RU2499269C1 - Измеритель параметров двухполюсных rlc цепей - Google Patents

Измеритель параметров двухполюсных rlc цепей Download PDF

Info

Publication number
RU2499269C1
RU2499269C1 RU2012118463/28A RU2012118463A RU2499269C1 RU 2499269 C1 RU2499269 C1 RU 2499269C1 RU 2012118463/28 A RU2012118463/28 A RU 2012118463/28A RU 2012118463 A RU2012118463 A RU 2012118463A RU 2499269 C1 RU2499269 C1 RU 2499269C1
Authority
RU
Russia
Prior art keywords
current
input
output
resistor
parameters
Prior art date
Application number
RU2012118463/28A
Other languages
English (en)
Other versions
RU2012118463A (ru
Inventor
Владимир Ильич Иванов
Виталий Семенович Титов
Алексей Вячеславович Балашов
Original Assignee
Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ) filed Critical Федеральное бюджетное государственное образовательное учреждение высшего профессионального образования "Юго-Западный государственный университет" (ЮЗГУ)
Priority to RU2012118463/28A priority Critical patent/RU2499269C1/ru
Publication of RU2012118463A publication Critical patent/RU2012118463A/ru
Application granted granted Critical
Publication of RU2499269C1 publication Critical patent/RU2499269C1/ru

Links

Landscapes

  • Measurement Of Current Or Voltage (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Изобретение относится к измерительной технике и, в частности, к области измерения параметров объектов, имеющих схемы замещения в виде многоэлементных пассивных двухполюсников. Технический результат заключается в повышении точности определения параметров объектов измерения в измерителе с питанием импульсами напряжения, имеющими форму функции n-й степени времени, за счет исключения группы составляющих погрешности измерения. Технический результат достигается благодаря тому, что для определения обобщенных параметров проводимости измеряемой многоэлементной двухполюсной RLC цепи используется уравновешивание составляющих тока через RLC цепь, изменяющихся по закону n-й, (n-1)-й, …, 1-й, нулевой степени, и компенсирующего тока, создаваемого многоэлементным потенциально частотно-независимым двухполюсником (ПЧНД) с регулируемыми параметрами. При этом устраняются источники погрешностей измерения, обусловленные шунтирующим действием измерительной цепи на импеданс измеряемой RLC цепи и ПЧНД, а также присутствием синфазного напряжения на входе преобразователя «ток-напряжение». Измеритель сохраняет свойство раздельного уравновешивания и расширенные функциональные возможности, позволяющие создавать устройства для определения параметров различных вариантов многоэлементных двухполюсных цепей и схем замещения типа R-C, R-L и R-L-C. 1 ил.

Description

Изобретение относится к измерительной технике и, в частности, к технике измерения параметров объектов в виде пассивных двухполюсников с сосредоточенными параметрами, имеющих многоэлементную схему замещения.
Известен измеритель параметров многоэлементных пассивных двухполюсников (патент РФ №2144195, G01R 17/10), выполненный в виде четырехплечего электрического моста, в котором для питания используется формирователь импульсов напряжения кубичной формы. В измерительную диагональ моста включены входы дифференциального усилителя, а к выходу дифференциального усилителя подключены последовательно соединенные три дифференциатора. Выходы дифференциаторов, а также выход дифференциального усилителя подключены к входам нуль-индикатора. Уравновешивание моста осуществляют после окончания переходных процессов в его цепях, последовательно приводя к нулевому значению напряжения на выходах сначала третьего, затем второго и первого дифференциаторов и, наконец, дифференциального усилителя. Недостатками этого мостового измерителя являются:
1) Влияние входного сопротивления дифференциального усилителя по синфазному входу, которое шунтирует многоэлементный двухполюсник объекта измерения и уравновешивающий двухполюсник с регулируемыми параметрами, что является причиной погрешности измерений параметров элементов измеряемого двухполюсника.
2) Наличие на входах дифференциального усилителя синфазного напряжения, составляющего около половины амплитуды питающего импульса, которое вносит дополнительную погрешность измерения.
Наиболее близким по технической сущности к предлагаемому является устройство определения параметров многоэлементных пассивных двухполюсников (патент РФ №2390787, G01R 27/02), построенное по схеме измерительного преобразователя (ИП) на двух операционных усилителях (ОУ), в котором измеряемый двухполюсник включают в цепь инвертирующего входа первого ОУ, а в цепь обратной связи - образцовый резистор, выход первого ОУ соединен с входом инвертирующего сумматора на втором ОУ; на измеряемый двухполюсник воздействуют импульсами напряжения, изменяющегося по закону n-й степени времени, и уравновешивают выходное напряжение ИП компенсирующим сигналом, синтезированным из импульсов тока, имеющих форму степенных функций времени с показателями степени от n до 0, приводя к нулю после окончания переходного процесса в ИП напряжения на выходах n-каскадного дифференциатора, подключенного к выходу инвертирующего сумматора, а также на выходе этого сумматора, далее по найденным амплитудам упомянутых выше импульсов тока вычисляют обобщенные параметры проводимости, а затем - параметры элементов двухполюсника. Недостатками этого измерителя являются погрешности измерений, обусловленные, во-первых, неточностью масштабирования амплитуд компенсирующих токов, так как ток двухполюсника объекта измерения создается импульсом напряжения с выхода последнего интегратора, а составляющие компенсирующего тока формируются из выходных напряжений всех интеграторов, и, во-вторых, несимметричными свойствами входов первого и второго операционных усилителей, что искажает соотношение между отдельными составляющими токов измеряемого и регулируемого двухполюсников.
Задача, на решение которой направлено изобретение, состоит в повышении точности измерения параметров многоэлементных RLC-двухполюсников.
Технический результат достигается тем, что в измеритель параметров двухполюсных RLC цепей, содержащий генератор импульсов напряжения, имеющего форму функции n-й степени времени, преобразователь «ток-напряжение» на первом операционном усилителе, в цепи обратной связи которого включен первый резистор, инвертирующий вход первого операционного усилителя является входом преобразователя «ток-напряжение»; n-каскадный дифференциатор на дифференцирующих RC-звеньях, вход первого дифференцирующего RC-звена подключен к выходу преобразователя «ток-напряжение»; нуль-индикатор, первый вход которого соединен с выходом n-го дифференцирующего RC-звена дифференциатора, второй вход - с выходом (n-1)-го дифференцирующего RC-звена, и т.д., …, n-й вход - с выходом первого дифференцирующего RC-звена, (n+1)-й вход нуль-индикатора подключен к выходу преобразователя «ток-напряжение»; устройство управления, первый выход синхронизации которого подключен к входу синхронизации генератора импульсов, а второй выход синхронизации - к входу синхронизации нуль-индикатора; выход генератора импульсов соединен с первой клеммой для подключения измеряемой многоэлементной двухполюсной RLC цепи, вторая клемма для подключения измеряемой RLC цепи соединена с входом преобразователя «ток-напряжение», введены многоэлементный двухполюсник с регулируемыми параметрами, выполненный по схеме потенциально частотно-независимого двухполюсника, регулируемый резистор, первый полюс которого подключен к выходу генератора импульсов, и инвертор тока на втором операционном усилителе, инвертирующий вход которого соединен со вторым полюсом регулируемого резистора, в цепи обратной связи второго операционного усилителя включен второй резистор, а его выход соединен с входом преобразователя «ток-напряжение» через третий резистор, причем второй и третий резисторы имеют одинаковые сопротивления; многоэлементный потенциально частотно-независимый двухполюсник содержит две параллельно включенные двухполюсные цепи, первая из которых содержит первый конденсатор и включенную последовательно с ним цепь, состоящую из параллельно соединенных резистора и второго конденсатора; вторая двухполюсная цепь содержит первый резистор и включенную последовательно с ином первую катушку индуктивности, параллельно которой подсоединены последовательно включенные второй резистор и вторая катушка индуктивности; первый полюс потенциально частотно-независимого двухполюсника подключен к выходу генератора импульсов, а второй полюс - к входу преобразователя «ток-напряжение».
Сущность изобретения поясняется на примере измерителя параметров четырехэлементных двухполюсных RLC цепей. Схема устройства приведена на фиг.1.
Измеритель содержит генератор 1 импульсов напряжения кубичной формы
u 1 ( t ) = U m t 3 t и з . ( 1 )
Figure 00000001
Выход генератора 1 соединен с первой клеммой для подключения многоэлементной двухполюсной RLC цепи 2 объекта измерения. В качестве примера многоэлементного двухполюсника (МДП) на рисунке приведена RLC цепь, состоящая из первого резистора 3, параллельно которому подключены последовательно соединенные конденсатор 4, второй резистор 5 и катушка 6 индуктивности с параметрами R3, C4, R5 и L6 соответственно. Вторая клемма для подключения двухполюсной RLC цепи 2 соединена с входом преобразователя «ток-напряжение» (инвертирующим входом первого операционного усилителя). Выходное напряжение преобразователя пропорционально сумме токов, поступающих на вход операционного усилителя 7.
Импульс напряжения u1(t) вырабатывает в двухполюснике 2 объекта измерения, включенном во входную цепь преобразователя «ток-напряжение» импульс тока, который содержит свободную и принужденную составляющие. После окончания переходного процесса и до конца импульса остается только принужденная составляющая тока iдп(t) двухполюсника 2, которая состоит из токов кубичной, квадратичной, линейной и плоской (прямоугольной) формы. Входное сопротивление преобразователя «ток-напряжение» составляет сотые доли Ома, так как оно определяется входным сопротивлением по инвертирующему входу первого операционного усилителя 7, охваченного параллельной отрицательной обратной связью:
Rвх.ОУ.ос=Roc/Ku.OУ,
где Rос - сопротивление резистора в цепи обратной связи; Ku.OУ - коэффициент усиления операционного усилителя. Вследствие того, что двухполюсник 2 виртуально «заземлен», все составляющие его тока определяются только напряжением генератора 1 и параметрами проводимости двухполюсника:
i д п ( t ) = y 0 U m t 3 t и 3 + 3 y 1 U m t 2 t и 3 + 6 y 2 U m t t и 3 + 6 y 3 U m t и 3 . ( 2 )
Figure 00000002
Амплитуды этих составляющих зависят от параметров проводимости объекта измерения:
I 3 = y 0 U m ; I 2 = 3 y 1 U m t и ; I 1 = 6 y 2 U m t и 2 ; I 0 = 6 y 3 U m t и 3 . ( 3 )
Figure 00000003
Выражение (2) получено операторным методом. Обобщенные параметры y0, y1, y2, y3 могут быть найдены из операторного изображения проводимости двухполюсника y(p). Если в общем виде выражение y(р) представить в виде
Figure 00000004
то при ненулевом значении a0, что имеет место для большой группы реальных двухполюсников, величины y0, y1, y2, y3 определяются значениями параметров элементов двухполюсника:
Figure 00000005
Figure 00000006
Figure 00000007
Figure 00000008
В частности, операторное изображение проводимости четырехэлементной двухполюсной RLC цепи 2 (R3, C4, R5, L6) имеет вид
y ( p ) = 1 R 3 + p C 4 1 + p R 5 C 4 + p 2 L 6 C 4 ( 9 )
Figure 00000009
и обобщенные параметры проводимости y0, y1, y2, y3 согласно формулам (5)-(8) равны
y 0 = 1 R 3 ; ( 10 )
Figure 00000010
y 1 = C 4 ; ( 11 )
Figure 00000011
y 2 = R C 5 4 2 ; ( 12 )
Figure 00000012
y 3 = C 4 2 ( R 5 2 C 4 L 6 ) . ( 13 )
Figure 00000013
Заметим, что параметр проводимости y0 всегда имеет положительный знак, а остальные параметры, в зависимости от схемы двухполюсника, могут быть и положительными и отрицательными. Более того, как видно на примере параметра y3, y рассматриваемого двухполюсника знак этого параметра зависит от соотношения между значениями параметров элементов схемы.
Многоэлементный двухполюсник 17 с регулируемыми параметрами включен параллельно двухполюснику 2 и предназначен для формирования компенсирующего тока, составляющие которого равны соответствующим составляющим тока через измеряемый двухполюсник 2, но имеют противоположное направление. Ток двухполюсника 17 поступает во входную цепь преобразователя «ток-напряжение» (на инвертирующий вход операционного усилителя 7) и суммируется с током двухполюсника 2. Для расширения функциональных возможностей измерителя схема двухполюсника 17 должна обеспечить условия регулирования слагаемых компенсирующего тока как положительного, так и обратного направления, включая нулевое значение. Такие возможности могут обеспечить многоэлементные двухполюсники, которые относятся к категории «потенциально частотно-независимых» (ПЧНД). Это название они получили из-за особого свойства их частотных характеристик: при определенных значениях параметров элементов схемы сопротивление (проводимость) двухполюсника становится вещественной величиной, не зависящей от частоты. Если в операторном изображении проводимости двухполюсника 17
Figure 00000014
выполнить подстановку p=jω, получим выражение комплексной частотной характеристики проводимости:
Figure 00000015
Проводимость становится вещественной и независимой от частоты
Figure 00000016
при условиях:
Figure 00000017
Выражения (17) можно привести к виду
Figure 00000018
Из формул (5)-(8) следует, что при условиях (17) все обобщенные Y-параметры двухполюсника, кроме параметра Y0, равны нулю. Изменяя величины ai, и bj, можно регулировать Y-параметры, в том числе и меняя их знак.
Многоэлементный потенциально частотно-независимый двухполюсник 17 с регулируемыми параметрами состоит из двух параллельно включенных двухполюсных цепей. Первая двухполюсная цепь RC-типа содержит первый конденсатор 18 и включенную последовательно с ним цепь, состоящую из параллельно соединенных резистора 19 и второго конденсатора 20; вторая двухполюсная цепь RL-типа содержит первый резистор 21 и включенную последовательно с ним первую катушку индуктивности 22, параллельно которой подсоединены последовательно включенные второй резистор 23 и вторая катушка индуктивности 24.
Операторное изображение проводимости первой двухполюсной цепи RC-типа имеет вид
Y 1 ( p ) = p C 18 + p 2 R 19 C 18 C 20 1 + p R 19 ( C 18 + C 20 ) . ( 19 )
Figure 00000019
Величины Y10, Y11, Y12, Y13 согласно формулам (5)-(8) равны
Y 10 = 0 ; ( 20 )
Figure 00000020
Y 11 = C 18 ; ( 21 )
Figure 00000021
Y 12 = R 19 C 18 2 ; ( 22 )
Figure 00000022
Y 13 = R 19 2 C 18 2 ( C 18 + C 20 ) . ( 23 )
Figure 00000023
Операторное изображение проводимости второй двухполюсной цепи RL-типа имеет вид
Y 2 ( p ) = R 23 + p ( L 22 + L 24 ) R 21 R 23 + p [ ( L 22 + L 24 ) R 21 + L 22 R 23 ] + p 2 L 22 L 24 . ( 24 )
Figure 00000024
Величины Y20, Y21, Y22, Y23 согласно формулам (5)-(8) равны
Y 20 = 1 R 21 ; ( 25 )
Figure 00000025
Y 21 = L 22 R 21 2 ; ( 26 )
Figure 00000026
Y 22 = L 22 2 ( R 21 + R 23 ) R 21 3 R 23 ; ( 27 )
Figure 00000027
Y 23 = L 22 2 R 21 2 R 23 2 ( L 22 ( R 21 + R 23 ) 2 R 21 2 + L 24 ) . ( 28 )
Figure 00000028
Обобщенные параметры проводимости двухполюсника 17 для каждого индекса равны сумме Y-параметров RC и RL ветвей:
Y 0 = 1 R 21 ; ( 29 )
Figure 00000029
Y 1 = C 18 L 22 R 21 2 ; ( 30 )
Figure 00000030
Y 2 = L 22 2 ( R 21 + R 23 ) R 21 3 R 23 R 19 C 18 2 ; ( 31 )
Figure 00000031
Y 3 = R 19 2 C 18 2 ( C 18 + C 20 ) L 22 2 R 21 2 R 23 2 ( L 22 ( R 21 + R 23 ) 2 R 21 2 + L 24 ) . ( 32 )
Figure 00000032
Обобщенные параметры проводимости параллельно включенных измеряемого двухполюсника 2 и двухполюсника 17 с регулируемыми элементами суммируются во входной цепи преобразователя «ток-напряжение». После уравновешивания сумма Y-параметров для каждого индекса должна быть равной нулю. Для нулевого индекса сумма Y0 и y0 уравновешивается с помощью регулируемого резистора 25. Составляющая компенсирующего тока старшей, т.е. n-й, степени должна иметь направление, противоположное соответствующей составляющей тока МДП, поэтому направление тока резистора 25 необходимо инвертировать. Инвертор построен на втором операционном усилителе 26. Его выходной ток - это ток через резистор 28 к входу преобразователя «ток-напряжение». Он равен
i R 28 ( t ) = u 1 ( t ) R 27 R 25 R 28
Figure 00000033
.
При равных значениях сопротивлений резисторов 27 и 28 ток iR28 будет равен по модулю току через резистор 25, но иметь встречное направление. Таким образом, параметр проводимости цепи, содержащей регулируемый резистор 25 и инвертор на операционном усилителе 26, равен 1 R 25
Figure 00000034
, и условия равновесия всех составляющих токов двухполюсников 2 и 17 имеют вид:
1 R 21 1 R 25 + y 0 = 0 ; ( 33 )
Figure 00000035
C 18 L 22 R 21 2 + y 1 = 0 ; ( 34 )
Figure 00000036
L 22 2 ( R 21 + R 23 ) R 21 3 R 23 R 19 C 18 2 + y 2 = 0 ; ( 35 )
Figure 00000037
R 19 2 C 18 2 ( C 18 + C 20 ) L 22 2 R 21 2 R 23 2 ( L 22 ( R 21 + R 23 ) 2 R 21 2 + L 24 ) + y 3 = 0. ( 36 )
Figure 00000038
В частности, для рассматриваемого в качестве примера двухполюсника 2 эти условия представляются выражениями, из которых можно вычислить электрические параметры элементов:
1 R 21 1 R 25 + 1 R 3 = 0 ; ( 37 )
Figure 00000039
C 18 L 22 R 21 2 + C 4 = 0 ; ( 38 )
Figure 00000040
L 22 2 ( R 21 + R 23 ) R 21 3 R 23 R 19 C 18 2 R 5 C 4 2 = 0 ; ( 39 )
Figure 00000041
R 19 2 C 18 2 ( C 18 + C 20 ) L 22 2 R 21 2 R 23 2 ( L 22 ( R 21 + R 23 ) 2 R 21 2 + L 24 ) + C 4 2 ( R 5 2 C 4 L 6 ) = 0. ( 40 )
Figure 00000042
Процесс уравновешивания осуществляется в такой же последовательности, в какой приведены условия равновесия (33)…(36), так как величина Y0 входит в выражение для Y1, значения Y0 и Y1 входят в формулу для Y2, значения Y0, Y1 и Y2 входят в формулу для Y3. После окончания переходного процесса в измерителе на выходе преобразователя «ток-напряжение» формируется сигнал, соответствующий разности тока двухполюсника 2 и компенсирующего тока, создаваемого двухполюсником 17. Путем последовательного приближения устанавливают такие значения сопротивления резистора 25 и параметров элементов двухполюсника 17, которые обеспечивают уравновешивание токов.
Для того чтобы можно было избирательно регулировать амплитуды кубичной, квадратичной и линейной составляющих компенсирующего тока, выходное напряжение преобразователя «ток-напряжение» подается на дифференциатор, который содержит три последовательно включенных дифференцирующих RC-звена: конденсатор 9 и резистор 10, конденсатор 11 и резистор 12, конденсатор 13 и резистор 14. Выходы каскадов дифференциатора и преобразователя «ток-напряжение» подключены к входам нуль-индикатора (НИ) 15. Работа НИ и генератора 1 импульсов синхронизируется устройством управления 16 (УУ). На выходе третьего каскада дифференциатора формируется и поступает на первый вход нуль-индикатора 15 постоянное напряжение, пропорциональное разности амплитуд кубичных составляющих токов измеряемой RLC цепи 2, двухполюсника 17 и тока через резистор 25. Компенсация кубичной составляющей осуществляется приведением к нулю выходного напряжения третьего RC-звена путем регулирования сопротивления R25 резистора 25 при выбранной величине сопротивления R21 резистора 21.
Затем анализируют напряжение на выходе второго RC-звена дифференциатора, пропорциональное разности амплитуд квадратичных составляющих токов двухполюсников 2 и 17, которое подается на второй вход НИ. Компенсация квадратичной составляющей осуществляется приведением к нулю выходного напряжения второго RC-звена путем регулирования емкости конденсатора 18 при фиксированной индуктивности катушки 22, либо регулировкой индуктивности катушки 22 при фиксированной емкости конденсатора 18.
После этого анализируют напряжение на выходе первого дифференцирующего RC-звена, пропорциональное разности амплитуд линейных составляющих тока двухполюсника 2 и компенсирующего сигнала, которое подается на третий вход НИ. Компенсация линейной составляющей тока осуществляется приведением к нулю выходного напряжения первого RC-звена путем регулирования сопротивления резистора 19 при фиксированном сопротивлении резистора 23 или регулировкой сопротивления резистора 23 при фиксированном сопротивлении резистора 19.
И, наконец, для компенсации постоянной составляющей импульса тока измеряемого двухполюсника 2 приводят к нулю выходное напряжение преобразователя «ток-напряжение», которое подается на четвертый вход нуль-индикатора, регулируя емкость конденсатора 20 при фиксированной индуктивности катушки 24, либо регулировкой индуктивности катушки 24 при фиксированной емкости конденсатора 20.
После четырех этапов уравновешивания тока iдп(t) двухполюсника 2 и компенсирующего тока двухполюсника 17 вычисляют с помощью формул (37)-(40) параметры элементов измеряемой двухполюсной RLC цепи: сопротивление R3, емкость C4, сопротивление R5 и индуктивность L6 соответственно.
Рассмотрим результаты измерения элементов двухполюсника R3С4R5L6 при следующих значениях его параметров: R3=1 кОм, С4=10 нФ, R5=4 кОм, L6=20 мГн. Измерения проводились путем моделирования с помощью программы Multisim 9. На 1-м этапе выбираем R21=1 кОм и уравновешиваем кубическую составляющую тока при R25=0,5 кОм. Из условия равновесия (37) вычисляем сопротивление резистора 3:
R 3 = R 21 R 24 R 21 R 25 = 1
Figure 00000043
кОм.
На 2-м этапе выбираем L22=25 мГн и уравновешиваем квадратичную составляющую тока при C18=15 нФ. Из условия равновесия (38) вычисляем емкость конденсатора 4:
С 4 = L 22 R 21 2 C 18 = 10
Figure 00000044
нФ.
На 3-м этапе выбираем R23=1 кОм и уравновешиваем линейную составляющую тока при R19=3,7777…кОм. Из условия равновесия (39) вычисляем сопротивление резистора 5:
R 5 = 1 C 4 2 ( L 22 2 ( R 21 + R 23 ) R 21 3 R 23 R 19 C 18 2 ) = 3,99995
Figure 00000045
кОм.
На 4-м этапе выбираем L24=25 мГн и уравновешиваем постоянную составляющую тока при C20=4,9697 нФ. Из условия равновесия (40) вычисляем индуктивность катушки 6:
L 6 = 1 C 4 2 [ R 19 2 C 18 2 ( C 18 + C 20 ) L 22 2 R 21 2 R 23 2 ( L 22 ( R 21 + R 23 ) 2 R 21 2 + L 24 ) ] + R 5 2 C 4 = 20,0067
Figure 00000046
мГн.
Как видно из полученных результатов измерений, все искомые значения определены с высокой точностью.
Так как оба двухполюсника: и измеряемая RLC цепь 2 и ПЧНД 17, - виртуально «заземлены» и находятся в равных условиях, их токи определяются только напряжением генератора 1 и параметрами проводимости двухполюсников, т.е. отсутствует влияние измерительной схемы на параметры схемы замещения объекта измерения и двухполюсника с регулируемыми элементами. На входе операционного усилителя 7 в преобразователе «ток-напряжение» отсутствует синфазное напряжение, таким образом, устраняется и второй источник погрешности измерений, свойственный мостовым цепям.

Claims (1)

  1. Измеритель параметров двухполюсных RLC цепей, содержащий генератор импульсов напряжения, имеющего форму функции n-й степени времени, преобразователь «ток-напряжение» на первом операционном усилителе, в цепи обратной связи которого включен первый резистор, инвертирующий вход первого операционного усилителя является входом преобразователя «ток-напряжение»; n-каскадный дифференциатор на дифференцирующих RC-звеньях, вход первого дифференцирующего RC-звена подключен к выходу преобразователя «ток-напряжение»; нуль-индикатор, первый вход которого соединен с выходом n-го дифференцирующего RC-звена дифференциатора, второй вход - с выходом (n-1)-го дифференцирующего RC-звена, и т.д., …, n-й вход - с выходом первого дифференцирующего RC-звена, (n+1)-й вход нуль-индикатора подключен к выходу преобразователя «ток-напряжение»; устройство управления, первый выход синхронизации которого подключен к входу синхронизации генератора импульсов, а второй выход синхронизации - к входу синхронизации нуль-индикатора; выход генератора импульсов соединен с первой клеммой для подключения измеряемой многоэлементной двухполюсной RLC цепи, вторая клемма для подключения измеряемой RLC цепи соединена с входом преобразователя «ток-напряжение», отличающийся тем, что в него введены многоэлементный двухполюсник с регулируемыми параметрами, выполненный по схеме потенциально частотно-независимого двухполюсника, регулируемый резистор, первый полюс которого подключен к выходу генератора импульсов, и инвертор тока на втором операционном усилителе, инвертирующий вход которого соединен со вторым полюсом регулируемого резистора, в цепи обратной связи второго операционного усилителя включен второй резистор, а его выход соединен с входом преобразователя «ток-напряжение» через третий резистор, причем второй и третий резисторы имеют одинаковые сопротивления; многоэлементный потенциально частотно-независимый двухполюсник содержит две параллельно включенные двухполюсные цепи, первая из которых содержит первый конденсатор и включенную последовательно с ним цепь, состоящую из параллельно соединенных резистора и второго конденсатора; вторая двухполюсная цепь содержит первый резистор и включенную последовательно с ним первую катушку индуктивности, параллельно которой подсоединены последовательно включенные второй резистор и вторая катушка индуктивности; первый полюс потенциально частотно-независимого двухполюсника подключен к выходу генератора импульсов, а второй полюс - к входу преобразователя «ток-напряжение».
RU2012118463/28A 2012-05-03 2012-05-03 Измеритель параметров двухполюсных rlc цепей RU2499269C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012118463/28A RU2499269C1 (ru) 2012-05-03 2012-05-03 Измеритель параметров двухполюсных rlc цепей

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012118463/28A RU2499269C1 (ru) 2012-05-03 2012-05-03 Измеритель параметров двухполюсных rlc цепей

Publications (2)

Publication Number Publication Date
RU2012118463A RU2012118463A (ru) 2013-11-10
RU2499269C1 true RU2499269C1 (ru) 2013-11-20

Family

ID=49516725

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012118463/28A RU2499269C1 (ru) 2012-05-03 2012-05-03 Измеритель параметров двухполюсных rlc цепей

Country Status (1)

Country Link
RU (1) RU2499269C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709052C2 (ru) * 2017-10-24 2019-12-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Измеритель параметров двухполюсников

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2150709C1 (ru) * 1999-03-16 2000-06-10 Ульяновский государственный технический университет Частотно-независимый многоплечий трансформаторный мост переменного тока для измерения параметров трехэлементных двухполюсников по последовательной rlc-схеме и способ его уравновешивания
RU2229141C1 (ru) * 2003-02-07 2004-05-20 Орловский государственный технический университет Измеритель параметров двухполюсников
RU2390787C1 (ru) * 2009-05-04 2010-05-27 Государственное образовательное учреждение высшего профессионального образования Курский государственный технический университет Измеритель параметров многоэлементных пассивных двухполюсников
US20100250167A1 (en) * 2007-11-26 2010-09-30 Commissar. A L'energ. Atom. Et Aux Energ. Altern. Near field remote measurement architecture for remote passive type sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2150709C1 (ru) * 1999-03-16 2000-06-10 Ульяновский государственный технический университет Частотно-независимый многоплечий трансформаторный мост переменного тока для измерения параметров трехэлементных двухполюсников по последовательной rlc-схеме и способ его уравновешивания
RU2229141C1 (ru) * 2003-02-07 2004-05-20 Орловский государственный технический университет Измеритель параметров двухполюсников
US20100250167A1 (en) * 2007-11-26 2010-09-30 Commissar. A L'energ. Atom. Et Aux Energ. Altern. Near field remote measurement architecture for remote passive type sensor
RU2390787C1 (ru) * 2009-05-04 2010-05-27 Государственное образовательное учреждение высшего профессионального образования Курский государственный технический университет Измеритель параметров многоэлементных пассивных двухполюсников

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2709052C2 (ru) * 2017-10-24 2019-12-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Юго-Западный государственный университет" (ЮЗГУ) Измеритель параметров двухполюсников

Also Published As

Publication number Publication date
RU2012118463A (ru) 2013-11-10

Similar Documents

Publication Publication Date Title
KR101144684B1 (ko) 전지 특성 평가 장치
CN106066425B (zh) 一种阻抗测量装置及其实现校准补偿的方法
CN107209211A (zh) 用于罗戈夫斯基线圈传感器的电子积分器
CN106443543A (zh) 电流传感器的线性度测试方法
EP2024755B1 (en) A method for determining the linear electrical response of a transformer, generator or electrical motor
RU2499269C1 (ru) Измеритель параметров двухполюсных rlc цепей
CN107228886B (zh) 水的电导率电阻率检测的测量装置和方法
RU2447452C1 (ru) Мостовой измеритель параметров двухполюсников
RU2499997C2 (ru) Мостовой измеритель параметров двухполюсников
CN102768334B (zh) 电路分析仪的分析方法
CN105372498B (zh) 用于暂态电流测定的分流器阻抗参数确定方法
RU2390787C1 (ru) Измеритель параметров многоэлементных пассивных двухполюсников
RU2390785C1 (ru) Способ измерения параметров многоэлементных пассивных двухполюсников и устройство для его реализации
RU2495440C2 (ru) Измеритель параметров многоэлементных пассивных двухполюсников
US10520349B2 (en) Circuit for simulating a capacitance fuel probe
RU2434234C1 (ru) Способ определения параметров многоэлементных двухполюсников и устройство для его реализации
RU2499263C1 (ru) Мостовой измеритель параметров многоэлементных rlc двухполюсников
RU2556301C2 (ru) Измеритель параметров многоэлементных rlc-двухполюсников
RU2466412C2 (ru) Измеритель параметров многоэлементных пассивных двухполюсников
RU2365921C1 (ru) Мостовой измеритель параметров пассивных двухполюсников
RU2509311C1 (ru) Мостовой измеритель параметров пассивных многоэлементных rlc двухполюсников
CN110927504A (zh) 一种基于lcr的组合网络的分析方法、装置及设备
RU2575765C1 (ru) Измеритель параметров многоэлементных пассивных двухполюсников
RU2631540C1 (ru) Мостовой измеритель параметров n-элементных двухполюсников
RU168749U1 (ru) Мост для измерения параметров произвольного пассивного двухполюсника

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140504