спектральных максимумов - фокусными частотами.
Каждый цикл модуляции реализуется в течение некоторого времени, чтобы с достаточной точностью получить не зависящий от времени спектр отклика системы на множестве фокусных частот или в пределах заданного диапазона частот, затем модулирующие параметры изменяются с целью изменения фокусных частот. Итерация процедуры проводится столько раз, сколько это необходимо (если это возможно с точки зрения эксплуатации), чтобы осуществить покрытие всех фокусных частот в рассматриваемом диапазоне.
Нет необходимости генерировать строго гармонические импульсы и варьировать частоту с течением времени, та же функция отклика будет получена путем генерирования произвольного импульса с последующим получением функции отклика как отношения подверженных преобразованию Фурье давления и расхода. В качестве альтернативы преобразования Фурье специалистам в области обработки сигналов известен ряд алгоритмов оценки спектра, включая процедуры очистки сигнала от шума. В силу относительно высокой доминантной частоты (либо частоты вращения вала, либо частоты лопаточного канала) типичная регистрация сигнала, длящаяся несколько секунд, включает в себя сотни или тысячи циклов колебаний, этого вполне достаточно для оценки спектра при помощи дискретного преобразования Фурье, надлежащим образом нормализованные значения спектральной плотности, таким образом, с высокой степенью точности приблизятся к теоретическим значениям, полученным на основании преобразования Лапласа или преобразования Фурье.
В рамках подхода линии передачи создают модель распространения импульса в системе скважины, соединенной как минимум с одним пластом. Модель можно использовать, если длина волны всех возбуждений превышает обычный размер стыков между сегментами. Если длина трубных волн становится сопоставимой или меньшей высоты пласта, необходима более сложная модель для обработки данных системы «скважина-пласт», которую можно разработать при необходимости. Кроме того, относительно малый размер забойной камеры открывает возможность прямого численного моделирования при помощи одного из современных средств моделирования. Примером использования данного принципа для скважины, подвергнутой гидроразрыву, является T.W.Patzek, A. De, A Lossy Transmission Line Model of Hydrofractured Well Dynamics, Journal of Petroleum Sience and Engineering 25 (2000), 59-77, однако нам необходима более общая модель, учитывающая более сложную зависимость основных количественных показателей от частоты. В общем случае, одномерная линия передачи представляет собой собрание одномерных сегментов и нульмерных элементов сосредоточенного полного сопротивления. Одномерные сегменты поддерживают два волновых возбуждения, распространяющихся в противоположных направлениях и записываемые при помощи двух количественных параметров: давления p (x, t) и скорости ν (x, t) в виде:
Figure 00000002
или, проведя преобразование Лапласа по t и переходя к области комплексных частот:
Figure 00000003
Figure 00000004
Где
Figure 00000005
с частотно-зависимой комплекснозначной константой распространения γ(s) и амплитудами Р(s), V(s).
Поточечное отношение амплитуды волны, распространяющейся влево к волне, распространяющейся вправо, есть коэффициент отражения, например, для давления
Figure 00000006
Получаем
Figure 00000007
Амплитуды давления и скорости не являются независимыми, но связаны посредством комплексного частотно-зависимого волнового сопротивления:
Figure 00000008
Действительная часть Zc(s) является соотношением между давлением и скоростью типа «трение» и сигнализирует о потере давления либо в силу излучения от источника, или из-за трения, а мнимая часть отвечает за емкостное сопротивление, инерцию и прочие эффекты, связанные с накоплением энергии.
Уравнение (8) сокращает количество независимых комплексных констант в уравнении (5) до двух: P(s), P(s), отражающих комплексные амплитуды волн, направленной вправо и влево.
Поточечное полное сопротивление представляет собой отношение давления и скорости в некоей конкретной точке:
Figure 00000009
В отличие от Zc(s), которое зависит от локальных свойств линии, Z(x,s) зависит от полной геометрии системы через r(s). Граничные условия можно переформулировать в терминах поточечного сопротивления. Например, замкнутая граница предполагает ν=0, и, по этой причине, Z(Xend, s)=∞, а условие для открытой границы p=0 эквивалентно Z(Xend, s)=0. Акустическое излучение сквозь границу даст некое частотно-зависимое полное сопротивление р(Xend, s)= Zc(Xend, s)ν(xend, s). Мы имеем:
Figure 00000010
Используя (8), (9) можно выразить поточечное полное сопротивление в некоей точке через поточечное полное сопротивление в другой точке:
Figure 00000011
что является уравнением переноса полного сопротивления. Это соотношение для сопротивлений не зависит от конкретного решения. Если целевой частотный диапазон таков, что длина волн всех мод намного превышает длины соответствующих сегментов, путем разложения исходных выражений в степенной ряд по малому параметру, представляющему собой произведение волнового числа на длину сегмента, и выделения лидирующих членов ряда.
При составлении формулы объединения сегментов важно перейти от скоростей ν к среднему объемному расходу q путем умножения первого на площади поперечного сечения S:
Figure 00000012
Все приведенные выше соотношения остаются без изменений, но масштаб полного сопротивления изменяется:
Figure 00000013
Если в некоей точке соединяется несколько сегментов, как показано на фиг. 2, то подразумевается сохранение непрерывности давления и объемного расхода
Figure 00000014
с направлениями осей, указанными стрелками. При делении расхода на давление получаем уравнение согласования полного сопротивления:
Figure 00000015
Точка соединения может обладать своей собственной динамикой, закодированной в сосредоточенном сопротивлении ξ(s), которое прибавляется к уравнению согласования:
Figure 00000016
Это, например, будет иметь место, когда сегменты соединяются через небольшую деформируемую камеру, вносящую вклад в уравнение баланса объема путем расширения и сжатия при изменении давления. В случае абсолютно жесткой камеры сосредоточенное полное сопротивление является бесконечным, а связанный с ним вклад равен нулю. ζ(s) может обеспечить соответствие сложным условиям соединения, учитывающим влияния в призабойной зоне, например, влияние перфораций и других препятствий, например гравийной набивки.
Пласт тоже можно рассматривать как элемент сосредоточенного полного сопротивления. В этом случае ζ(s)= Zreservoir(0, s), где Zreservoir(0, s) представляет собой поточечное полное сопротивление, рассчитанное в стволе скважины.
С учетом вышесказанного процедура решения линии передачи такова. Задают граничные условия на всех концах схемы, кроме одного («вход электрического погружного насоса»), и определяют соответствующие значения полного сопротивления. Используя уравнение переноса полного сопротивления, рассчитывают значения полного сопротивления на противоположных концах сегментов, затем для перехода к следующим сегментам используют уравнение согласования полного сопротивления, и т.д. до тех пор, пока на стволе скважины не будет получено полное сопротивление ZESP(s). Затем, с учетом расхода на входе ствола скважины Q(s) (которое можно физически реализовать, например, в виде активного насоса с определенным графиком нагнетания/всасывания), отклик давления P(s) можно получить просто при помощи:
Figure 00000017
Количественные значения во временной области при необходимости можно получить, применив обратное преобразование Лапласа.
Можно видеть, что основными количественными характеристиками, позволяющими построить модель линии передачи, являются константы распространения и характеристические сопротивления сечений скважины γ(s), Zc(s) и сосредоточенное полное сопротивление пласта на забое Zreservoir(0, s). Для обоих количественных значений существует множество математических моделей. Упомянем здесь лишь основные (в переменных давление/скорость), применимые в низкочастотном (<100 Гц) диапазоне.
Figure 00000018
Figure 00000019
для ламинарного потока вязкого флюида с кинематической вязкостью μ в жесткой трубе радиусом R при фазовой скорости с - см., например, A Trikha, An efficient method of simulating frequency-dependent friction in transient liquid flow, Trans. of ASME, J. Bas. Eng., V97 (1975), p.97-105. Можно вывести аналогичные выражения для структуры, состоящей из любого количества концентрических цилиндров, твердых или жидких, или получить соответствующие выражения численным путем, например, способом, описанным в Karpfinger F., Gurevich В., Bakulin A., Modeling of wave dispersion along cylindrical structures using the spectral method, J. Acoust. Soc. Am., 2008, Aug., 124(2), p.859-865.
Для описания пласта можно либо вывести модель функции отклика пласта, либо использовать уже известную модель. Например, следующий результат теории гармонических испытаний описывает осесимметричный изотропный пласт с круговой зоной локального снижения проницаемости вокруг необсаженной скважины
Figure 00000020
где R - радиус скважины, Y≈1,781… - постоянная Эйлера, η - вязкость флюида пласта, k - проницаемость пласта, κ=k/φηct, где ct - общий коэффициент сжимаемости заполненной пластовой жидкостью породы, φ - пористость пласта, α - локальное снижение проницаемости (отношение проницаемости зоны локального снижения к проницаемости пласта), λ - радиус зоны локального снижения проницаемости в единицах радиуса ствола скважины.
Пример на фиг.3 иллюстрирует чувствительность ZESP к параметрам резервуара при конкретных параметрах геометрии, схематически изображенных слева. Высота пласта составляла 15 м при проницаемости 1 Дарси, модель пласта представляла собой описанную выше радиальную составную модель. Четыре кривые на фиг.3 показывают зависимость модуля гидравлического сопротивления на входе электрического погружного насоса от частоты для неперфорированной скважины и для перфорированной скважины с тремя вариантами зоны локального снижения проницаемости, описанными в левом верхнем углу графика. Можно увидеть, что чувствительность особенно сильна вокруг резонансного и антирезонансного пиков и в указанных пиках.
Одним из методов соотнесения модели с экспериментом является использование по меньшей мере двух датчиков для измерения давления и аналога расхода, например, вертикальной скорости флюида, где "вертикальный" означает направление оси скважины в месте измерения, определение отношения их спектров, представляющего собой поточечное полное сопротивление, и соотнесение его со значением модели. Этот метод является наиболее полным, но он требует измерения двух количественных показателей.
Другой метод заключается в измерении всего одного количественного показателя, например давления, и определении того, как его спектр изменяется с течением времени, например, путем определения последовательных спектральных соотношений:
Figure 00000021
При условии, что входной электрический сигнал в электрический погружной насос, относящийся к различным промежуткам времени, один и тот же, можно обоснованно предположить, что скорость вращения крыльчатки также будет одинаковой и по этой причине расход также будет одинаковым, следовательно
Figure 00000022
и
Figure 00000023
Таким образом, мы получаем соотношение, в котором измеренный количественный показатель N(s|tk) можно соотнести с относительным изменением полного сопротивления на входе насоса, следующим из модели. По сути, можно записать аналогичные соотношения в любой точке забойной камеры. Таким образом, этот метод подходит для определения изменений параметров забойной камеры.
Происхождение резонансных и антирезонансных пиков в спектрах вызвано образованием стоячих волн в сегментах, включенных в схему линии передачи. Максимумы/минимумы возникают по той причине, что полное сопротивление, рассматриваемое как функция лапласовой s-переменной, обладает полюсами/нулями, и когда последние близки к мнимой оси, они по непрерывности приводят к соответствующим максимумам и минимумам на мнимой оси. Если внимательно изучить уравнение переноса полного сопротивления, можно легко установить, что, как правило, максимумы/минимумы входного полного сопротивления возникают в районе частот, соответствующих длинам волн, кратным половине или четверти длины соответствующих сегментов. Условия резонанса/ антирезонанса выглядят следующим образом:
Figure 00000024
где c(ν) - фазовая скорость трубной волны ν, a L - длина сегмента. С учетом слабой зависимости с от ν можно аппроксимировать интервал между двумя резонансными частотами, как
Figure 00000025
При объединении нескольких сегментов, возникает структура с более сложными полюсами. В частности, основной гармонический ряд, наиболее очевидный для неперфорированных скважин и скважин с минимальным локальным снижением проницаемости объясняется формированием стоячей волны в 3-сегментной схеме, где первый сегмент - непосредственно под электрическим погружным насосом, второй - над пластом, и третий - под пластом; с интервалом примерно 2,2 Гц, соответствующим (25), где с=800 м/с представляет собой использованную в модели фазовую скорость, а L=160 м - расстояние от электрического погружного насоса до забоя скважины. Таким образом, если геометрия забойной камеры известна, путем соотнесения резонансных/антирезонансных частот, включенных в модель, можно определить фазовую скорость трубных волн. Скорость трубных волн с является функцией соответствия труб и фазовой скорости флюида С в неограниченной среде. Последнее значение скорости соотносится с колебаниями давления и плотности следующим образом
Figure 00000026
и, по этой причине, позволяет измерить коэффициент сжимаемости флюида. Коэффициент сжимаемости флюида, в свою очередь, может сильно варьироваться, если во флюиде присутствует газ. Например, для простой двухфазной системы (флюид и идеальный газ) мы имеем
Figure 00000027
где p - фоновое давление, ρ - плотность флюида без газа, Г - объемная доля газа или «фактор качества», а N - экспонента политропного расширения. Эта формула применима в отношении значений Г, которые не слишком приближены к 0 или 1, в последних случаях действует более сложная формула. Для многофазных, многокомпонентных смесей флюид-газ зависимости скорости звука от объемных отношений фаз можно либо измерить в лаборатории, либо получить теоретическим путем, описанный метод позволяет измерить объемную долю газа в зоне под насосом и, в более общем случае, получить данные для определения свойств многофазного флюида, зависящих от коэффициента сжимаемости, путем соотнесения структуры резонансных и антирезонансных пиков в любом из количественных показателей, измеренных в скважине, в частности в давлении или гидравлическом сопротивлении, измеренном в точке или множестве точек в забойной камере.

Claims (19)

1. Способ определения свойств углеводородного пласта и добываемых флюидов в процессе добычи, в соответствии с которым по меньшей мере один раз регистрируют акустический сигнал, представляющий собой отклик системы скважина-пласт на акустические импульсы давления, источником которых является электрический погружной насос, расположенный внутри скважины, причем акустический сигнал регистрируют по меньшей мере одним датчиком, размещенным в забойной камере скважины и измеряющим по меньшей мере один количественный физический показатель системы скважина-пласт, характеризующий процесс распространения акустического импульса в скважине, создают математическую модель распространения акустических импульсов давления в забойной камере, сравнивают данные, полученные путем моделирования, с данными, полученными путем регистрации акустического сигнала, представляющего собой отклик системы скважина-пласт, регулируют параметры пласта в математической модели для обеспечения соответствия по меньшей мере одного количественного физического показателя системы скважина-пласт, полученного путем моделирования, тому же количественному физическому показателю, полученному путем регистрации, и определяют свойства пласта и добываемых флюидов как параметры, обеспечивающие соответствие.
2. Способ по п.1, в соответствии с которым количественные физические показатели системы скважина-пласт представляют собой давление, производную давления по времени, компоненту скорости флюида, компоненту ускорения флюида.
3. Способ по п.1, в соответствии с которым для регистрации акустического сигнала используют две группы датчиков, расположенных близко друг к другу, при этом в первой группе по меньшей мере один датчик измеряет давление или производную давления по времени, или их комбинацию, во второй группе по меньшей мере один датчик измеряет скорость или ускорение флюида в направлении оси скважины в месте измерения, определяют отношение спектра первого измеренного физического количественного показателя к спектру второго измеренного физического количественного показателя, используют указанное отношение спектра первого измеренного физического количественного показателя к спектру второго измеренного физического количественного показателя в качестве исходных данных для расчета функции отклика пласта с использованием модели распространения акустического импульса в забойной камере скважины, используют полученный из моделирования набор функций откликов пласта, связанный с определенной геометрией пласта и параметрами среды пласта, для регулирования параметров пласта в математической модели.
4. Способ по п.3, в соответствии с которым для определения отношения спектра первого измеренного физического количественного показателя к спектру второго измеренного физического количественного показателя рассчитывают спектр первого измеренного физического количественного показателя для первой группы датчиков и спектр второго измеренного количественного показателя для второй группы датчиков.
5. Способ по п.4, в соответствии с которым расчет спектра измеренного физического количественного показателя представляет собой обработку зарегистрированного акустического сигнала, состоящую в представлении сигнала как линейной комбинации функций, параметризованных спектральным параметром, с коэффициентами линейной комбинации, представляющими собой указанный спектр.
6. Способ по п.5, в соответствии с которым обработку зарегистрированного акустического сигнала осуществляют при помощи дискретного преобразования Фурье.
7. Способ по п.6, в соответствии с которым проводят предварительную обработку зарегистрированного акустического сигнала.
8. Способ по п.7, в соответствии с которым предварительная обработка зарегистрированного акустического сигнала представляет собой исключение трендов и удаление шумов.
9. Способ по п.3, в соответствии с которым отношение спектра первого измеренного физического количественного показателя к спектру второго измеренного физического количественного показателя рассчитывают как линейный фильтр.
10. Способ по п.1, в соответствии с которым в случае, когда акустический сигнал регистрируют более одного раза, рассчитывают спектр физического количественного показателя, измеренного датчиком в каждый момент времени, определяют изменения по меньшей мере одного параметра математической модели путем сопоставления результирующих изменений спектров с изменениями параметров модели.
11. Способ по п.10, в соответствии с которым расчет спектра измеренного физического количественного показателя представляет собой обработку зарегистрированного акустического сигнала, состоящую в представлении сигнала как линейной комбинации функций, параметризованных спектральным параметром, с коэффициентами линейной комбинации, представляющими собой указанный спектр.
12. Способ по п.1, в соответствии с которым по меньшей мере один раз изменяют скорость вращения ротора электрического погружного насоса путем изменения управляющего входного электрического сигнала погружного насоса, определяют спектр по меньшей мере одного измеренного количественного физического показателя при дискретном множестве частот, на котором амплитуды спектра погружного насоса имеют локальные максимумы.
13. Способ по п.12, в соответствии с которым скорость вращения ротора электрического погружного насоса изменяют с использованием преобразователя скорости вращения.
14. Способ по п.12, в соответствии с которым изменение скорости вращения ротора представляет собой частотную модуляцию скорости вращения ротора модулирующей частотой.
15. Способ по п.12, в соответствии с которым скорость вращения ротора электрического погружного насоса изменяют несколько раз с набором различных модулирующих параметров так, чтобы спектральные максимумы скорости вращения ротора покрывали диапазон частот.
16. Способ по п.15, в соответствии с которым изменение скорости вращения ротора представляет собой частотную модуляцию, при которой изменение модулирующего параметра приводит к тому, что спектральные максимумы охватывают диапазон
sh-nνmod, νsh+nνmod),
где νsh - скорость вращения ротора электрического погружного насоса,
νmod - модулирующий параметр,
n=1, 2 ….
17. Способ по п.1, в соответствии с которым по меньшей мере одним датчиком измеряют давление или его производную по времени, или их сочетание, определяют фазовую скорость флюида, заполняющего забойную камеру скважины, путем соотнесения резонансных и антирезонансных частот по меньшей мере одного количественного показателя с соответствующими частотами математической модели и определяют объемную долю газа, представляющую собой отношение объема, занятого газом, к общему объему флюида, путем соотнесения фазовой скорости распространения импульсов давления, определенной при данном давлении с фазовой скоростью, прогнозируемой при помощи модели.
18. Способ по п.17, в соответствии с которым изменение объемной доли газа определяют качественно путем наблюдения одновременного уменьшения или увеличения резонансных, или антирезонансных частот.
19. Способ по п.1, в соответствии с которым акустические сигналы, зарегистрированные датчиками, измеряющими по меньшей мере один количественный физический показатель системы скажина-пласт, подвергают обработке в скважине так, что информация о количественном или качественном поведении физических количественных показателей вырабатывается путем такой обработки и либо передается на поверхность при помощи телеметрической связи, либо сохраняется в памяти для считывания в дальнейшем.
RU2012137226/03A 2012-09-03 2012-09-03 Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи RU2505675C1 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2012137226/03A RU2505675C1 (ru) 2012-09-03 2012-09-03 Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи
US14/015,919 US20140060822A1 (en) 2012-09-03 2013-08-30 Method for determining properties of a hydrocarbon reservoir formation and produced fluids in the process of production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012137226/03A RU2505675C1 (ru) 2012-09-03 2012-09-03 Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи

Publications (1)

Publication Number Publication Date
RU2505675C1 true RU2505675C1 (ru) 2014-01-27

Family

ID=49957740

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012137226/03A RU2505675C1 (ru) 2012-09-03 2012-09-03 Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи

Country Status (2)

Country Link
US (1) US20140060822A1 (ru)
RU (1) RU2505675C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101850A1 (ru) * 2016-12-01 2018-06-07 Шлюмберже Текнолоджи Корпорейшн Способ определения физических характеристик однородной среды и ее границ

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10746680B2 (en) 2006-11-16 2020-08-18 General Electric Company Sensing system and method
CN102317570B (zh) * 2009-02-13 2014-12-31 西门子公司 监测电动潜油泵的方法和设备
GB201403626D0 (en) 2014-02-28 2014-04-16 Silixa Ltd Submersible pump monitoring
WO2016094530A1 (en) 2014-12-09 2016-06-16 Schlumberger Canada Limited Electric submersible pump event detection
US10317556B2 (en) * 2016-01-25 2019-06-11 Baker Hughes, A Ge Company, Llc Non-linear acoustic formation evaluation
WO2017151847A1 (en) * 2016-03-03 2017-09-08 General Electric Company Sensing system and method
CN111830562B (zh) * 2019-04-16 2023-04-25 中国石油天然气股份有限公司 一种油气储层渗透率预测方法及装置
CN112878998B (zh) * 2021-01-28 2022-07-05 成都理工大学 地下卤水型钾矿和锂矿的储卤层预测和资源量评价方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1698864A1 (ru) * 1988-12-30 1991-12-15 Всесоюзный научно-исследовательский, проектно-конструкторский и технологический институт геологических, геофизических и геохимических информационных систем Скважинный прибор дл акустического каротажа на волнах Лэмба
RU2374441C2 (ru) * 2004-06-23 2009-11-27 Шлюмбергер Текнолоджи Бв Развертывание подземных датчиков в обсадной колонне
EA013728B1 (ru) * 2006-03-30 2010-06-30 Бейкер Хьюз Инкорпорейтед Способ внутрискважинной оценки акустических свойств флюида и устройство для его осуществления
RU2457326C2 (ru) * 2008-04-15 2012-07-27 Шлюмбергер Текнолоджи Б.В. Инструмент и способ определения параметра пласта

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9925373D0 (en) * 1999-10-27 1999-12-29 Schlumberger Ltd Downhole instrumentation and cleaning system
US9284780B2 (en) * 2001-08-19 2016-03-15 Smart Drilling And Completion, Inc. Drilling apparatus
EA005450B1 (ru) * 2001-10-24 2005-02-24 Шелл Интернэшнл Рисерч Маатсхаппий Б.В. Использование скоростей кусочков породы для прогнозирования в реальном времени порового давления и градиента давления гидравлического разрыва пласта
GB2391880B (en) * 2002-08-13 2006-02-22 Reeves Wireline Tech Ltd Apparatuses and methods for deploying logging tools and signalling in boreholes
US7170262B2 (en) * 2003-12-24 2007-01-30 Foundation Enterprises Ltd. Variable frequency power system and method of use
RU2327154C2 (ru) * 2004-04-23 2008-06-20 Шлюмберже Текнолоджи Б.В Способ и система для мониторинга заполненных жидкостью областей в среде на основе граничных волн, распространяющихся по их поверхностям
US7529152B2 (en) * 2005-05-10 2009-05-05 Schlumberger Technology Corporation Use of an effective tool model in sonic logging data processing
RU2318223C2 (ru) * 2005-09-28 2008-02-27 Шлюмберже Текнолоджи Б.В. Способ оптимизации пассивного мониторинга гидравлического разрыва пласта (варианты)
US20070175633A1 (en) * 2006-01-30 2007-08-02 Schlumberger Technology Corporation System and Method for Remote Real-Time Surveillance and Control of Pumped Wells
US9045973B2 (en) * 2011-12-20 2015-06-02 General Electric Company System and method for monitoring down-hole fluids
US10746680B2 (en) * 2006-11-16 2020-08-18 General Electric Company Sensing system and method
US20110320142A1 (en) * 2010-06-28 2011-12-29 General Electric Company Temperature independent pressure sensor and associated methods thereof
US10914698B2 (en) * 2006-11-16 2021-02-09 General Electric Company Sensing method and system
US7894300B2 (en) * 2007-01-18 2011-02-22 Schlumberger Technology Corporation Fluid characterization from acoustic logging data
US7669651B1 (en) * 2007-03-01 2010-03-02 Carstensen Kenneth J Apparatus and method for maximizing production of petroleum wells
WO2008118735A1 (en) * 2007-03-27 2008-10-02 Halliburton Energy Services, Inc. Systems and methods for displaying logging data
GB2447908B (en) * 2007-03-27 2009-06-03 Schlumberger Holdings System and method for spot check analysis or spot sampling of a multiphase mixture flowing in a pipeline
US8092190B2 (en) * 2007-04-06 2012-01-10 Baker Hughes Incorporated Systems and methods for reducing pump downtime by determining rotation speed using a variable speed drive
US7472588B2 (en) * 2007-04-18 2009-01-06 Sorowell Production Services Llc Petrophysical fluid flow property determination
ATE522832T1 (de) * 2007-07-06 2011-09-15 Prad Res & Dev Ltd Verfahren und systeme zur verarbeitung von mikroseismischen daten
US20090034368A1 (en) * 2007-08-02 2009-02-05 Baker Hughes Incorporated Apparatus and method for communicating data between a well and the surface using pressure pulses
CA2703857C (en) * 2007-12-07 2015-05-05 Exxonmobil Upstream Research Company Methods and systems to estimate wellbore events
WO2009079588A1 (en) * 2007-12-18 2009-06-25 Technology International, Inc. Method for enhancing low frequency output of impulsive type seismic energy sources for use while drilling
US8705318B2 (en) * 2008-03-10 2014-04-22 Schlumberger Technology Corporation Data aggregation for drilling operations
RU2386023C1 (ru) * 2008-12-05 2010-04-10 Шлюмберже Текнолоджи Б.В. Способ определения давления смыкания трещины гидроразрыва
US8622713B2 (en) * 2008-12-29 2014-01-07 Little Giant Pump Company Method and apparatus for detecting the fluid condition in a pump
US9133709B2 (en) * 2009-11-17 2015-09-15 Board Of Regents, The University Of Texas System Determination of oil saturation in reservoir rock using paramagnetic nanoparticles and magnetic field
WO2011109014A1 (en) * 2010-03-02 2011-09-09 David John Kusko Borehole flow modulator and inverted seismic source generating system
AU2011237441A1 (en) * 2010-04-07 2012-11-01 David Randolph Smith Submersible hydraulic artificial lift systems and methods of operating same
JP5531265B2 (ja) * 2010-10-12 2014-06-25 パナソニック株式会社 タイヤ状態検出装置およびタイヤ状態検出方法
CN107103898A (zh) * 2011-10-06 2017-08-29 Hrl实验室有限责任公司 高带宽抗共振膜
US20140144618A1 (en) * 2012-04-13 2014-05-29 William E. Groves Hydrodynamic pulse tool

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1698864A1 (ru) * 1988-12-30 1991-12-15 Всесоюзный научно-исследовательский, проектно-конструкторский и технологический институт геологических, геофизических и геохимических информационных систем Скважинный прибор дл акустического каротажа на волнах Лэмба
RU2374441C2 (ru) * 2004-06-23 2009-11-27 Шлюмбергер Текнолоджи Бв Развертывание подземных датчиков в обсадной колонне
EA013728B1 (ru) * 2006-03-30 2010-06-30 Бейкер Хьюз Инкорпорейтед Способ внутрискважинной оценки акустических свойств флюида и устройство для его осуществления
RU2457326C2 (ru) * 2008-04-15 2012-07-27 Шлюмбергер Текнолоджи Б.В. Инструмент и способ определения параметра пласта

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018101850A1 (ru) * 2016-12-01 2018-06-07 Шлюмберже Текнолоджи Корпорейшн Способ определения физических характеристик однородной среды и ее границ

Also Published As

Publication number Publication date
US20140060822A1 (en) 2014-03-06

Similar Documents

Publication Publication Date Title
RU2505675C1 (ru) Способ определения свойств углеводного пласта и добываемых флюидов в процессе добычи
RU2475633C2 (ru) Способ и система для повышения добычи нефти (варианты)
CN109564296B (zh) 用于检测反射液压信号的井中对象的方法和系统
US11608740B2 (en) Determining fracture properties using injection and step-rate analysis, dynamic injection test analysis, extracting pulse-type source signals from noisy data, and measuring friction parameters in a well
US20210115785A1 (en) Inflow detection using dts features
US11473424B2 (en) Fluid inflow characterization using hybrid DAS/DTS measurements
CN113272518A (zh) 识别流体流入位置和流体类型的das数据处理
US10060251B2 (en) Acoustic measurement of wellbore conditions
Lu et al. A modulated gradient model for scalar transport in large-eddy simulation of the atmospheric boundary layer
US20160326866A1 (en) Method of Estimating Multi-Phase Fluid Properties in a Wellbore
CA2762269C (en) Method and apparatus for determining a level of a fluid in communication with a downhole pump
RU2476911C2 (ru) Измерение проницаемости горных пород резонансным методом радиальных колебаний
Wang et al. Signal analysis of acoustic gas influx detection method at the bottom of marine riser in deepwater drilling
Tabjula et al. Empirical correlations for predicting flow rates using distributed acoustic sensor measurements, validated with wellbore and flow loop data sets
Carey Water hammer fracture diagnostics
Borodin et al. Real-time hydraulic fracture monitoring and wellbore characterization with distributed acoustic sensing of pumping noise
RU2445455C2 (ru) Способ определения фильтрационных параметров призабойной зоны пласта и обнаружения дефектов в конструкции скважины
RU2492510C1 (ru) Способ определения свойств проницаемого пласта
Bashmakov et al. Natural Vibrations of a Fluid in a Well Connected with Formation in the Presence of a Hydraulic Fracture
US20240118118A1 (en) Virtual flow metering using acoustics
Pakhotina Using Distributed Acoustic Sensing for Multiple-Stage Fractured Well Diagnosis
RU2783855C1 (ru) Способ определения уровня жидкости в межтрубном пространстве скважины
Parlak et al. Design of a mini double-discharge centrifugal pump under multiphase flow by CFD and experimental verification
Antlinger et al. Utilizing acoustic pressure waves for sensing fluid properties
Jiménez Martínez et al. Constraints on hydraulic properties from free pressure oscillations recorded during pumping operations in boreholes

Legal Events

Date Code Title Description
TK4A Correction to the publication in the bulletin (patent)

Free format text: AMENDMENT TO CHAPTER -FG4A- IN JOURNAL: 3-2014 FOR TAG: (54)

MM4A The patent is invalid due to non-payment of fees

Effective date: 20200904