RU2501001C1 - Устройство для определения фазового состояния газожидкостного потока - Google Patents

Устройство для определения фазового состояния газожидкостного потока Download PDF

Info

Publication number
RU2501001C1
RU2501001C1 RU2012130460/28A RU2012130460A RU2501001C1 RU 2501001 C1 RU2501001 C1 RU 2501001C1 RU 2012130460/28 A RU2012130460/28 A RU 2012130460/28A RU 2012130460 A RU2012130460 A RU 2012130460A RU 2501001 C1 RU2501001 C1 RU 2501001C1
Authority
RU
Russia
Prior art keywords
substrate
thermistor
gas
short side
liquid flow
Prior art date
Application number
RU2012130460/28A
Other languages
English (en)
Inventor
Игорь Иванович Гончар
Павел Юрьевич Тихомиров
Александр Николаевич Дубовой
Валерий Петрович Фирсов
Михаил Владимирович Хмельщиков
Валерий Антонович Шубарев
Original Assignee
Открытое акционерное общество "Авангард"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Авангард" filed Critical Открытое акционерное общество "Авангард"
Priority to RU2012130460/28A priority Critical patent/RU2501001C1/ru
Application granted granted Critical
Publication of RU2501001C1 publication Critical patent/RU2501001C1/ru

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

Использование: для определения фазового состояния газожидкостного потока в контрольной точке вертикального сечения трубопровода. Сущность: заключается в содержании устройством для определения фазового состояния газожидкостного потока измерительного устройства и терморезистивного датчика фазового состояния, включающего расположенную вдоль оси движения потока и жестко закрепленную одной короткой стороной печатную плату с установленным на ней чувствительным элементом, выполненным в виде подложки, на которой размещен пленочный резистор (терморезистор) в «точечном» исполнении. Чувствительный элемент установлен в контрольной точке по вертикальной оси поперечного сечения трубопровода и соединен с измерительным устройством, которое содержит измерительную схему и микроконтроллер с программным управлением и предназначено для измерения изменения сопротивления терморезистора, связанного с изменением фазового состояния среды в горизонтальных слоях газожидкостного потока, и обработки сигнала. При этом чувствительный элемент датчика одной короткой стороной подложки закреплен на краю короткой незакрепленной стороны печатной платы. Пленочный резистор (терморезистор), размещенный на подложке, смещен к краю свободной короткой стороны подложки и расположен на расстоянии не более 0,5 мм от этого края. Контактные площадки, предназначенные для присоединения подложки к печатной плате, выполнены напротив терморезистора у противоположной короткой стороны подложки. Технический результат: повышение быстродействия устройства для определения фазового состояния газожидкостного потока. 5 ил.

Description

Изобретение относится к измерительной технике и может быть использовано для определения фазового состояния газожидкостного потока в контрольной точке вертикального сечения трубопровода.
Известны различные устройства для определения фазового состояния газожидкостного потока (определения режима течения потока, его сплошности, зависящей от объемного содержания газа в жидкости) (авторское свидетельство SU 440585 А1, 25.08.1974; патенты: RU 2001391 C1, 15.10.1993; RU 2037811 C1, 19.06.1995; RU 2108567 C1, 10.04.1998; RU 2395801 C2, 27.07.2010; RU 2014568 C1, 15.06.1994; US 6314373 BA, 06.11.2001; US 6655221 BA, 02.12.2003; JP 3455634 B2 9138211 А, 27/05/1997; ЕР 0510774 А2, 28.10.1992; WO 2010071447 А1, 24.06.2010).
Известно устройство для определения режима течения газожидкостного потока (патент RU 2390766 C1, G01N 27/22), с помощью которого производят измерение характеристик газожидкостного потока в вертикальном сечении трубопровода. Устройство включает в себя вторичный прибор и измерительную головку, внутри которой размещены пластинчатые электроды, подключенные к измерительной плате, измеряющей значения диэлектрической проницаемости потока. В случае наличия пузырьков воздуха диэлектрическая проницаемость смеси жидкость-газ уменьшается пропорционально объемному содержанию воздуха в жидкости. Проходя через соответствующий слой электродов, эта смесь вызывает изменение емкости между пластинами электродов, величина которой измеряется и в цифровом виде передается на вторичный прибор.
Предложенная в патенте RU 2390766 С1 измерительная аппаратура имеет значительную массу и габариты, так как данное устройство представляет собой довольно сложную конструкцию с большим количеством объемных элементов. Само устройство влияет на параметры среды, ее сплошность и режим течения, что отражается на результатах измерений и снижает скорость определения структуры газожидкостного потока.
Из известных устройств наиболее близким к заявленному техническому решению является устройство, защищенное патентом на изобретение «Способ определения фазового состояния газожидкостного потока и устройство для его реализации» (RU 2445611 С1, опубл. 20.03.2012, МПК G01N 27/00).
В одном из вариантов исполнения устройство для определения фазового состояния газожидкостного потока содержит измерительное устройство и датчик с чувствительным элементом, расположенным по поперечному сечению трубопровода и соединенным с измерительным устройством. Датчик является терморезистивным датчиком фазового состояния и содержит расположенную вдоль оси движения потока жестко закрепленную печатную плату с отверстием, над которым установлен чувствительный элемент, выполненный в виде подложки, на которой размещен пленочный резистор (терморезистор) в «точечном» исполнении, при этом чувствительный элемент установлен в контрольной точке по вертикальной оси поперечного сечения трубопровода. Измерительное устройство содержит измерительную схему и микроконтроллер с программным управлением и предназначено для измерения изменения сопротивления терморезистора, связанного с изменением фазового состояния среды газожидкостного потока, и обработки сигнала.
В известном устройстве печатная плата с отверстием, над которым расположена подложка с терморезистором, снижает скорость газожидкостного потока и способствует образованию вихревых потоков вокруг чувствительного элемента, что влияет на скорость изменения сопротивления терморезистора датчика фазового состояния и понижает быстродействие устройства.
Указанное устройство по патенту RU 2445611 С1 принимается за прототип.
Целью изобретения является повышение быстродействия устройства для определения фазового состояния газожидкостного потока.
Поставленная цель достигается тем, что в устройстве для определения фазового состояния газожидкостного потока, содержащем измерительное устройство и терморезистивный датчик фазового состояния, включающий расположенную вдоль оси движения потока и жестко закрепленную одной короткой стороной печатную плату с установленным на ней чувствительным элементом, выполненным в виде подложки, на которой размещен пленочный резистор (терморезистор) в «точечном» исполнении, при этом чувствительный элемент установлен в контрольной точке по вертикальной оси поперечного сечения трубопровода и соединен с измерительным устройством, которое содержит измерительную схему и микроконтроллер с программным управлением и предназначено для измерения изменения сопротивления терморезистора, связанного с изменением фазового состояния среды в горизонтальных слоях газожидкостного потока, и обработки сигнала, чувствительный элемент одной короткой стороной подложки закреплен на краю короткой незакрепленной стороны печатной платы, пленочный резистор (терморезистор), размещенный на подложке, смещен к краю свободной короткой стороны подложки и расположен на расстоянии не более 0,5 мм от этого края, при этом контактные площадки, предназначенные для присоединения подложки к печатной плате, выполнены напротив терморезистора у противоположной короткой стороны подложки.
В предлагаемой конструкции печатная плата не снижает скорость газожидкостного потока, так как она расположена выше или ниже чувствительного элемента, который одной короткой стороной подложки закреплен на краю короткой незакрепленной стороны печатной платы и установлен в потоке, например, на центральной оси трубопровода. Подложка с пленочным резистором (терморезистором) мгновенно обволакивается жидкостью или высушивается потоком газа, что повышает быстродействие устройства и позволяет определить наличие газовых пузырьков в жидкостном потоке.
От устройства измерения на терморезистор чувствительного элемента датчика фазового состояния подается ток нагрева. В результате нагрева температура терморезистора выше температуры окружающей среды. Повышение температуры терморезистора обеспечивает повышение чувствительности и быстродействия устройства. При смещении пленочного резистора (терморезистора), размещенного на подложке, к краю свободной короткой стороны подложки и расположении его на расстоянии не более 0,5 мм от этого края, уменьшается тепловое рассеивания по поверхности подложки, что приводит к повышению быстродействия устройства при ограничении тока нагрева.
Смещение терморезистора к краю свободной короткой стороны подложки реализуется за счет того, что контактные площадки, предназначенные для присоединения подложки к печатной плате, выполнены напротив терморезистора у противоположной короткой стороны подложки.
Изобретение поясняется чертежами, схемами и графиками:
Фиг.1 - структурная схема устройства для определения фазового состояния газожидкостного потока;
Фиг.2 - датчик фазового состояния;
Фиг.3 - топологический чертеж подложки с терморезистором;
Фиг.4 - чувствительный элемент, установленный на печатную плату;
Фиг.5 - осциллограмма изменения сигнала с датчика при изменении фазового состояния газожидкостного потока.
Устройство для определения фазового состояния газожидкостного потока (фиг.1) содержит датчик фазового состояния 1 и измерительное устройство 2. В состав измерительного устройства входят:
- схема измерения (СИ) 3, состоящая из элементов балансного моста, в одно из плеч которого подключается чувствительный элемент (терморезистор) 11 (нумерация ЧЭ на фиг.2) датчика фазового состояния 1;
- управляемый источник постоянного напряжения (УИПН) 4 для подачи питания на терморезистор чувствительного элементов 11 датчика фазового состояния 1;
- операционный усилитель (ОУ) 5, предназначенный для усиления сигнала, поступающего с измерительной схемы 3;
- микроконтроллер с программным управлением 6, обеспечивающий подключение выхода измерительной схемы к аналого-цифровому преобразователю (АЦП), цифровую фильтрацию измеряемых сигналов, формирование кодовой последовательности цифровых сигналов, определяющих состояние чувствительного элемента 11, то есть фазовое состояние среды, в которой он находится, управление источником постоянного напряжения 4, подаваемого на чувствительный элемент;
- формирователь сигналов интерфейса 7, обеспечивающий прием сигналов с микроконтроллера 6 и передачу сигналов о состоянии чувствительного элемента 11 по интерфейсу, например RS485, на информационный вход системы индикации и управления 8;
- источник стабилизированного напряжения 9, предназначенный для формирования питающих напряжений для элементов схемы.
Размещенный в трубопроводе датчик фазового состояния 1 (фиг.2) содержит печатную плату 10, расположенную вдоль оси движения газожидкостного потока и жестко закрепленную одной короткой стороной. На печатной плате 10 размещен чувствительный элемент 11, выполненный в виде тонкой теплоизоляционной подложки 12 (фиг.3) шириной не более 2 мм и толщиной не более 100 мкм, на которой размещен пленочный резистор (терморезистор) 13, выполненный в «точечном» исполнении с размерами по площади не более 0,04 мм2. Чувствительный элемент 11 установлен в контрольной точке по вертикальной оси поперечного сечения трубопровода (например, на центральной оси трубопровода) (фиг.2) и одной короткой стороной подложки 12 закреплен на краю короткой незакрепленной стороны печатной платы 10 (фиг.4). Пленочный резистор (терморезистор) 13, размещенный на подложке 12, смещен к краю свободной короткой стороны подложки 12 и расположен на расстоянии не более 0,5 мм от этого края (фиг.3). При этом контактные площадки 14 подложки 12 выполнены напротив пленочного резистора (терморезистора) 13 у противоположной короткой стороны подложки 12. Топологические элементы 15, расположенные на подложке 12, обеспечивают точность изготовления пленочного резистора 13 и контактных площадок 14 подложки 12.
Контактные площадки печатной платы 10 (фиг.4) соединены при помощи пайки с контактными площадками 14 подложки 12 и обеспечивают подключение ЧЭ 11, с помощью соединительных проводов 16, к измерительному устройству 2 (фиг.1, фиг.2, фиг.3, фиг.4). Печатная плата 10 с ЧЭ 11 с помощью винтового соединения 17, через отверстие для крепления 18, жестко крепится одной короткой стороной. Провода 16 соединяют контактные площадки печатной платы 10 с выводами разъема 20, который прикрепляется к корпусу 19, привинченному к тройнику 21. Изоляционная прокладка 22 обеспечивает герметичность между тройником 21 и корпусом 19 датчика 1. Герметичность соединения между корпусом 19 и разъемом 20 обеспечивается с помощью уплотнительной прокладки 23. Чувствительный элемент 11 датчика фазового состояния 1 по измерительной схеме 3 подключен к измерительному устройству 2.
Работа устройства для определения фазового состояния газожидкостного потока осуществляется следующим образом.
Для проведения анализа потока жидкости, в трубопроводе размещают датчик фазового состояния с терморезистивным чувствительным элементом 11, выполненным в «точечном» исполнении. Чувствительный элемент 11 расположен в потоке таким образом, что измерения проводят в контрольной точке по вертикальной оси поперечного сечения трубопровода, при этом, в зависимости от расположения датчика 1, печатная плата 10 находится в газожидкостном потоке выше или ниже чувствительного элемента 11 с терморезистором 13. С управляемого источника постоянного напряжения 4 на терморезистор 13 чувствительного элемента 11 подают питающее напряжение. Под действием электрического тока происходит самонагрев, сопротивление терморезистора 13 увеличивается, устанавливается тепловой баланс, при котором температура и сопротивление терморезистора 13 постоянны. В случае появления пузырьков газа или несплошностей в потоке жидкости, объемное содержание газа в горизонтальных слоях потока увеличивается, происходит изменение фазового состояния среды. Тепловой баланс нарушается, температура терморезистора 13, установленного в одном из горизонтальных слоев потока (например, на центральной оси трубопровода), увеличивается за счет изменения теплопроводности среды, что приводит к повышению его сопротивления и изменению напряжения в диагонали балансного моста схемы измерения 3, то есть изменению напряжения, поступающего на измерительное устройство 2, обеспечивающее измерение напряжения и его передачу в систему управления. При уменьшении объемного содержания газа в газожидкостном потоке температура терморезистора 13 чувствительного элемента 11 из-за теплоотдачи снижается, сопротивление уменьшается и, соответственно, изменяется сигнал в диагонали балансного моста схемы измерения 3. Сигнал с измерительной схемы 3 через операционный усилитель 5 поступает на микроконтроллер с программным управлением 6, обеспечивающий подключение выхода измерительной схемы к АЦП. Производится цифровая фильтрация измеряемых сигналов и формирование кодовой последовательности цифровых сигналов, определяющих состояние чувствительного элемента 11. Формируется кодограмма, отражающая картину текущего наличия газа в жидкостном потоке в контрольной точке по вертикальному сечению трубопровода. С помощью формирователя сигналов интерфейса 7 информационный сигнал о состоянии чувствительного элемента 11, то есть о фазовом состоянии среды, в которой находится ЧЭ, подается на информационный вход системы индикации и управления 8 (например, по интерфейсу RS48 5). Формирование питающих напряжений для элементов схемы осуществляется с помощью источника стабилизированного напряжения 9.
На фиг.5 представлена осциллограмма изменения сигнала с чувствительного элемента датчика при изменении фазового состояния среды в трубопроводе с течением времени. Результаты получены при проведении анализа газожидкостного потока с использованием предложенного устройства с терморезистивным датчиком, содержащим чувствительный элемент, расположенный по вертикальной оси поперечного сечения трубопровода и установленный в контрольной точке (на центральной оси трубопровода). Время испытаний составило 330 секунд. На графике показано изменение напряжения в плече балансного моста измерительной схемы, соответствующее изменению объемного содержания газа в потоке в зависимости от времени анализа. Осциллограмма отображает фазовые переходы среды, а именно: газовая фаза, переход из газовой фазы в жидкость (уменьшение напряжения соответствует подаче жидкостного потока), жидкость, газовые пузырьки, наличию которых соответствуют всплески напряжения, переход из жидкой фазы в газовую фазу (увеличение напряжения соответствует окончанию подачи жидкости) и газовая фаза. Фиксация острых пиков, длительность которых менее 1 секунды (время задержки), подтверждает быстродействие функционирования терморезистивного датчика.
Таким образом, предложенное техническое решение, по сравнению с прототипом и другими известными техническими решениями аналогичного назначения, обеспечивает достижение поставленной цели, а именно повышение быстродействия устройства для определения фазового состояния газожидкостного потока.

Claims (1)

  1. Устройство для определения фазового состояния газожидкостного потока, содержащее измерительное устройство и терморезистивный датчик фазового состояния, включающий расположенную вдоль оси движения потока и жестко закрепленную одной короткой стороной печатную плату с установленным на ней чувствительным элементом, выполненным в виде подложки, на которой размещен пленочный резистор (терморезистор) в «точечном» исполнении, при этом чувствительный элемент установлен в контрольной точке по вертикальной оси поперечного сечения трубопровода и соединен с измерительным устройством, которое содержит измерительную схему и микроконтроллер с программным управлением и предназначено для измерения изменения сопротивления терморезистора, связанного с изменением фазового состояния среды в горизонтальных слоях газожидкостного потока, и обработки сигнала, отличающееся тем, что чувствительный элемент одной короткой стороной подложки закреплен на краю короткой незакрепленной стороны печатной платы, пленочный резистор (терморезистор), размещенный на подложке, смещен к краю свободной короткой стороны подложки и расположен на расстоянии не более 0,5 мм от этого края, при этом контактные площадки, предназначенные для присоединения подложки к печатной плате, выполнены напротив терморезистора у противоположной короткой стороны подложки.
RU2012130460/28A 2012-07-17 2012-07-17 Устройство для определения фазового состояния газожидкостного потока RU2501001C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012130460/28A RU2501001C1 (ru) 2012-07-17 2012-07-17 Устройство для определения фазового состояния газожидкостного потока

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012130460/28A RU2501001C1 (ru) 2012-07-17 2012-07-17 Устройство для определения фазового состояния газожидкостного потока

Publications (1)

Publication Number Publication Date
RU2501001C1 true RU2501001C1 (ru) 2013-12-10

Family

ID=49711130

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012130460/28A RU2501001C1 (ru) 2012-07-17 2012-07-17 Устройство для определения фазового состояния газожидкостного потока

Country Status (1)

Country Link
RU (1) RU2501001C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1037762A1 (ru) * 1982-12-15 1986-04-15 Предприятие П/Я В-2679 Датчик определени концентрации газа в газожидкостном потоке
US6314373B1 (en) * 1996-11-27 2001-11-06 Forschungszentrum Rossendorf E.V. Grid sensor for determining the conductivity distribution in flow media and process for generating measurement signals
US6655221B1 (en) * 1999-01-11 2003-12-02 Flowsys As Measuring multiphase flow in a pipe
RU2390766C1 (ru) * 2008-10-07 2010-05-27 Михаил Семенович Немиров Способ и устройство для определения режима течения газожидкостного потока
RU2445611C1 (ru) * 2010-12-15 2012-03-20 Открытое акционерное общество "Авангард" Способ определения фазового состояния газожидкостного потока и устройство для его реализации

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1037762A1 (ru) * 1982-12-15 1986-04-15 Предприятие П/Я В-2679 Датчик определени концентрации газа в газожидкостном потоке
US6314373B1 (en) * 1996-11-27 2001-11-06 Forschungszentrum Rossendorf E.V. Grid sensor for determining the conductivity distribution in flow media and process for generating measurement signals
US6655221B1 (en) * 1999-01-11 2003-12-02 Flowsys As Measuring multiphase flow in a pipe
RU2390766C1 (ru) * 2008-10-07 2010-05-27 Михаил Семенович Немиров Способ и устройство для определения режима течения газожидкостного потока
RU2445611C1 (ru) * 2010-12-15 2012-03-20 Открытое акционерное общество "Авангард" Способ определения фазового состояния газожидкостного потока и устройство для его реализации

Similar Documents

Publication Publication Date Title
JP4962489B2 (ja) 熱式質量流量計
JP5947282B2 (ja) 流量計プローブ
CN105247355B (zh) 用于测量气体混合物的气体组份的导热能力的装置
US9500615B2 (en) Fast response humidity sensor
DE50015673D1 (de) Mikrosensor zur positionsmessung von fluessigkeiten in kapillaren
US10955274B2 (en) Temperature sensing system and flow metering apparatus comprised thereof
RU2466365C1 (ru) Накладной беспроводной измеритель температуры поверхности объекта
RU2413184C1 (ru) Способ контроля дискретных уровней жидкости, учитывающий изменения температуры жидкости, и система (устройство), обеспечивающая его реализацию
RU2501001C1 (ru) Устройство для определения фазового состояния газожидкостного потока
RU2445611C1 (ru) Способ определения фазового состояния газожидкостного потока и устройство для его реализации
CN109401956B (zh) 针对pcr仪的温度检测仪
JP4844252B2 (ja) 熱式質量流量計
JP7122110B2 (ja) 導電率計又は比抵抗計用の電極、当該電極を用いた導電率計及び比抵抗計
JP2013113778A (ja) 露点センサ及び露点の測定方法
RU2434205C1 (ru) Способ контроля дискретных уровней жидкости и система (устройство), обеспечивающая его реализацию
JP4797866B2 (ja) 熱式質量流量計
CN106979963A (zh) 一种测量水质ph值的装置
RU2633405C1 (ru) Устройство для измерений теплопроводности
RU2506543C1 (ru) Датчик контроля дискретных уровней жидкости с функцией измерения температуры и контроля массового расхода жидкой среды
Melani et al. Hot wire anemometric MEMS sensor for water flow monitoring
RU2761932C1 (ru) Способ измерения расхода текучей среды и устройство для его осуществления
RU186037U1 (ru) Термопреобразователь сопротивления
CN219830922U (zh) 一种基于湿敏薄膜导电效应的露点湿度传感系统
RU2564862C2 (ru) Способ контроля дискретных уровней жидкости и система (устройство), обеспечивающая его реализацию
RU2342640C1 (ru) Датчик контроля уровня жидкости