RU2503501C1 - Фильтр очистки газового потока - Google Patents

Фильтр очистки газового потока Download PDF

Info

Publication number
RU2503501C1
RU2503501C1 RU2012115542/05A RU2012115542A RU2503501C1 RU 2503501 C1 RU2503501 C1 RU 2503501C1 RU 2012115542/05 A RU2012115542/05 A RU 2012115542/05A RU 2012115542 A RU2012115542 A RU 2012115542A RU 2503501 C1 RU2503501 C1 RU 2503501C1
Authority
RU
Russia
Prior art keywords
gas
precipitation
gas flow
gas stream
cleaned
Prior art date
Application number
RU2012115542/05A
Other languages
English (en)
Other versions
RU2012115542A (ru
Inventor
Алексей Алексеевич Палей
Original Assignee
Алексей Алексеевич Палей
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Алексей Алексеевич Палей filed Critical Алексей Алексеевич Палей
Priority to RU2012115542/05A priority Critical patent/RU2503501C1/ru
Publication of RU2012115542A publication Critical patent/RU2012115542A/ru
Application granted granted Critical
Publication of RU2503501C1 publication Critical patent/RU2503501C1/ru

Links

Images

Landscapes

  • Electrostatic Separation (AREA)

Abstract

Изобретение относится к очистке газов и может быть использовано в различных отраслях промышленности и энергетики для отделения от газового потока содержащихся в нем аэрозольных частиц, в том числе и конденсата, особенно в градирнях, для сокращения потерь воды в системе оборотного водоснабжения. Фильтр содержит коронирующие электроды, установленные электрически изолированно вокруг очищаемого газового потока вдоль его оси на выходе из трубы. С зазором относительно коронирующих электродов установлен осадительный электрод в виде решетчатой конструкции из отдельных электрически изолированных секторов, установленных вокруг конструкции коронирующих электродов. Каждый сектор осадительного электрода снабжен устройством заземления, связанным с датчиком направления ветрового потока. Натекание внешнего ветрового потока на очищаемый газовый поток и его охлаждение осуществляется путем постоянного контроля за направлением ветра и управлением заземлением секторов осадительного электрода. Технический результат состоит в упрощении конструкции фильтра и сокращении затрат на его изготовление. 2 ил.

Description

Изобретение относится к области очистки газов и может быть использовано в различных отраслях промышленности и энергетики для отделения от газового потока содержащихся в нем аэрозольных частиц, в том числе и конденсируемой составляющей паров газового потока (конденсата), особенно, в градирнях для сокращения потерь воды в системе оборотного водоснабжения.
Известно устройство для сепарации пара из газов, содержащее вертикальный цилиндрический корпус с патрубками для входа и выхода охлаждающего агента, и двумя решетками, на которых закреплены трубки (См. А.Г. Амелин "Теоретические основы образования тумана", М., Химия, 1966 г., стр.164). Для входа парогазовой смеси в корпусе смонтирована верхняя камера, а для выхода сепарированного конденсата и очищенного газа - нижняя камера. В данном устройстве парогазовая смесь через верхнюю камеру проходит по трубам, охлажденным движущимся в межтрубном пространстве хладоагентом. При соприкосновении с холодной поверхностью труб происходит охлаждение газа и конденсация на этой поверхности содержащегося в газе пара. Конденсируемая в трубах жидкость собирается в нижней камере и вытекает их нее через патрубок выхода конденсата. Очищенный от конденсата газ выходит через патрубок нижней камеры.
В описанном устройстве конденсация и сепарация производится лишь той части паров газовой смеси, которой удается соприкоснуться с поверхностью труб за время нахождения смеси в трубе. Остальная же часть паров остается в составе выходящей из устройства смеси. Таким образом, для повышения степени очистки смеси от паров требуется увеличение габаритных размеров известного устройства. Кроме того, в известном устройстве не предусмотрена очистка смеси от аэрозолей.
Известно устройство для сепарации паров серной кислоты, содержащее холодильник с входным и выходным патрубками и вертикальную башню с верхней и нижней камерами (см. А.Г. Амелин "Теоретические основы образования тумана", М., Химия, 1966 г., стр.202). Нижняя камера снабжена патрубком для входа газовой смеси и патрубком для выхода серной кислоты, соединенным с входным патрубком холодильника. Верхняя камера содержит выходной патрубок очищенного газа и входной патрубок серной кислоты, соединенный с выходным патрубком холодильника и магистралью приема готовой продукции. Газовая смесь поступает через нижнюю камеру в вертикальную башню. Поднимаясь вверх по башне, газовая смесь орошается серной кислотой, стекаемой с верхней части башни. Капельки серной кислоты охлаждают газовую смесь и конденсируют на своей поверхности, содержащиеся в газовой смеси пары, увлекая их с собой в нижнюю камеру башни. Очищенный от паров газ поднимается вверх и через верхнюю камеру башни направляется в выходной патрубок очищенного газа. Капли кислоты опускаются вниз и через нижнюю камеру башни направляются в патрубок для выхода серной кислоты.
При охлаждении газовой смеси и конденсации, содержащихся в ней паров происходит нагрев серной кислоты. Для замыкания рабочего цикла, выходящую из башни кислоту перед подачей в верхнюю часть башни для орошения газовой смеси и для отгрузки в магистраль готовой продукции пропускают через холодильник.
В описываемом устройстве в отличие от ранее упомянутого устройства, конденсации содержащихся в газовой смеси паров происходит не только на поверхности конструкций (стенки труб, башни), но и на поверхности капелек, орошаемой серной кислоты. Так как площадь поверхности капель существенно больше площади конструкций, то в описываемом устройстве удается добиться повышения степени очистки смеси без существенных увеличений габаритных размеров устройства.
Вместе с тем, в описываемом устройстве при конденсации серной кислоты возникает высокое пересыщение пара, отчего часть паров серной кислоты конденсируется в объеме с образованием тумана, который в составе очищенных газов выносится из башни.
Известен фильтр очистки газового потока, представленный в патенте РФ на изобретение №22935897, МПК B01D 53/32. Фильтр содержит пористый осадительный электрод с открытыми порами, размером более 0,1 мкм, включающими вертикальные капиллярные каналы, размеры проходного сечения которых удовлетворяют соотношению: a>2*σ/(ρ*g*h),
где а - эффективный радиус пор, h - высота осадительного электрода, σ - коэффициент поверхностного натяжения конденсата, ρ - плотность конденсата, установленный вдоль очищаемого газового потока, с зазором относительно которого, со стороны очищаемого газового потока электрически изолировано смонтированы коронирующие электроды, соединенные с источником питания. В известном фильтре аэрозольные частицы и капли конденсата, образуемые вследствие активизации процессов конденсации с помощью генерируемых электрических зарядов, движутся под действием силового поля и электрического ветра к пористому осадительному электроду. Повышение степени очистки в известном фильтре достигается за счет инициации процессов конденсации во всем объеме газового потока, и за счет обеспечения прохождения капель конденсата во внутрь пористой поверхности осадительного электрода и обеспечение максимально благоприятных условий теплопередачи.
Наиболее близким техническим решением к предлагаемому является фильтр очистки газового потока, содержащий снабженный приводом вращения пористый осадительный электрод, плоскость которого ориентирована вдоль очищаемого газового потока, с зазором относительно плоскости которого, со стороны очищаемого газового потока электрически изолировано смонтированы соединенные с источником питания коронирующие электроды, систему ориентации пористого осадительного электрода относительно очищаемого газового потока с датчиком направления ветрового потока, систему формирования воздушного потока, направленного на пористый осадительный электрод со стороны очищаемого газового потока и систему охлаждения очищаемого газового потока. См. описание к патенту на изобретение №2356632 RU, опубликованному 27.05.2009 Бюл. №15.
Известная конструкция фильтра монтируется над выходным сечением корпуса дымовой трубы с возможностью поворота ее относительно оси трубы. С помощью специального привода по информации от датчиков направления ветра, входящих в систему ориентации осадительного электрода, фильтр разворачивается таким образом, чтобы ветровой поток набегал на очищаемый и увлекал его на осадительный электрод. Известное техническое решение обеспечивает высокую степень очистки газового потока от аэрозольных частиц. Вместе с тем, использования ветровых потоков окружающего пространства в известном устройстве осуществляется путем разворота всей системы очистки вокруг оси трубы, что усложняет конструкцию и увеличивает ее стоимость, особенно при использовании в градирне, диаметр которых может составлять более 10 метров.
Целью настоящего изобретения является упрощение конструкции фильтра и сокращение затрат на ее изготовление.
Для достижения заявленной цели в известном фильтре очистки газового потока, содержащем датчик направления ветрового потока, осадительный электрод, выполненный в виде решетчатой конструкции, установленной над выходным сечением корпуса канала выхода в окружающее пространство очищаемого газового потока, с зазором относительно рабочей поверхности которого, размещенной вдоль очищаемого газового потока, со стороны очищаемого газового потока, электрически изолировано, смонтированы соединенные с источником питания коронирующие электроды, осадительный электрод выполнен в виде электрически изолированных секторов с устройствами заземления, связанными с датчиком направления ветрового потока с возможностью замыкания устройства заземления сектора осадительного электрода с подветренной стороны. Предлагаемое техническое решение позволяет конструктивно оформить фильтр в виде двух замкнутых поверхностей (поверхность с коронирующими электродами и рабочая поверхность осадительного электрода), коаксиально установленных на изоляторах вокруг корпуса канала выхода очищаемого газового потока. Натекание внешнего ветрового потока на очищаемый газовый поток и его охлаждение в предлагаемом техническом решении осуществляется путем постоянного контроля за направлением ветра и управлением заземлением секторов осадительного электрода. Дальнейшая очистка происходит также, как и в известном фильтре. Таким образом, предложенное техническое обеспечивает, как и в известном техническом решении, вовлечение внешнего ветрового потока в процесс очистки, и достичь высокой степени очистки, но более простым и более дешевым методом.
На фиг.1 представлена схема предлагаемого фильтра. Фильтр включает в себя систему коронирующих электродов 1, установленных на изоляторах 2 над выходным сечением канала выхода очищаемого газа 3 (например, над выходным отверстием дымовой трубы, над корпусом башни градирни). Коронирующие электроды 1 установлены вокруг устройства выхода очищаемого потока и соединены с источником высокого напряжения (на рисунке не показан). Коронирующие электроды 1 могут быть выполнены из проводов малого диаметра, натянутых на каркасе.
На рисунке 1 показано размещение коронирующих электродов на каркасе, выполненном в виде восьмиугольника. Схема размещения коронирующих электродов определяется исходя из конкретных конструктивных условий, и принципиального значения на работу фильтра не оказывает. Наиболее оптимальная форма каркаса - скорее всего окружность, она наиболее полно охватывает окружающее пространство выходного устройства. Исходя из условий реальных значений высокого напряжения порядка 50 Кв, диаметр коронирующих проводов измеряется ориентировочно порядка 0,3-0,8 мм. Коронирующие электроды могут быть также выполнены в виде скрутки (троса) проводов малого диаметра, либо в виде различных конструктивных элементов с малым радиусом кривизны рабочей поверхности. Конструкции коронирующих электродов достаточно подробно освещены в литературе по электрофильтрам. См., например, http://oemz.net/files/demz_precipitator.pdf, http://niiogaz.ru/index.php?option=com_content&task=view&id=27&ltemid=23. С зазором 5 относительно коронирующих электродов 1 на изоляторах 4 установлены осадительные электроды 5. Осадительные электроды 5 выполнены в виде отдельных изолированных друг от друга секторов решетчатой конструкции (например, в виде обычных рамок со сварной сеткой с размером ячейки 10-15 мм, с толщиной провода порядка 2 мм). Для отвода сконденсированной жидкости в нижней части каждой из рамок осадительного электрода 5 выполнена ванночка 6, в которой может быть выполнено сквозное отверстие со штуцером соединения со шлангом 7 сбора сконденсированной и собранной влаги. Каждый сектор осадительного электрода 5 снабжен устройство заземления 8, связанным с системой ориентации осадительного электрода относительно внешнего ветрового потока (на рис.1 не показана). Система ориентации может быть выполнена аналогично системе ориентации горизонтально оси вращения ветряного колеса ветряных энергетических установок и базироваться на датчиках направления ветрового потока и создаваться на известных принципах проектирования следящих систем. С целью снижения вероятности образования наледи на осадительных электродах при больших значениях отрицательной температуры окружающего воздуха каждый сектор осадительного электрода может быть снабжен жалюзийными устройствами (на рис.1 не показаны) с системой регулирования их открытием-закрытием в зависимости от температуры рабочей поверхности осадительного электрода. Фильтр работает следующим образом.
На коронирующие электроды 1 подается высокое напряжение. Значение подаваемого напряжения определяется по известным зависимостям, определяющим условия зажигания коронного разряда. По данным датчика направления ветрового потока (на рисунке 1 обозначенного W) замыкаются устройства заземления 8 секторов осадительных электродов 5, находящихся с подветренной стороны от очищаемого газового потока (на рис.1 показан справой стороны). Между коронирующими электродами и секторами осадительных электродов, расположенных с подветренной стороны от очищаемого газового потока зажигается коронный разряд. Направление ионного ветра, возникающего в процессе горения коронного разряда, совпадает с направлением внешнего ветрового потока W. Газовый поток, выходящий из канала 3, захватывается ветровым потоком, смешивается с атмосферным воздухом, охлаждается, содержащаяся в нем парообразная влага конденсируется, образуется видимый факел облака, движущегося газового потока. Образовавшаяся газово-капельная смесь ветровым потоком (от внешнего ветра и ионного ветра) направляется в область коронного разряда (между коронирующими электродами 1 и осадительным электродом 5). В области коронного разряда на сконденсированных ранее каплях собираются окружающие их аэрозольные частицы. Как показано в материалах исследований, проведенных с участием автора, в результате воздействия коронного разряда на газово-капельную смесь собираются практически все аэрозоли. См. Лапшин В.Б., Палей А.А., Балышев А.В., Болдырев И.А., Дубцов С.Н., Толпыгин Л.И. Эволюция аэрозоля нанометрового диапазона в сухой и увлажненной газовой среде под воздействием коронного разряда / Журнал «Оптика атмосферы и океана», том 24, 2011, №11. стр.997-1001.
Под действием ветрового потока и электрического поля, газово-капельная смесь (туман) движется к осадительному электроду 5. Учитывая, что осадительные электроды 5 выполнены в виде решетчатой конструкции, очищаемый газовый поток практически беспрепятственно выходит наружу, оставляя на своем пути электрически заряженные капли с собранными аэрозолями, которые захватываются заземленными элементами конструкции. Как показано в статье «Новые возможности совместного использования «электрического ветра» и электрофильтров для рассеяния теплых туманов», см. Электронный научный журнал «ИССЛЕДОВАНО В РОССИИ» 269 http://zhurnal.ape.relarn.ru/articles/2010/021.pelf, решетчатая конструкция осадительного электрода обладает эффективной способностью очистки туманной среды от капель. Собранные на конструктивных элементах решетчатой конструкции капли стекают вниз в ванночку 6, и через выполненное сквозное отверстие со штуцером соединения со шлангом 7 сбора сконденсированной и собранной влаги уводятся в область утилизации в случае очистки дымовых газов, либо возвращаются в систему оборотного водоснабжения в случае градирни.
В случае сильных отрицательных температур воздуха, для предотвращения замерзания собираемой влаги с внешней стороны осадительных электродов могут быть установлены жалюзи, которые ограничивают количество внешнего ветрового потока, смешиваемого с очищающим газом, либо подогрев элементов конструкции осадительных электродов.
При изменении направления ветра по командам датчика направления ветра производится отключение устройств заземления секторов осадительного электрода, находящихся с наветренной стороны и включение устройств заземления секторов осадителього электрода, находящихся с подветренной стороны.
Таким образом, предложенное устройство, благодаря новым существенным отличительным признакам позволяет ориентировать систему генерации коронного разряда по ветровому потоку без применения сложных механических систем разворота всей конструкции и обеспечить выполнение задачи очистки газов более простыми и более дешевыми техническими средствами. Что позволяет достичь цели предполагаемого изобретения.

Claims (1)

  1. Фильтр очистки газового потока, содержащий датчик направления ветрового потока, осадительный электрод, выполненный в виде решетчатой конструкции, установленной над выходным сечением корпуса канала выхода в окружающее пространство очищаемого газового потока, с зазором относительно рабочей поверхности которого, размещенной вдоль очищаемого газового потока, со стороны очищаемого газового потока, электрически изолированно, смонтированы коронирующие электроды, соединенные с источником питания, отличающийся тем, что осадительный электрод выполнен в виде электрически изолированных секторов с устройствами заземления, связанными с датчиком направления ветрового потока с возможностью замыкания устройства заземления сектора осадительного электрода с подветренной стороны.
RU2012115542/05A 2012-04-19 2012-04-19 Фильтр очистки газового потока RU2503501C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012115542/05A RU2503501C1 (ru) 2012-04-19 2012-04-19 Фильтр очистки газового потока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012115542/05A RU2503501C1 (ru) 2012-04-19 2012-04-19 Фильтр очистки газового потока

Publications (2)

Publication Number Publication Date
RU2012115542A RU2012115542A (ru) 2013-10-27
RU2503501C1 true RU2503501C1 (ru) 2014-01-10

Family

ID=49446255

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012115542/05A RU2503501C1 (ru) 2012-04-19 2012-04-19 Фильтр очистки газового потока

Country Status (1)

Country Link
RU (1) RU2503501C1 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021021369A1 (en) * 2019-08-01 2021-02-04 Infinite Cooling Inc. Systems and methods for collecting fluid from a gas stream
US11123751B2 (en) 2019-08-01 2021-09-21 Infinite Cooling Inc. Panels for use in collecting fluid from a gas stream

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018807A (ko) * 2001-08-31 2003-03-06 재단법인 포항산업과학연구원 배출가스 희석구조
RU2303480C1 (ru) * 2005-12-12 2007-07-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (технический университет)" Способ очистки пылегазовых выбросов
RU2356632C1 (ru) * 2008-02-20 2009-05-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "ПРОСТОР" Фильтр очистки газового потока
RU2007146525A (ru) * 2007-12-18 2009-06-27 Общество с ограниченной ответственностью Научно-производственное предприятие "ПРОСТОР" (RU) Способ очистки газового потока
RU2422584C1 (ru) * 2010-04-16 2011-06-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "ПРОСТОР" Способ рассеивания тумана

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030018807A (ko) * 2001-08-31 2003-03-06 재단법인 포항산업과학연구원 배출가스 희석구조
RU2303480C1 (ru) * 2005-12-12 2007-07-27 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт им. Г.В. Плеханова (технический университет)" Способ очистки пылегазовых выбросов
RU2007146525A (ru) * 2007-12-18 2009-06-27 Общество с ограниченной ответственностью Научно-производственное предприятие "ПРОСТОР" (RU) Способ очистки газового потока
RU2356632C1 (ru) * 2008-02-20 2009-05-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "ПРОСТОР" Фильтр очистки газового потока
RU2422584C1 (ru) * 2010-04-16 2011-06-27 Общество с ограниченной ответственностью "Научно-производственное предприятие "ПРОСТОР" Способ рассеивания тумана

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021021369A1 (en) * 2019-08-01 2021-02-04 Infinite Cooling Inc. Systems and methods for collecting fluid from a gas stream
US11123751B2 (en) 2019-08-01 2021-09-21 Infinite Cooling Inc. Panels for use in collecting fluid from a gas stream
US11298706B2 (en) 2019-08-01 2022-04-12 Infinite Cooling Inc. Systems and methods for collecting fluid from a gas stream
US11786915B2 (en) 2019-08-01 2023-10-17 Infinite Cooling Inc. Systems and methods for collecting fluid from a gas stream

Also Published As

Publication number Publication date
RU2012115542A (ru) 2013-10-27

Similar Documents

Publication Publication Date Title
Jaworek et al. Two-stage electrostatic precipitators for the reduction of PM2. 5 particle emission
US10016722B2 (en) Thermal power plant exhaust purification device
CN106621680A (zh) 一种湿法脱硫后的烟气深度除尘方法和系统
CN105709573A (zh) 冷凝法烟气水回收消白烟系统
JP2006510477A (ja) エアロゾル分離機
US20210370318A1 (en) Systems, devices, and methods for collecting species from a gas stream
US11786915B2 (en) Systems and methods for collecting fluid from a gas stream
CN202876599U (zh) 一种沥青废气的净化装置
RU2293597C2 (ru) Фильтр очистки газового потока
RU2503501C1 (ru) Фильтр очистки газового потока
RU2356632C1 (ru) Фильтр очистки газового потока
JP2005530613A (ja) 空気濾過システム
RU2519292C2 (ru) Способ снижения водных потерь из градирни и градирня для его реализации
CN109482033A (zh) 一种烟气除湿除尘装置
RU2494326C1 (ru) Градирня
CN204429021U (zh) 一种沥青烟气处理系统
RU2483786C1 (ru) Способ очистки газов от аэрозолей
RU2583459C1 (ru) Фильтр очистки газового потока
CN105582766A (zh) 一种用于净化火力发电厂尾气的装置
RU2494791C1 (ru) Фильтр очистки газового потока
RU2478412C2 (ru) Фильтр очистки газового потока
RU2682617C1 (ru) Способ очистки газового потока
RU2537495C2 (ru) Установка для очистки воздуха
RU2029197C1 (ru) Аппарат для обработки воздуха
US20240059591A1 (en) System and methods for condensing vapor product

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150420