RU2502930C2 - Струйный теплообменник типа труба в трубе - Google Patents

Струйный теплообменник типа труба в трубе Download PDF

Info

Publication number
RU2502930C2
RU2502930C2 RU2012111636/06A RU2012111636A RU2502930C2 RU 2502930 C2 RU2502930 C2 RU 2502930C2 RU 2012111636/06 A RU2012111636/06 A RU 2012111636/06A RU 2012111636 A RU2012111636 A RU 2012111636A RU 2502930 C2 RU2502930 C2 RU 2502930C2
Authority
RU
Russia
Prior art keywords
pipe
heat
heat exchange
medium
heat exchanger
Prior art date
Application number
RU2012111636/06A
Other languages
English (en)
Other versions
RU2012111636A (ru
Inventor
Игорь Вениаминович Холодков
Евгений Николаевич Головенкин
Анатолий Михайлович Ефремов
Николай Алексеевич Тестоедов
Original Assignee
Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" filed Critical Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева"
Priority to RU2012111636/06A priority Critical patent/RU2502930C2/ru
Publication of RU2012111636A publication Critical patent/RU2012111636A/ru
Application granted granted Critical
Publication of RU2502930C2 publication Critical patent/RU2502930C2/ru

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Заявленное изобретение относится к теплообменной аппаратуре и может быть использовано в различных отраслях промышленности, сельского и коммунального хозяйств. Теплообменник типа труба в трубе для жидких и газообразных сред, содержащий концентрично расположенные в цилиндрическом корпусе теплообменную трубу и наружный турбулизатор, делящий межтрубное пространство на входную и выходную полости. На поверхности турбулизатора выполнены отверстия, служащие вводом среды в полость между теплообменной трубой и наружным турбулизатором. Внутри теплообменной трубы концентрично расположен внутренний турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и внутренним турбулизатором. Использование изобретения позволит интенсифицировать теплообмен за счет практически полного удаления пограничного слоя с наружной и внутренней поверхностей теплопроводной трубы с нагреваемой (или охлаждаемой) средой. Это влечет за собой увеличение коэффициента теплопередачи между теплоносителем и нагреваемой (или охлаждаемой) средой до 10 и более раз, соответствующее этому уменьшение необходимой теплообменной поверхности, длины струйных теплообменников, их массы и габаритных размеров. 2 ил.

Description

Заявленное изобретение относится к теплообменной аппаратуре и может быть использовано в различных отраслях промышленности, сельского и коммунального хозяйств.
Известны теплообменники типа «труба в трубе», представляющие из себя две трубы, одна из которых, меньшего диаметра, концентрично расположена внутри другой, большего диаметра, с кольцевым зазором, называемым межтрубным пространством (Бажан П.И. и др. Справочник по теплообменным аппаратам. М. Машиностроение, 1989, с.56, рис.1.15, б). По внутренней трубе прокачивается жидкость, например, более высокой температуры (горячая), а по межтрубному пространству - жидкость с меньшей температурой (холодная). При этом стенка внутренней трубы нагревается и передает тепло холодной жидкости, у которой вследствие этого температура повышается. Направление передачи тепла может быть таким, как указано выше, или в противоположном направлении в зависимости от соотношения температур во внутренней трубе и в межтрубном пространстве.
Примечание. Под термином «жидкость» здесь и далее понимается среда в жидком или газообразном состоянии.
Эффективность теплообмена зависит в основном от толщины пограничного слоя жидкости, т.е. слоя, непосредственно примыкающего к стенке, имеющего сравнительно с основным потоком небольшую толщину и остающегося практически неподвижным относительно стенки. До 95% и более термического сопротивления при передаче тепла от жидкости к стенке (или наоборот) составляет термическое сопротивление именно пограничного слоя. И если его каким-либо образом убрать или хотя бы существенно уменьшить его толщину, термическое сопротивление передаче тепла от жидкости к стенке уменьшится во много раз и станет сопоставимым с термическим сопротивлением стенки. Поскольку трубы в теплообменниках обычно изготовляют из металлов, то термическое сопротивление их стенок близко к нулю и при толщине стенки в несколько миллиметров при расчетах общего коэффициента теплопередачи его (термическое сопротивление стенки) обычно не учитывают.
Для повышения эффективности теплообмена стремятся тем или иным способом уменьшить толщину пограничного слоя.
Наиболее простой и доступный способ - повышение турбулентности жидкостей с обеих сторон стенки (т.е. со стороны теплоносителя и нагреваемой (или охлаждаемой) средой).
При увеличении турбулентности частицы жидкости из основного потока проникают внутрь той части пограничного слоя, которая примыкает к основному потоку, и некоторая доля его вовлекается в общее хаотическое движение. В результате уменьшается толщина неподвижной или малоподвижной части пограничного слоя, что приводит к уменьшению термического сопротивления пограничного слоя и к росту общего коэффициента теплопередачи, т.е. к росту эффективности теплообмена.
Увеличение турбулентности может быть достигнуто увеличением скорости жидкостей, созданием различной формы и величины выступов и впадин на стенках, разделяющих потоки жидкостей, установкой на внутренние и наружные трубы турбулизующих элементов.
Следует отметить, что повышение скорости имеет свои отрицательные стороны.
Во-первых, рост турбулентности в первом приближении пропорционален росту скорости, а гидравлическое сопротивление возрастает при этом пропорционально квадрату роста скорости. Т.е. имеется определенный предел, после достижения которого, становится невыгодным, а то и невозможным, дальнейшее увеличение скорости.
Во-вторых, уменьшается время контакта жидкостей при теплообмене, что делает необходимым в ряде случаев увеличить поверхность теплообмена.
Поэтому стремятся для повышения турбулентности потоков жидкостей не повышать скорости, а применять другие, упомянутые выше способы турбулизации.
Известны теплообменники типа «труба в трубе», в которых на внутреннюю трубу намотана проволока, имеющая различные шаги навивки и конфигурацию. Недостатком таких теплообменников является незначительное повышение турбулентности с опережающим ростом гидравлического сопротивления (патент RU №2121122).
Известны также теплообменники, на внутреннюю трубу которых установлены, например, на сварке винтообразные ребра, высота которых почти равна расстоянию от внутренней трубы до наружной. Такие ребра в большей степени повышают турбулентность в межтрубном пространстве по сравнению с намоткой проволоки. Кроме того, они увеличивают площадь теплового контакта стенки внутренней трубы с жидкостью межтрубного пространства, т.е. повышается эффективность теплообмена (патент SU №800566).
Недостатками таких теплообменников являются следующие:
- не вся жидкость в межтрубной полости вовлекается в винтовое движение - значительная часть ее протекает сквозь кольцевой зазор между винтовыми ребрами и стенкой наружной трубы;
- увеличение скорости жидкости, ее турбулентности происходит всего на несколько процентов, в крайнем случае, на несколько десятков процентов, поскольку угол подъема винтовой линии ребер невелик. А с увеличением угла подъема гидравлическое сопротивление возрастает значительно быстрее роста турбулентности и все большее количество жидкости начинает протекать сквозь кольцевой зазор;
- теплоотдача от жидкости во внутренней трубе к ее стенке остается на прежнем, сравнительно низком уровне, что и определяет эффективность теплопередачи в целом.
Известен теплообменник «труба в трубе» патент SU №1222207. В этом теплообменнике внутрь внутренней трубы установлена турбулизирующая вставка в виде закрученной по винтовой линии полосы из металлического листа с турбулизирующими лепестками вдоль ее продольных кромок. Эта вставка вызывает закручивание жидкости по винтовой линии, существенно увеличивает турбулентность жидкости в трубе и теплоотдачу от жидкости к стенке.
Однако данный аналог имеет следующие недостатки:
- не вся жидкость в трубе вовлекается в винтовое движение (ориентировочно только 20-30%), что не позволяет существенно повысить турбулентность жидкости, а следовательно, и величину теплоотдачи;
- в связи с недостаточным развитием турбулентности уменьшение толщины турбулентного слоя происходит на незначительную величину (несколько процентов). Его термическое сопротивление остается высоким, и теплоотдача повышается незначительно.
Известен теплообменник типа «труба в трубе» патент SU №510634.
Теплообменник содержит цилиндрический корпус, размещенную по его оси теплообменную трубу с волнистым турбулизатором, имеющим радиальные отверстия. Выступы турбулизатора направлены вдоль продольной оси трубы. На концах турбулизатора установлены торцовые заглушки.
При подаче жидкости в межтрубное пространство, она проходит через отверстия в турбулизаторе и поступает в виде отдельных струек на наружную поверхность стенки теплообменной трубы, тем самым интенсивно смывая пограничный слой на участке воздействия струй. За счет этого в несколько раз повышается теплоотдача от жидкости к стенке теплообменной трубы.
Этот теплообменник принят за прототип.
Однако он имеет следующие недостатки:
- турбулизатор сложен в изготовлении, особенно для малого диаметра (10-30) мм;
- теплоотдача от жидкости, протекающей внутри теплообменной трубы, остается на прежнем невысоком уровне, а это не позволяет существенно повысить эффективность теплопередачи в целом, (не более чем в два раза, поскольку в обычном теплообменнике типа «труба в трубе» эффективность теплоотдачи от жидкости, заполняющей межтрубное пространство, к стенке теплообменной трубы и от жидкости внутри теплообменной трубы к ее стенке примерно одинаковы).
Целью настоящего изобретения является более существенное увеличение коэффициента теплопередачи - в несколько раз. Это в свою очередь позволит во столько же раз сократить длину теплообменника и, следовательно, также, в разы уменьшить его габариты и массу, хотя и в меньшей степени, чем уменьшение длины.
Поставленная цель достигается за счет того, что теплообменник типа труба в трубе, для жидких и газообразных сред, содержащий концентрично расположенные в цилиндрическом корпусе теплообменную трубу и наружный турбулизатор, делящий межтрубное пространство на входную и выходную полости. На поверхности турбулизатора выполнены отверстия, служащие вводом среды в полость между теплообменной трубой и наружным турбулизатором. Внутри теплообменной трубы концентрично расположен внутренний турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и внутренним турбулизатором.
Устройство предлагаемого теплообменника схематически показано на фиг.1 и фиг.2.
На фиг.1 показан продольный разрез теплообменника, на фиг.2 - сечение А-А фиг.1.
Теплообменник типа труба в трубе, для жидких и газообразных сред, содержит: цилиндрический корпус 4, концентрично расположенные в нем теплообменную трубу 8 и наружный турбулизатор 6, делящий межтрубное пространство на входную 7 и выходную 3 полости. На поверхности наружного турбулизатора 6 выполнены отверстия 5, служащие вводом среды в полость 3 между теплообменной трубой 8 и наружным турбулизатором 6. Внутри теплообменной трубы 8 концентрично расположен внутренний турбулизатор 2, делящий межтрубное пространство на входную 1 и выходную 9 полости и имеющий на поверхности отверстия 12, служащие вводом среды в полость между теплообменной трубой 8 и внутренним турбулизатором 2. Величины кольцевых зазоров межтрубного пространства, а также диаметры отверстий 12, 5, расположенных на внутреннем и наружном турбулизаторах 2 и 6 определяются тепловым и гидравлическим расчетами. Ориентировочно суммарная площадь отверстий 12 должна быть на 10-20% меньше площади поперечного сечения кольцевого зазора межтрубного пространства между теплообменной трубой 8 и внутренним турбулизатором 2. При этом суммарная площадь отверстий 5 должна быть на 10-20% меньше площади поперечного сечения кольцевого зазора межтрубного пространства между теплообменной трубой 8 и наружным турбулизатором 6. Для достижения максимального коэффициента теплопередачи перфорированные участки внутреннего и наружного турбулизаторов 2 и 6 должны быть расположены по длине напротив друг - друга, на участке интенсивного (рабочего) теплообмена. Позиции 10, 11, 13, 14, 15, 16 - уплотнения.
Работает теплообменник следующим образом. Во внутренний турбулизатор 2, через входную полость 1, поступает среда, например горячая жидкость, заполняя пространство внутреннего турбулизатора 2, проходит до отверстий 12 и выходит через них в выходную полость 9 теплообменной трубы 8. Скорость жидкости в отверстиях зависит от давления во внутреннем турбулизаторе 2. Например, при давлении 0,5 МПа скорость будет около 30 м/с. При изменении давления скорость будет изменяться пропорционально корню квадратному из величины изменения давления.
Струи жидкости при скорости, приведенной для примера выше, достигая стенки теплообменной трубы 8, интенсивно смывают пограничный слой в зоне действия струй (это пятно в виде круга диаметром равным примерно 4-6 диаметрам струи). Горячая жидкость при этом вступает в контакт непосредственно со стенкой теплообменной трубы 8, а местный коэффициент теплоотдачи возрастает в десятки раз. При достаточно частом расположении отверстий на внутреннем турбулизаторе 2, пограничный слой на внутренней поверхности стенки теплообменной трубы 8 в зоне действия струй из отверстий оказывается практически полностью удаленным. И на этом участке в целом коэффициент теплоотдачи также возрастет в десятки раз. Из этого следует соответствующее сокращение поверхности теплообмена (т.е. длины труб).
Аналогичная картина наблюдается при поступлении холодной жидкости в качестве теплоносителя через входную полость 7 в цилиндрический корпус 4. Только холодный теплоноситель поступает сначала в кольцевой зазор межтрубного пространства между наружным турбулизатором 6 и цилиндрическим корпусом 4, а потом, проходя через отверстия 5 в наружном турбулизаторе 6, омывает наружную поверхность теплообменной трубы 8.
В результате коэффициент теплопередачи от теплоносителя к нагреваемой (или охлаждаемой) среде в целом также возрастает в десятки раз, приближаясь по своей величине к коэффициенту теплопередачи теплопроводностью через стенку теплообменной трубы 8.
Использование изобретения позволит интенсифицировать теплообмен за счет практически полного удаления пограничного слоя с наружной и внутренней поверхностей теплопроводной трубы с нагреваемой (или охлаждаемой) средой. Это влечет за собой увеличение коэффициента теплопередачи между теплоносителем и нагреваемой (или охлаждаемой) средой до 10 и более раз, соответствующее этому уменьшение необходимой теплообменной поверхности, длины струйных теплообменников, их массы и габаритных размеров.

Claims (1)

  1. Теплообменник типа труба в трубе для жидких и газообразных сред, содержащий концентрично расположенные в цилиндрическом корпусе теплообменную трубу и наружный турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и наружным турбулизатором, отличающийся тем, что в теплообменной трубе концентрично расположен внутренний турбулизатор, делящий межтрубное пространство на входную и выходную полости и имеющий на поверхности отверстия, служащие вводом среды в полость между теплообменной трубой и внутренним турбулизатором.
RU2012111636/06A 2012-03-26 2012-03-26 Струйный теплообменник типа труба в трубе RU2502930C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012111636/06A RU2502930C2 (ru) 2012-03-26 2012-03-26 Струйный теплообменник типа труба в трубе

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012111636/06A RU2502930C2 (ru) 2012-03-26 2012-03-26 Струйный теплообменник типа труба в трубе

Publications (2)

Publication Number Publication Date
RU2012111636A RU2012111636A (ru) 2013-10-10
RU2502930C2 true RU2502930C2 (ru) 2013-12-27

Family

ID=49302442

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012111636/06A RU2502930C2 (ru) 2012-03-26 2012-03-26 Струйный теплообменник типа труба в трубе

Country Status (1)

Country Link
RU (1) RU2502930C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663370C1 (ru) * 2017-07-25 2018-08-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Теплообменник
RU2714133C1 (ru) * 2019-08-02 2020-02-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет", (ДГТУ) Цилиндрический рекуперативный теплообменный аппарат коаксиального типа

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU510634A1 (ru) * 1974-05-12 1976-04-15 Невский Машиностроительный Завод Им. В.И.Ленина Теплообменник
RU2037119C1 (ru) * 1993-02-24 1995-06-09 Научно-производственное предприятие "ТАРК" Теплообменный элемент
RU2088873C1 (ru) * 1995-02-15 1997-08-27 Геннадий Иванович Глухов Теплообменник типа труба в трубе
EP1790933A1 (de) * 2005-11-25 2007-05-30 Behr GmbH & Co. KG Koaxial oder Rohr-in-Rohr-Anordnung, insbesondere für einen Wàrmetauscher
CN201306953Y (zh) * 2008-10-15 2009-09-09 淮安恒信水务科技有限公司 一种热交换器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU510634A1 (ru) * 1974-05-12 1976-04-15 Невский Машиностроительный Завод Им. В.И.Ленина Теплообменник
RU2037119C1 (ru) * 1993-02-24 1995-06-09 Научно-производственное предприятие "ТАРК" Теплообменный элемент
RU2088873C1 (ru) * 1995-02-15 1997-08-27 Геннадий Иванович Глухов Теплообменник типа труба в трубе
EP1790933A1 (de) * 2005-11-25 2007-05-30 Behr GmbH & Co. KG Koaxial oder Rohr-in-Rohr-Anordnung, insbesondere für einen Wàrmetauscher
CN201306953Y (zh) * 2008-10-15 2009-09-09 淮安恒信水务科技有限公司 一种热交换器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2663370C1 (ru) * 2017-07-25 2018-08-03 Федеральное государственное бюджетное образовательное учреждение высшего образования "Калининградский государственный технический университет" Теплообменник
RU2714133C1 (ru) * 2019-08-02 2020-02-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Донской государственный технический университет", (ДГТУ) Цилиндрический рекуперативный теплообменный аппарат коаксиального типа

Also Published As

Publication number Publication date
RU2012111636A (ru) 2013-10-10

Similar Documents

Publication Publication Date Title
JP6367869B2 (ja) 螺旋状通路を備えた向流式熱交換器
CN103542759B (zh) 具有强化传热元件的换热管
CN102564189A (zh) 一种传热管
Ali et al. Effect of design parameters on passive control of heat transfer enhancement phenomenon in heat exchangers–A brief review
CN109724444B (zh) 传热管和裂解炉
RU2502930C2 (ru) Струйный теплообменник типа труба в трубе
Tam et al. Experimental investigaton of the single-phase friction factor and heat transfer inside the horizontal internally micro-fin tubes in the transition region
JP2005083667A (ja) 熱交換器
US20110240266A1 (en) Helicoid turbulator for heat exchangers
CN112740517A (zh) 用于电动机的散热器、电动机及冷却电动机的方法
RU2502931C2 (ru) Теплообменник труба в трубе
RU2631963C1 (ru) Самоочищающийся кожухотрубный теплообменник
RU201909U1 (ru) Змеевиковый теплообменник типа "труба в трубе"
CN203629401U (zh) 一种内螺旋式异形外翅片换热管
CN203240927U (zh) 圆锥形换热器
CN206037815U (zh) 一种换热器用螺旋折流板
RU64750U1 (ru) Теплообменный элемент
RU102776U1 (ru) Профилированная трубка кожухотрубного теплообменника
RU2150644C1 (ru) Теплообменник
Wang et al. Research on the thermal performance of a heat exchanger with meso-scale twisted helical tube bundles
CN103673716A (zh) 内螺旋式异形外翅片换热管
RU159647U1 (ru) Теплообменный элемент
CN210374727U (zh) 内螺旋高通量管重沸器
RU2037119C1 (ru) Теплообменный элемент
CN107816803B (zh) 一种改良铸铝换热器

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20190327