RU2499832C2 - Способ ингибирования активности фермента рнк-полимеразы - Google Patents

Способ ингибирования активности фермента рнк-полимеразы Download PDF

Info

Publication number
RU2499832C2
RU2499832C2 RU2012106191/10A RU2012106191A RU2499832C2 RU 2499832 C2 RU2499832 C2 RU 2499832C2 RU 2012106191/10 A RU2012106191/10 A RU 2012106191/10A RU 2012106191 A RU2012106191 A RU 2012106191A RU 2499832 C2 RU2499832 C2 RU 2499832C2
Authority
RU
Russia
Prior art keywords
inhibitor
bis
hexaoxa
polymerase
eicosa
Prior art date
Application number
RU2012106191/10A
Other languages
English (en)
Other versions
RU2012106191A (ru
Inventor
Ян Зигфридович Волошин
Валентин Владимирович Новиков
Олег Анатольевич Варзацкий
Валентина Владимировна Негруцкая
Лариса Игнатьевна Пальчиковская
Игорь Ярославович Дубей
Юрий Николаевич Бубнов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт элементоорганических соединений им. А.Н. Несмеянова Российской академии наук (ИНЭОС РАН)
Priority to RU2012106191/10A priority Critical patent/RU2499832C2/ru
Priority to PCT/RU2012/001022 priority patent/WO2013125980A1/ru
Publication of RU2012106191A publication Critical patent/RU2012106191A/ru
Application granted granted Critical
Publication of RU2499832C2 publication Critical patent/RU2499832C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1241Nucleotidyltransferases (2.7.7)
    • C12N9/1247DNA-directed RNA polymerase (2.7.7.6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Изобретение относится к области биохимии. Предложен способ ингибирования активности фермента РНК-полимеразы. Ингибирование осуществляют путем введения в транскрипционную систему ингибитора на основе по крайней мере одного соединения, содержащего органический макроциклический комплекс с инкапсулированным ионом переходного металла, выбранный из группы, включающей 1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-диамино-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) железо(2+); 1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-диметил-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) кобальт(2+); 1,8-бис(2-фенилбора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12,17,18-гекса(метилтио)-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) рутений(2+); 1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-циклогександимеркаптилбицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) железо(2+); 1,12-бис-(трет-бутилбора)-2,11,13,22,23,32-гексаокса-3,10,14,21,24,31-гексазапентацикло[11,11.11.04.9015,20025.30]дитри-аконта-3,9,14,20,24,30-гексаен(2-) железо(2+). Способ обеспечивает ингибирование активности РНК-полимеразы при микромолярной концентрации ингибитора, а также расширяет арсенал ингибиторов РНК-полимеразы. 22 пр.

Description

Изобретение относится к области биохимии и касается способа ингибирования активности фермента РНК-полимеразы, ответственного за проведение транскрипции дезоксирибонуклеиновой кислоты (ДНК), то есть за формирование в клетке живого организма макромолекул матричной рибонуклеиновой кислоты (РНК), комплементарной исходной ДНК. Данное изобретение может быть использовано, например, в молекулярной биологии, биохимии, фармакологии и т.д.
Известен способ ингибирования активности фермента РНК-полимеразы путем введения в транскрипционную систему ингибитора на основе функционализированного ароматического мета-диамина (Патент США № 6,194,399 B1, 2001, класс 514/155).
Известен способ ингибирования активности фермента РНК-полимеразы путем введения в транскрипционную систему ингибитора на основе производных (азидонафталин-1-сульфамидо)-гексопиранозил-6-трифосфата при облучении красным светом (Патент России №20036903, 1991, класс С07С 311/49).
Наиболее близким к заявляемому является известный способ ингибирования активности фермента РНК-полимеразы путем введения в транскрипционную систему ингибитора на основе соединения, содержащего органический макроциклический фрагмент (Патент США № 2009/0137467 А1, класс 514/12, 2009), - прототип. В данном способе в качестве ингибитора используют производное рифамицина.
Недостатком известного способа является его относительная сложность, обусловленная сравнительно низкой химической устойчивостью известного ингибитора в транскрипционной системе, что неизбежно вызывает определенные трудности при работе с этим ингибитором.
Технической задачей изобретения является расширение арсенала технических средств, которые могут быть использованы для ингибирования активности фермента РНК-полимеразы.
Указанный технический результат достигается тем, что в способе ингибирования активности фермента РНК-полимеразы путем введения в транскрипционную систему ингибитора на основе соединения, содержащего органический макроциклический фрагмент, в качестве ингибитора используют по крайней мере один макрополициклический комплекс с инкапсулированным ионом переходного металла.
Предлагаемый способ может быть использован для ингибирования любой РНК-полимеразы, присутствующей в клетках любых организмов, включая бактериофаги, бактерии, высшие организмы и т.д.
При реализации предлагаемого способа могут быть использованы различные транскрипционные системы, основными компонентами которых являются РНК-полимераза, матричная ДНК и рибонуклеозидтрифосфаты. Кроме того, транскрипционная система может включать спермидин, соль магния, соль натрия, буферную смесь и т.д.
В предлагаемом изобретении в качестве ингибитора используют по крайней мере один макрополициклический комплекс с инкапсулированным ионом переходного металла. В качестве таких соединений могут быть использованы, например, комплексы металлов с органическими лигандами, содержащие два и более макроциклических фрагмента. Такими лигандами могут быть, например, макрополициклические лиганды, образованные, например, сшивкой кислотами Льюиса оксимов и оксимгидразонов, их полиаминные аналоги и т.д. Если в качестве ингибитора вместо макрополициклических комплексов использовать макромоноциклические комплексы переходных металлов, например дифтороборосшитый бис-альфа-бензилдиоксимат железа(II), то предлагаемый способ становится неработоспособным. Предлагаемый способ также будет неработоспособным, если в качестве ингибитора вместо макрополициклического комплекса с инкапсулированным ионом переходного металла использовать немакроциклический комплекс иона такого металла.
В качестве инкапсулированных, т.е. включенных в трехмерную полость макрополициклического лиганда, ионов переходных металлов могут быть использованы, например, ионы железа(II), кобальта(I, II, III), рутения(II) и т.д. Вышеуказанные соединения описаны в научно-технической литературе (например, Я.З. Волошин, О.А. Варзацкий, Ю.Н. Бубнов. Клеточные комплексы переходных металлов в биохимии и медицине. Изв. АН. Сер. хим., 2007, 56, С.555-582, Y.Z. Voloshin, N.A. Kostromina, R. Krämer, Clathrochelates: synthesis, structure and properties, Elsevier, Amsterdam, 2002, 420 с.), однако использование этих соединений для ингибирования активности фермента РНК-полимеразы в литературе не описано.
В предлагаемом техническом решении ингибирование активности РНК-полимеразы доказывают традиционным методом, включающим инкубирование транскрипционной системы в присутствии ингибитора при 37°C в течение 1 часа (ч) с последующим разделением продуктов при помощи электрофореза в 1,2%-ном агарозном геле и определение количества синтезированной РНК по интенсивности свечения соответствующей полосы. Концентрацию ингибитора (IC50), приводящую к 50%-ной потере активности РНК-полимеразы, определяют путем анализа зависимости выхода синтезированной РНК от концентрации ингибитора по сравнению с контрольной реакцией, проводимой в отсутствие ингибитора. Для каждого ингибитора проводят несколько независимых экспериментов при каждой концентрации ингибитора.
Дополнительно в предлагаемом техническом решении ингибирование активности ферментов биосинтеза нуклеиновых кислот при блокировании интерфейса макромолекулярного комплекса фермент-матричная нуклеиновая кислота макрополициклическим соединением с инкапсулированным ионом переходного металла доказывают традиционным методом на примере РНК-полимеразы как модельного фермента, включающим предварительное инкубирование ингибитора с отдельными компонентами транскрипционной системы при 37°C в течение 15 минут, инкубирование транскрипционной системы в присутствии ингибитора при 37°C в течение 1 часа (ч) с последующим разделением продуктов при помощи электрофореза в 1,2%-ном агарозном геле и определение количества синтезированной РНК по интенсивности свечения соответствующей полосы. Концентрацию ингибитора (IC50), приводящую к 50%-ной потере активности РНК-полимеразы, определяют путем анализа зависимости выхода синтезированной РНК от концентрации ингибитора по сравнению с контрольной реакцией, проводимой в отсутствие ингибитора. Для каждого ингибитора проводят несколько независимых экспериментов при каждой концентрации ингибитора.
Ингибирование активности фермента РНК-полимеразы с помощью предлагаемого способа доказывают следующие примеры.
Пример 1
В 20 микролитрах (мкл) дистиллированной деионизированной воды готовят раствор, содержащий хлорид магния с концентрацией 6 ммоль/л (мМ), хлорид натрия с концентрацией 2 мМ, спермидин с концентрацией 2 мМ, дитиотреитол с концентрацией 2 мМ, каждый из четырех рибонуклеозидтрифосфатов с концентрацией 2 ммоль/л (мМ) и трис-HCl с концентрацией 40 мМ при значении pH 7,9. К полученному раствору прибавляют 0.5 микрограмма (мкг) матричной ДНК (линеаризованная плазмида pTZ19R), ингибитор рибонуклеазы RiboLock (10 единиц активности (ед. акт.)), РНК-полимеразу бактериофага Т7 (12 ед. акт.) и 0.5 мкл раствора ингибитора макробициклического комплекса с инкапсулированным ионом железа(II) 1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-диамино-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) железо(2+) в диметилсульфоксиде с финальной концентрацией ингибитора в реакционной смеси 1 микромоль/литр (мкМ) и полученную смесь затем инкубируют при 37°C в течение 1 часа. Реакцию останавливают путем быстрого охлаждения до -20°C и продукты разделяют при помощи электрофореза в 1,2%-ном агарозном геле в трис-боратной буферной смеси (трис с концентрацией 8.9 мМ, борная кислота с концентрацией 8.9 мМ, динатриевая соль этилендиаминтетрауксусной кислоты с концентрацией 0.2 мМ) с добавленным 0.5 мкг/мл бромистого этидия, необходимого для окрашивания электрофореграммы. Полученную электрофореграмму фотографируют при облучении длинноволновым ультрафиолетом (365 нм) и полученные изображения анализируют стандартным способом. Дополнительно проводят 4 эксперимента при следущих концентрациях ингибитора: 5 мкМ, 10 мкМ, 20 мкМ и 30 мкМ с пятикратным повторением каждого эксперимента для повышения точности измерения. Значение IC50 определяют при помощи анализа зависимости процента синтезированной матричной РНК от концентрации ингибитора по сравнению с контрольной реакцией, проводимой в отсутствие ингибитора. Полученное значение IC50 составляет 2.5 мкМ, что свидетельствует о практически полном ингибировании фермента РНК-полимеразы при микромолярной концентрации ингибитора.
Пример 2
Опыт проводят аналогично описанному в Примере 1, однако вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу Е.coli, а в качестве ингибитора используют макробициклический комплекс с инкапсулированным ионом кобальта(II) 1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-диметил-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) кобальт(2+) (D.R. Boston and N.J. Rose, Encapsulation reactions. Synthesis and study of clathro chelates derived from dimethylglyoxime, cobalt, and Lewis acids, J. Am. Chem. Soc., 1973, 95, p.4163-4168). Полученное значение IC50 составляет 8,2 мкМ.
Пример 3
Опыт проводят аналогично описанному в Примере 1, однако вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу S. aureus, а в качестве ингибитора используют макробициклический комплекс с инкапсулированным ионом рутения(II) 1,8-бис(2-фенилбора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12,17,18-гекса(метилтио)-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) рутений(2+) (Y.Z. Voloshin, О.А. Varzatskii, Т.Е. Kron, V.K. Belsky, V.E. Zavodnik, N.G. Strizhakova, V.A. Nadtochenko, V.A. Smirnov, Encapsulation of ruthenium(II) with macrobicyclic dioxime-functionalized ligands: on the way to new types of DNA-cleaving agents and probes, J. Chem. Soc, Dalton Trans., 2002, P.1203-1211). Полученное значение IC50 составляет 9,5 мкМ.
Пример 4
Опыт проводят аналогично описанному в Примере 1, однако в качестве ингибитора используют эквимолярную смесь ингибитора из Примера 1 и макротрициклического комплекса с инкапсулированным ионом железа(II) 1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-циклогександимеркаптилбицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) железо(2+) (Y.Z. Voloshin, О.А. Varzatskii, A.S. Belov, Z.A. Starikova, N.G. Strizhakova, A.V. Dolganov, D.I. Kochubey, Y.N. Bubnov, Synthesis, X-ray structure and redox properties of the macrobicyclic iron(II) N2- and S2-containing vic-dioximates, Inorg. Chim. Acta, 2010, 363, p.134-146). Полученное значение IC50 составляет 4,4 мкМ.
Пример 5
Опыт проводят аналогично описанному в Примере 1, однако в качестве ингибитора используют эквимолярную смесь ингибиторов из Примеров 1, 2 и макропентациклического комплекса с инкапсулированным ионом железа(II) 1,12-бис-(трет-бутилбора)-2,11,13,22,23,32-гексаокса-3,10,14,21,24,31-гексазапентацикло[11,11.11.04.9015,20025.30]дитри-аконта-3,9,14,20,24,30-гексаен(2-)железо(2+) (Я.З. Волошин, О.А. Варзацкий, З.А. Старикова, М.Ю. Антипин, А.Ю. Лебедев, А.С. Белов. Супрамолекулярная организация кристаллов аллилсульфидного клатрохелата: влияние природы сольватных молекул. Изв. АН. Сер. хим., 2004, 53, С.1439-1444). Полученное значение IC50 составляет 5,3 мкМ.
Пример 6
Опыт проводят аналогично Примеру 1, однако в качестве ингибитора используют упомянутый в примере 4 макротрициклический комплекс с инкапсулированным ионом железа(II) 1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-циклогександимеркаптилбицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) железо(2+), а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу Е.coli. Полученное значение IC50 составляет 5,9 мкМ.
Пример 7
Опыт проводят аналогично Примеру 1, однако в качестве ингибитора используют упомянутый в примере 5 макропентациклический комплекс с инкапсулированным ионом железа(II) 1,12-бис-(трет-бутилбора)-2,11,13,22,23,32-гексаокса-3,10,14,21,24,31-гексазапентацикло[11,11.11.04.9015,20025.30]дитри-аконта-3,9,14,20,24,30-гексаен(2-) железо(2+), а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу S. aureus. Полученное значение IC50 составляет 2,7 мкМ.
Возможность связывания макрополициклических комплексов с РНК-полимеразой доказывают следующие примеры.
Пример 8
В 20 микролитрах (мкл) дистиллированной деионизированной воды готовят раствор, содержащий хлорид магния с концентрацией 6 ммоль/л (мМ), хлорид натрия с концентрацией 2 мМ, спермидин с концентрацией 2 мМ, дитиотреитол с концентрацией 2 мМ, каждый из четырех рибонуклеозидтрифосфатов с концентрацией 2 ммоль/л (мМ) и трис-HCl с концентрацией 40 мМ при значении pH 7,9. К полученному раствору прибавляют 0.5 микрограмма (мкг) матричной ДНК (линеаризованная плазмида pTZ19R) и 0.5 мкл раствора ингибитора макробициклического комплекса с инкапсулированным ионом железа(II) 1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-диамино-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) железо(2+) в диметилсульфоксиде с финальной концентрацией ингибитора в реакционной смеси 1 микромоль/литр (мкМ) и полученную смесь затем инкубируют при 37°C в течение 15 минут. Затем прибавляют ингибитор рибонуклеазы RiboLock (10 единиц активности (ед. акт.)) и РНК-полимеразу бактериофага Т7 (12 ед. акт.) и полученную смесь затем инкубируют при 37°C в течение 1 часа. Затем опыт завершают аналогично описанному в Примере 1. Полученное значение IC50 составляет 10.2 мкМ, что свидетельствует о значительном снижении активности ингибитора при предварительной инкубации его с матричной ДНК за счет неспецифического связывания ингибитора с нетранскрибируемыми участками матричной ДНК.
Пример 9
В 20 микролитрах (мкл) дистиллированной деионизированной воды готовят раствор, содержащий хлорид магния с концентрацией 6 ммоль/л (мМ), хлорид натрия с концентрацией 2 мМ, спермидин с концентрацией 2 мМ, дитиотреитол с концентрацией 2 мМ, каждый из четырех рибонуклеозидтрифосфатов с концентрацией 2 ммоль/л (мМ) и трис-HCl с концентрацией 40 мМ при значении pH 7,9. К полученному раствору прибавляют РНК-полимеразу бактериофага Т7 (12 ед. акт.), ингибитор рибонуклеазы RiboLock (10 единиц активности (ед. акт.)) и 0.5 мкл раствора ингибитора макробициклического комплекса с инкапсулированным ионом железа(II) 1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-диамино-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) железо(2+) в диметилсульфоксиде с финальной концентрацией ингибитора в реакционной смеси 1 микромоль/литр (мкМ) и полученную смесь затем инкубируют при 37°C в течение 15 минут. Затем прибавляют 0.5 микрограмма (мкг) матричной ДНК (линеаризованная плазмида pTZ19R) и полученную смесь затем инкубируют при 37°C в течение 1 часа. Затем опыт завершают аналогично описанному в Примере 1. Полученное значение IC50 составляет 1.8 мкМ, что свидетельствует о значительном повышении активности ингибитора при предварительной инкубации его с РНК-полимеразой бактериофага Т7.
Пример 10
В 20 микролитрах (мкл) дистиллированной деионизированной воды готовят раствор, содержащий хлорид магния с концентрацией 6 ммоль/л (мМ), хлорид натрия с концентрацией 2 мМ, спермидин с концентрацией 2 мМ, дитиотреитол с концентрацией 2 мМ и трис-HCl с концентрацией 40 мМ при значении pH 7,9. К полученному раствору прибавляют РНК-полимеразу бактериофага Т7 (12 ед. акт.), ингибитор рибонуклеазы RiboLock (10 единиц активности (ед. акт.)), 0.5 микрограмма (мкг) матричной ДНК (линеаризованная плазмида pTZ19R) и 0.5 мкл раствора ингибитора макробициклического комплекса с инкапсулированным ионом железа(II) 1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-диамино-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) железо(2+) в диметилсульфоксиде с финальной концентрацией ингибитора в реакционной смеси 1 микромоль/литр (мкМ) и полученную смесь затем инкубируют при 37°C в течение 15 минут. Затем прибавляют каждый из четырех рибонуклеозидтрифосфатов с финальной концентрацией в реакционной смеси 2 ммоль/л (мМ) и полученную смесь затем инкубируют при 37°C в течение 1 часа. Затем опыт завершают аналогично описанному в Примере 1. Полученное значение IC50 составляет 1.4 мкМ, что свидетельствует о еще большем повышении активности ингибитора при предварительной инкубации его со смесью РНК-полимеразы бактериофага Т7 и матричной ДНК.
Пример 11
Опыт проводят аналогично Примеру 8, однако в качестве ингибитора используют соединение из Примера 2, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу Е.coli. Полученное значение IC50 составляет 17,4 мкМ.
Пример 12
Опыт проводят аналогично Примеру 9, однако в качестве ингибитора используют соединение из Примера 2, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу Е.coli. Полученное значение IC50 составляет 6,1 мкМ.
Пример 13
Опыт проводят аналогично Примеру 10, однако в качестве ингибитора используют соединение из Примера 2, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу Е.coli. Полученное значение IC50 составляет 5,9 мкМ.
Пример 14
Опыт проводят аналогично Примеру 8, однако в качестве ингибитора используют соединение из Примера 3, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу S.aureus. Полученное значение IC50 составляет 11,2 мкМ.
Пример 15
Опыт проводят аналогично Примеру 9, однако в качестве ингибитора используют соединение из Примера 3, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу S. aureus. Полученное значение IC50 составляет 8,1 мкМ.
Пример 16
Опыт проводят аналогично Примеру 10, однако в качестве ингибитора используют соединение из Примера 3, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу S. aureus. Полученное значение IC50 составляет 8,0 мкМ.
Пример 17
Опыт проводят аналогично Примеру 8, однако в качестве ингибитора используют соединение из Примера 6, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу Е.coli. Полученное значение IC50 составляет 9,4 мкМ.
Пример 18
Опыт проводят аналогично Примеру 9, однако в качестве ингибитора используют соединение из Примера 6, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу Е.coli. Полученное значение IC50 составляет 5,2 мкМ.
Пример 19
Опыт проводят аналогично Примеру 10, однако в качестве ингибитора используют соединение из Примера 6, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу Е.coli. Полученное значение IC50 составляет 5,2 мкМ.
Пример 20
Опыт проводят аналогично Примеру 8, однако в качестве ингибитора используют соединение из Примера 7, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу S. aureus. Полученное значение IC50 составляет 4,9 мкМ.
Пример 21
Опыт проводят аналогично Примеру 9, однако в качестве ингибитора используют соединение из Примера 7, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу S. aureus. Полученное значение IC50 составляет 2,1 мкМ.
Пример 22
Опыт проводят аналогично Примеру 10, однако в качестве ингибитора используют соединение из Примера 7, а вместо РНК-полимеразы бактериофага Т7 используют бактериальную полимеразу S. aureus. Полученное значение IC50 составляет 2,1 мкМ.
Таким образом, из приведенных примеров видно, что предложенный способ ингибирования фермента РНК-полимеразы действительно расширяет арсенал технических средств, которые могут быть использованы для ингибирования активности фермента РНК-полимеразы, и обеспечивает ингибирование фермента РНК-полимеразы даже при микромолярной концентрации ингибитора.

Claims (1)

  1. Способ ингибирования активности фермента РНК-полимеразы путем введения в транскрипционную систему ингибитора на основе соединения, содержащего органический макроциклический фрагмент, отличающийся тем, что в качестве ингибитора используют по крайней мере один макрополициклический комплекс с инкапсулированным ионом переходного металла, выбранный из группы, включающей
    1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-диамино-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) железо(2+);
    1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-диметил-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) кобальт(2+);
    1,8-бис(2-фенилбора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12,17,18-гекса(метилтио)-бицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) рутений(2+);
    1,8-бис(2-фторобора)-2,7,9,14,15,20-гексаокса-3,6,10,13,16,19-гексааза-4,5,11,12-тетрафенил-17,18-циклогександимеркаптилбицикло[6.6.6]эйкоза-3,5,10,12,16,18-гексаен(2-) железо(2+);
    1,12-бис-(трет-бутилбора)-2,11,13,22,23,32-гексаокса-3,10,14,21,24,31-гексазапентацикло[11,11.11.04.9015,20025.30]дитри-аконта-3,9,14,20,24,30-гексаен(2-) железо(2+).
RU2012106191/10A 2012-02-22 2012-02-22 Способ ингибирования активности фермента рнк-полимеразы RU2499832C2 (ru)

Priority Applications (2)

Application Number Priority Date Filing Date Title
RU2012106191/10A RU2499832C2 (ru) 2012-02-22 2012-02-22 Способ ингибирования активности фермента рнк-полимеразы
PCT/RU2012/001022 WO2013125980A1 (ru) 2012-02-22 2012-12-05 Способ ингибирования активности ферментов биосинтеза нуклеиновых кислот

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012106191/10A RU2499832C2 (ru) 2012-02-22 2012-02-22 Способ ингибирования активности фермента рнк-полимеразы

Publications (2)

Publication Number Publication Date
RU2012106191A RU2012106191A (ru) 2013-08-27
RU2499832C2 true RU2499832C2 (ru) 2013-11-27

Family

ID=49006037

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012106191/10A RU2499832C2 (ru) 2012-02-22 2012-02-22 Способ ингибирования активности фермента рнк-полимеразы

Country Status (2)

Country Link
RU (1) RU2499832C2 (ru)
WO (1) WO2013125980A1 (ru)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10089443B2 (en) 2012-05-15 2018-10-02 Baxter International Inc. Home medical device systems and methods for therapy prescription and tracking, servicing and inventory

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090137467A1 (en) * 2005-11-04 2009-05-28 Ebright Richard H Bipartite Inhibitors of Bacterial RNA Polymerase

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090137467A1 (en) * 2005-11-04 2009-05-28 Ebright Richard H Bipartite Inhibitors of Bacterial RNA Polymerase

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN et. al. Inhibition of Hepadnavirus Reverse Transcriptase-epsilon; RNA Interaction by Porphyrin Compounds// JOURNAL OF VIROLOGY, Mar. 2008, p.2305-2312. *
VOLOSHIN et. al. Free-radical Reaction of the Iron(II) Dichloroclathrochelate with Tetrahydrofurane Radical Derivatives: Synthesis and Structure of the Monotetrahydrofuryl-Containing Cage Complex// Macroheterocycles 2012 5(1) 11-16. VOLOSHIN et. al. Encapsulation of ruthenium(II) with macrobicyclic dioxime-functionalized ligands: on the way to new types of DNA-cleaving agents and probes// J. Chem. Soc., Dalton Trans., 2002, p.1203-1211. ВОЛОШИН Я.З. и др. Гибридные производные кластеров бора и борсодержащих клатрохелатов переходных металлов как потенциальные топологические лекарства// XXV международная чугаевская конференция по координационной химии и II молодежная конференция-школа, Физико-химические методы в химии координационных соединений, Тезисы докладов, Суздаль, 6-11 июня 2011, с.19. *

Also Published As

Publication number Publication date
WO2013125980A1 (ru) 2013-08-29
RU2012106191A (ru) 2013-08-27

Similar Documents

Publication Publication Date Title
Aghajan et al. Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase
Wei et al. Characterization of the Nucleotide Binding Properties and ATPase Activity of Recombinant Hamster BiP Purified from Bacteria (∗)
Mazina et al. Replication protein A binds RNA and promotes R-loop formation
D’yakonov et al. Stereoselective synthesis of 11-phenylundeca-5Z, 9Z-dienoic acid and investigation of its human topoisomerase I and IIα inhibitory activity
Ting et al. Isodiospyrin as a novel human DNA topoisomerase I inhibitor
Godbole et al. Inhibition of Mycobacterium tuberculosis topoisomerase I by m-AMSA, a eukaryotic type II topoisomerase poison
Perlíková et al. 7-(2-Thienyl)-7-deazaadenosine (AB61), a new potent nucleoside cytostatic with a complex mode of action
Reddy et al. Design, synthesis, DNA-binding affinity, cytotoxicity, apoptosis, and cell cycle arrest of Ru (II) polypyridyl complexes
Wang et al. Cytotoxicity, genotoxicity, oxidative stress, and apoptosis in HepG2 cells induced by the imidazole ionic liquid 1‐dodecyl‐3‐methylimidazolium chloride
CN110118761A (zh) 一种信号增强型人血清atp荧光传感器
Cheng et al. Antifungal activity of MAF-1A peptide against Candida albicans
Zou et al. 5-Formyluracil as a cornerstone for aluminum detection in vitro and in vivo: a more natural and sustainable strategy
Kusrini et al. A novel antiamoebic agent against Acanthamoeba sp.—A causative agent for eye keratitis infection
Baijal et al. The promises of lysine polyphosphorylation as a regulatory modification in mammals are tempered by conceptual and technical challenges
A D’yakonov et al. 11-Phenylundeca-5Z, 9Z-dienoic acid: stereoselective synthesis and dual topoisomerase I/IIα inhibition
RU2499832C2 (ru) Способ ингибирования активности фермента рнк-полимеразы
Rochford et al. In-vivo evaluation of the response of Galleria mellonella larvae to novel copper (II) phenanthroline-phenazine complexes
Shire et al. Molecular beacon probes for the detection of cisplatin-induced DNA damage
Danchin et al. Affinity Labeling of the Adenosine 5′-Monophosphate Binding Site of Rabbit Muscle Glycogen Phosphorylase b with an Adenosine 5′-Monophosphate-Cobalt (III) Complex
Kwon et al. Fluorescence spectroscopy studies of vaccinia type IB DNA topoisomerase: closing of the enzyme clamp is faster than DNA cleavage
Pawlowska et al. The α-thio and/or β-γ-hypophosphate analogs of ATP as cofactors of T4 DNA ligase
Bilsland et al. A novel pyrazolopyrimidine ligand of human PGK1 and stress sensor DJ1 modulates the shelterin complex and telomere length regulation
Kaya et al. Optimizing protonation states for selective double-strand DNA photocleavage in hypoxic tumors: pH-gated transitions of lysine dipeptides
WO2020161501A1 (en) Transcriptional inhibition assay
Meyn et al. The biochemical effect of Ser167 phosphorylation on Chlamydomonas reinhardtii centrin

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20180223