RU2497005C1 - Твердотопливный газогенератор для катапультного устройства ракеты - Google Patents

Твердотопливный газогенератор для катапультного устройства ракеты Download PDF

Info

Publication number
RU2497005C1
RU2497005C1 RU2012113879/06A RU2012113879A RU2497005C1 RU 2497005 C1 RU2497005 C1 RU 2497005C1 RU 2012113879/06 A RU2012113879/06 A RU 2012113879/06A RU 2012113879 A RU2012113879 A RU 2012113879A RU 2497005 C1 RU2497005 C1 RU 2497005C1
Authority
RU
Russia
Prior art keywords
solid
sections
ballistic
fine
powder
Prior art date
Application number
RU2012113879/06A
Other languages
English (en)
Inventor
Василий Тихонович Никитин
Алексей Анатольевич Кислицын
Алексей Васильевич Козьяков
Владимир Федорович Молчанов
Original Assignee
Открытое акционерное общество "Научно-исследовательский институт полимерных материалов"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Научно-исследовательский институт полимерных материалов" filed Critical Открытое акционерное общество "Научно-исследовательский институт полимерных материалов"
Priority to RU2012113879/06A priority Critical patent/RU2497005C1/ru
Application granted granted Critical
Publication of RU2497005C1 publication Critical patent/RU2497005C1/ru

Links

Images

Landscapes

  • Air Bags (AREA)

Abstract

Твердотопливный газогенератор катанультного устройства ракеты включает корпус с передней крышкой, опорной решеткой, ниронатроном и центральной трубкой-запальником с перфорированным участком со стороны опорной решетки и форсажный заряд из твердого топлива. Форсажный заряд размещен в герметичном секционном пакете из полиэтилентерефталатной пленки, ламинированной полиэтиленом, в виде патронташа, свернутого в цилиндр и размещенного в кольцевом объеме между стенками корпуса газогенератора и центральной трубкой-запальником. Герметичные за счет сварных швов секции пакета на части длины, со стороны передней крышки заполнены тонкосводными шашками баллиститного твердого ракетного топлива, а на оставшейся длине - дымным гранулированным порохом. Общая масса дымного пороха составляет 0,6 от суммарной массы тонкосводных шашек баллиститного твердого ракетного топлива. Тонкосводные шашки баллиститного твердого ракетного топлива и навеска гранулированною дымного пороха в каждой секции разделены общим для всех секций сварным разделительным швом. Перфорация трубки-запальника расположена но месту заполнения секций дымным гранулированным порохом. Изобретение позволяет повысить надежность твердотопливного газогенератора и повысить стабильность его характеристик. 2 з.п. ф-лы, 7 ил.

Description

Изобретение относится к области ракетной техники и может быть использовано при проектировании, отработке и изготовлении твердотопливных газогенераторов (ГГ) катапультных устройств (КУ) ракет и форсажных зарядов твердого топлива к ним.
Особенностью таких ГГ является обеспечение программированного газоприхода в катапультное устройство за малое время (сотые доли секунды), необходимое для катапультирования ракеты массой 400…600 кг из транспортно-пускового контейнера.
Известны малоразмерные газогенераторы к катапультным устройствам систем аварийного спасения (САС) на базе пиропатронов (ат. RU 2230211 от 11.06.04), катапультное устройство для САС вертолета с использованием тянущего 2-режимного ракетного двигателя (ат. RU 232698 от 20.07.04), заряд к катапультному устройству ракеты (ат. RU 2213245 от 27.09.03), форсажный заряд твердого топлива для газогенератора катапультного устройства ракеты (ат. RU 2287714 от 20.11.06).
Общими недостатками первых двух аналогов патентуемого ГГ являются: низкая технологичность в изготовлении, недостаточная газопроизводительность применительно к массе катапультируемых ракет 400…600 кг.
Недостатком аналога по ат. RU 2213245 от 27.09.03 является низкая эксплуатационная надежность его из-за отсутствия фиксации заряда в радиальном направлении: при значительных транспортных перегрузках при перевозках на большие расстояния при повышенных температурах форсажный заряд в пленочной оболочке теряет необходимую жесткость, образованный форсажным зарядом канал теряет форму цилиндра и, таким образом, нарушается последовательная работа форсажного заряда.
Наиболее близким к патентуемой конструкции является форсажный заряд, используемый в твердотопливном ГГ по патенту RU 2287714 от 20.11.06, принятый авторами за прототип. Прототип совпадает с патентуемым изобретением в части оформления оболочки заряда в виде многосекционного пакета (патронташа) из полиэтилентерефталатной пленки, ламинированной полиэтиленом, в части используемых материалов (пленка, дымный ружейный порох, баллиститное твердое ракетное топливо - БТРТ), в части технологии герметизации (термосварка) и схемы укладки форсажного заряда по периметру камеры сгорания в корпусе ГГ.
Прототип технологичен, прост в изготовлении, допускает автоматезированное изготовление, в нем используются доступные и недорогие материалы. Однако наличие в составе форсажного заряда относительно большой навески дымного пороха, равной по массе 0,8…1,2 массы тонкосводных шашек из БТРТ, не позволяет достичь максимальной эффективности ГГ: газопроизводительность дымного пороха меньше таковой баллиститного твердого ракетного топлива в 1,67…1,84 раза. К тому же, зерна (гранулы) дымного пороха различаются по размеру между собой вдвое, поэтому, в сравнении с калиброванными тонкосводными шашками из баллиститного твердого ракетного топлива (БТРТ) характеризуются большим разбросом внутрибаллистических характеристик (ВБХ). Помимо этого форсажный заряд прототипа опирается с торцов в камере сгорания ГГ только на секции с дымным порохом (они заполнены, в силу подвижности сыпучего дымного пороха, на полную длину, а секции с тонкосводными шашками БТРТ имеют с концов свободный объем, необходимый для получения поперечных сварных швов при объемном заполнении секций тонкосводными шашками БТРТ, поэтому они не могут быть опорными). Газогенератор с таким зарядом менее надежен в эксплуатации в сравнении с тем, в котором заряд опирается на все заполненные секции.
Технической задачей изобретения является разработка наиболее эффективной и надежной конструкции твердотопливного газогенератора с форсажным зарядом, обеспечивающей стабильность (воспроизводимость) характеристик, компактность при сохранении всех положительных качеств прототипа.
Указанная техническая задача решается в рамках патентуемого изобретения за счет максимально-возможного уменьшения в форсажном заряде массы дымного пороха.
Технический результат изобретения заключается в выполнении форсажного заряда из твердого топлива (Фиг.1, Фиг.2, Фиг.3) для газогенератора катапультного устройства ракеты таким образом, что все герметичные за счет сварных швов секции пакета на части длины, со стороны передней крышки ГГ, заполнены тонкосводными шашками БТРТ, а на оставшейся части - дымным гранулированным порохом, причем сами части отделены друг от друга единым для всех секций сварным разделительным швом, а в поперечном сечении обе части каждой секции близки по форме и максимально заполнены твердым топливом, при этом перфорация трубки-запальника расположена по месту заполнения секций пакета дымным гранулированным порохом, причем общая масса дымного гранулированного пороха составляет 0,6 суммарной массы тонкосводных шашек БТРТ всех секций. Количество секций в пакете находится в пределах от 4 до 6: при количестве секций меньше 4-х или больше 6-и требуется удлинять камеру сгорания для сохранения массы твердого топлива (это следует из геометрических построений и подтверждено практикой).
В качестве материала пакета (оболочки) форсажного заряда использована полимерная полиэтилентерефталатная пленка, ламинированная полиэтиленом.
Для обеспечения высокой эффективности, требуемого уровня внутрибаллистических характеристик (ВБХ), программированного выхода ГГ на рабочий режим форсажный заряд может быть выполнен:
1) с применением в качестве дымного пороха гранулированного мелкозернистого пороха типа ДРП или типа КЗДП, или смеси порохов ДРП и КЗДП;
2) с применением в форсажном заряде твердотопливных шашек БТРТ различных типоразмеров, из различных марок баллиститного твердого ракетного топлива;
3) с выполнением твердотопливных тонкосводных шашек из БТРТ со следующими характеристиками:
- наружный диаметр шашки - 6 мм;
- диаметр канала шашки - 3 мм;
- скорость горения твердого топлива при температуре 20°С и давлении 200 кгс/см2 - 21…27 мм/с.
Сущность изобретения заключается в повышении:
- эффективности форсажного заряда;
- надежности выхода ГГ на рабочий режим в короткое время;
- эксплуатационной надежности;
- в оптимизации конструкции в целом, а именно:
а) в части размещения в каждой секции пакета и тонкосводных шашек из баллиститного твердого ракетного топлива, и навески дымного пороха, причем дымный порох расположен со стороны опорной решетки, к тому же, тонкосводные шашки БТРТ и дымный порох отделены друг от друга в каждой секции разделительным сварным швом, единым для всех секций;
б) в ограничении суммарной массы дымного пороха 0,6 от суммарной массы тонкосводных шашек БТРТ всех секций, обусловленном минимально-допустимым временем зажжения тонкосводных шашек БТРТ;
в) в использовании сочетания твердотопливных шашек различных типоразмеров из различных марок БТРТ и различных марок дымного пороха и их смесей, что позволяет обеспечить программированный выход ГГ на рабочий режим.
Сущность изобретения поясняется Фиг.1-7.
На Фиг.1 - Конструкция патентуемого газогенератора, Фиг.2 - Поперечное сечение патентуемого ГГ по месту расположения тонкосводных шашек БТРТ, Фиг.3 - Поперечное сечение патентуемого ГГ по месту расположения дымного пороха, где:
1 - корпус ГГ;
2 - оболочка (пакет) форсажного заряда из полиэтилентерефталатной пленки, ламинированной полиэтиленом;
3 - продольные сварные швы. За счет этих швов образуются секции пакета;
4 - тонкосводные шашки БТРТ. За счет тонкого свода шашек БТРТ и их высокой скорости горения обеспечивается требуемое минимальное время выхода ГГ на рабочий режим;
5 - гранулированный дымный порох. Характеризуется хорошей воспламеняемостью, но высоким разбросом размеров гранул и низким газообразованием (600…650 л/кг). Высокий разброс размеров гранул приводит к большому (зачастую недопустимому) разбросу времени выхода ГГ на рабочий режим;
6 - трубка-запальник; обеспечивает передачу пламени от пиропатрона к навескам дымного пороха в секциях пакета;
7 - передняя крышка;
8 - пиропатрон;
9 - опорная решетка; удерживает форсажный заряд в камере сгорания ГГ;
10 - прокладка из электрокартона: исключает повреждение форсажного заряда, обеспечивает необходимое давление продуктов сгорания для надежного зажжения тонкосводных шашек БТРТ, надежно компенсирует осевые транспортные перегрузки, исключает повреждение узлов катапультного устройства при выбросе ее из камеры сгорания;
11 - перфорация трубки-запальника; обеспечивает равномерное распределение и направление форса пламени пиропатрона на ту часть секций, где расположен дымный порох;
12 - дроссельное отверстие; за счет него стравливается избыточное давление в камере сгорания ГГ;
13 - свободный объем; образуется с двух сторон связки шашек в каждой секции, как переходный участок от плоского сварного шва к объему, занятому связкой тонкосводных шашек БТРТ в каждой секции пакета;
14 - поперечные сварные швы; обеспечивают герметичность секций;
15 - разделительный поперечный сварной шов; исключает смешение дымного пороха и тонкосводных шашек БТРТ;
L - длина камеры сгорания, занимаемая форсажным зарядом;
(1/5…1/4)L - длина перфорированного участка трубки-запальника.
Фиг.4 - Схема движения продуктов сгорания (ПС) дымного пороха в прототипе ГГ,
16 - направление движения продуктов сгорания пиропатрона;
17 - направление движения продуктов сгорания дымного пороха
в сторону боковой цилиндрической поверхности тонкосводных шашек БТРТ, наименее воспламеняемой поверхности.
Фиг.5 - Схема движения продуктов сгорания (ПС) дымного пороха в поперечном сечении прототипа,
Фиг.6 - Схема движения ПС пиропатрона и дымного пороха в патентуемой конструкции ГГ,
18 - направление действия ПС дымного пороха в продольном сечении ГГ в сторону торцевой поверхности тонкосводных шашек БТРТ, наиболее воспламеняемой поверхности.
Фиг.7 - Зависимость давления ПС в камере сгорания ГГ от времени,
19 - кривая P(t) патентуемого ГГ;
20 - кривая P(t) прототипа ГГ;
21 - восходящий участок кривой P(t) патентуемого ГГ;
22 - восходящий участок кривой P(t) прототипа ГТ;
23 - площадь под кривой (работа) патентуемого ГГ;
24 - площадь под кривой (работа) прототипа ГГ.
Существенными отличительными признаками патентуемого изобретения являются:
1) размещение в каждой секции пакета («патронташа») и тонкосводных шашек БТРТ, и дымного пороха при расположении перфорации трубки-запальника по месту нахождения в форсажном заряде дымного пороха. Такая конструкция позволяет уменьшить навеску дымного пороха в 1,5 раза за счет ее сосредоточения в одном месте ГГ, у торцевой поверхности шашек БТРТ, увеличить, при необходимости, соответственно массу тонкосводных шашек БТРТ, обладающих большей в 1,67…1,84 раза газопроизводительностью в сравнении с дымным порохом, и калиброванным горящим сводом тонкосводных шашек БТРТ против разброса размеров гранул дымного пороха в два раза. Это отличие существенно повышают эффективность патентуемого ГГ;
2) размещение дымного пороха в каждой секции пакета со стороны опорной решетки, по месту расположения перфорации в трубке-запальнике позволяет:
а) обеспечить непосредственное и равномерное воздействие ПС дымного пороха на все поверхности тонкосводных шашек БТРТ (торцевую, канальную, наружную цилиндрическую), и в первую очередь, торцевую, наиболее воспламеняемую по причине ее механической обработки в процессе производства (М.Саммерфильд «Исследования ракетных двигателей на твердом топливе». Изд. «Иностранная литература», 1963). В прототипе продукты сгорания дымного пороха воздействуют в начальный момент в основном на наружную цилиндрическую поверхность тонкосводных шашек БТРТ, т.е. на менее воспламеняемую поверхность (Фиг.4, Фиг.5);
б) освободить все свободное сечение опорной решетки для свободного выхода ПС после выброса прокладки;
3) отделение тонкосводных шашек от гранулированного дымного пороха в каждой секции единым разделительным сварным швом:
а) исключает попадание гранул дымного пороха в свободную часть объема, занятого твердотопливными шашками.
В случае смешения тонкосводных шашек с дымным порохом нарушается механизм (последовательность) срабатывания форсажного заряда, что приводит к увеличению разброса ВБХ, и снижается эксплуатационная надежность ГГ;
б) единый для всех секций разделительный сварной шов исключает разновес дымного пороха в разных секциях (в противном случае единый сварной шов невозможно выполнить).
Расположение перфорации трубки-запальника по месту расположения всего объема дымного пороха каждой секции обеспечивает одновременность зажжения дымного пороха всех секций, что гарантирует стабильность выхода ГГ на рабочий режим.
Обеспечение суммарной массы дымного пороха, равной 0,6 от суммарной массы тонкосводных шашек БТРТ всех секций против 0,8…1,2 прототипа, позволяет: во-первых, заменить часть массы дымного пороха соответствующей массой шашек БТРТ без изменения массы форсажного заряда, тем самым существенно повысить эффективность ГГ. В случае сохранения массы тонкосводных шашек БТРТ сокращается длина ГГ соответственно уменьшению массы дымного пороха; во-вторых, калиброванные тонкосводные шашки БТРТ отличаются «жесткими» допусками на диаметральные размеры (на величину горящего свода), в то время как зерна (гранулы) дымного пороха различаются по размеру вдвое, т.е. сокращение доли дымного пороха в общей массе форсажного заряда уменьшает разброс ВБХ газогенератора.
При последовательном (тандемном) и одинаковом для всех секций расположении связки тонкосводных шашек БТРТ и дымного пороха, разделенных поперечным, единым для всех секций сварным швом, обеспечивается равномерная эксплуатационная нагрузка на все секции, что повышает эксплуатационную надежность ГГ.
Патентуемая конструкция ГГ практически реализована (Фиг.1, Фиг.2, Фиг.3) в виде четырехсекционного пакета с габаритными размерами развернутого форсажного заряда применительно к камере сгорания ГГ с внутренним диаметром 55 мм и диаметром трубки-запальника 10 мм:
- длина 138 мм,
- ширина 130 мм
с размещением в каждой секции на длине 60 мм по 13 тонкосводных шашек БТРТ с размерами: наружный диаметр 6 мм, диаметр канала 3 мм, длина 60 мм; на длине каждой секции 30 мм размещено по 15 г дымного пороха марки КЗДП-2. В качестве материала пакета (оболочки) использована полиэтилентерефталатная пленка, ламинированная полиэтиленом. Толщина пленки 60 мкм. Сварные швы выполнены по полиэтилену. Скорость горения БТРТ при начальной температуре 20°С и давлении 200 кгс/см2 составила 24 мм/с. Патентуемый ГГ с форсажным зарядом подвергнут огневому стендовому испытанию, которое подтвердило требуемый уровень характеристик (время задержки воспламенения, время выхода на режим, программированную зависимость давления в ГГ от времени, требуемое газообразование и другие ВБХ).
Патентуемый ГГ работает следующим образом (Фиг.1, 6).
После подачи импульса на пиропатрон (8) продукты его сгорания по трубке-запальнику (6) устремляются (16) в ее конец, примыкающий к опорной решетке (9). Часть избыточного газа через дросселирующее отверстие (12) стравливается, а большая часть высокотемпературных продуктов сгорания через перфорацию (11) воздействуют на пленочную оболочку, моментально прожигают ее и воспламеняют дымный порох (5) во всех секциях (Дросселирующее отверстие может отсутствовать при использовании крупнозернистого дымного пороха или смеси ДРП и КЗДП, а также при минимально-допустимой скорости горения тонкосводных шашек БТРТ). После этого смесь продуктов сгорания (от пиропатрона и дымного пороха) устремляется к торцевой части тонкосводных шашек БТРТ и к опорной решетке (9) с прокладкой (10). По достижении определенного давления прокладка выносится через окна опорной решетки, освобождая выход для продуктов сгорания форсажного заряда в КУ. С противоположной стороны продукты сгорания дымного пороха охватывают все поверхности тонкосводных шашек БТРТ, и в первую очередь, торцевые поверхности шашек.
В отличие от прототипа (Фиг.4, Фиг.5) в зоне зажжения дымного пороха в патентуемом ГГ оказывается вся его навеска. А у прототипа, несмотря на то, что навеска дымного пороха в 1,5 и более раз больше, чем в патентуемом ГГ, в этой же зоне оказывается сосредоточено меньше дымного пороха по причине распределения его по всей длине камеры сгорания ГГ: навеска дымного пороха патентуемого ГТ в опыте составила в зоне перфорации 60 г; у прототипа в зоне перфорации (на 1/5…1/4 длины трубки-запальника) она оказывается равной 20,0…22,5 г
(вся навеска дымного пороха прототипа - 90 г), т.е. втрое меньше. К тому же, в патентуемом ГГ продукты сгорания дымного пороха охватывают сразу же все поверхности тонкосводных шашек БТРТ, и в первую очередь, торцевые, наиболее воспламеняемые. У прототипа (Фиг.4, Фиг.5) продукты сгорания дымного пороха направлены первоначально на глянцевую боковую поверхность тонкосводных шашек БТРТ, менее воспламеняемой, чем торцевая поверхность.
Из приведенного ясно, что навески 60 г дымного пороха достаточно (с запасом) для воспламенения 100 г твердотопливных шашек.
На Фиг.7 приведены кривые P(t), полученные по результатам огневых стендовых испытаний патентуемого ГГ(19) и прототипа (20).
По восходящим участкам кривых (21, 22) видно, что зависимость P(t) патентуемого ГГ (21) опережает соответствующий участок кривой прототипа (22). Это объясняется тем, что газоприход в патентуемом ГГ обеспечивается быстрее, чем в прототипе, за счет одновременности зажжения навесок дымного пороха во всех секциях и за счет того, что в зоне зажжения сосредоточена вся масса дымного пороха (60 г вместо 20…22,5 г прототипа).
Пик давления прототипа превышает таковой патентуемого ГГ из-за большей массы дымного пороха прототипа.
Небольшое плато (tпл) на кривой патентуемого ГГ (обеспечивается одновременным горением твердотопливных шашек как с наружной, так и с канальной поверхностей (нейтральное горение). В прототипе горение с наружной поверхности шашек опережает горение по каналу. Все это объясняет разный характер сравниваемых кривых.
Время работы прототипа (tпp) превышает время работы (tпат) патентуемого ГГ. Объясняется это тем, что масса дымного пороха прототипа, по крайней мере, в 1,5 раза больше, чем у патентуемого, и разброс размера зерна сказывается на прототипе в большей степени.
Площади под обеими кривыми P(t) практически одинаковы, т.е. газогенераторы произвели одинаковую работу, но за разное время, что указывает на более эффективное использование в патентуемом ГГ энергии форсажного заряда, учитывая ее меньшую массу.
Таким образом, патентуемый твердотопливный газогенератор за счет принципиального изменения конструкции форсажного заряда отличается:
- повышенной эффективностью (при меньшей массе форсажного заряда обеспечивается равная с прототипом работа);
- высокой надежностью выполнения ВБХ, т.к. все продукты сгорания дымного пороха в первую очередь напрямую воздействуют на самые воспламеняемые (торцевые) поверхности тонкосводных шашек БТРТ;
повышенной эксплуатационной надежностью (при эксплуатационных перегрузках обеспечивается опора на торцевые поверхности всех секций, вместо двух у прототипа;
- улучшенной стабильностью (за счет уменьшения навески дымного пороха, характеризующегося большим разбросом размера его гранул);
- компактностью (сокращается длина ГГ за счет меньшей навески дымного пороха).
Помимо этого сохраняются все положительные качества прототипа: простота конструктивного оформления, технологичность, возможность автоматизированного изготовления, доступность и недефицитность используемых материалов.

Claims (3)

1. Твердотопливный газогенератор для катапультного устройства ракеты, включающий корпус с передней крышкой, опорной решеткой, пиропатроном и центральной трубкой-запальником с перфорированным участком со стороны опорной решетки и форсажный заряд из твердого топлива, размещенный в герметичном секционном пакете из полиэтилентерефталатной пленки, ламинированной полиэтиленом, в виде патронташа, свернутого в цилиндр и размещенного в кольцевом объеме между стенками корпуса газогенератора и центральной трубкой-запальником, отличающийся тем, что все герметичные за счет сварных швов секции пакета на части длины со стороны передней крышки заполнены тонкосводными шашками баллиститного твердого ракетного топлива, а на оставшейся длине - дымным гранулированным порохом, причем общая масса дымного пороха составляет 0,6 от суммарной массы тонкосводных шашек баллиститного твердого ракетного топлива, к тому же тонкосводные шашки баллиститного твердого ракетного топлива и навеска гранулированного дымного пороха в каждой секции разделены общим для всех секций сварным разделительным швом, а перфорация трубки-запальника расположена по месту заполнения секций дымным гранулированным порохом.
2. Твердотопливный газогенератор по п.1, отличающийся тем, что в секциях размещено равное или различное количество тонкосводных шашек баллиститного твердого ракетного топлива одинаковых или различных типоразмеров.
3. Твердотопливный газогенератор по п.1 или 2, отличающийся тем, что наружный диаметр тонкосводных шашек баллиститного твердого ракетного топлива не превышает 6 мм, а скорость горения их при температуре 20° и давлении 200 кгс/см2 обеспечивается в пределах 21…27 мм/с.
RU2012113879/06A 2012-04-09 2012-04-09 Твердотопливный газогенератор для катапультного устройства ракеты RU2497005C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012113879/06A RU2497005C1 (ru) 2012-04-09 2012-04-09 Твердотопливный газогенератор для катапультного устройства ракеты

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012113879/06A RU2497005C1 (ru) 2012-04-09 2012-04-09 Твердотопливный газогенератор для катапультного устройства ракеты

Publications (1)

Publication Number Publication Date
RU2497005C1 true RU2497005C1 (ru) 2013-10-27

Family

ID=49446787

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012113879/06A RU2497005C1 (ru) 2012-04-09 2012-04-09 Твердотопливный газогенератор для катапультного устройства ракеты

Country Status (1)

Country Link
RU (1) RU2497005C1 (ru)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB832849A (en) * 1957-10-07 1960-04-13 Talco Engineering Co Inc Improvements in or relating to vehicle ejection seats
RU2213245C1 (ru) * 2002-04-01 2003-09-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Твердотопливный заряд газогенератора
RU2230211C1 (ru) * 2002-10-14 2004-06-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Пиропатрон для катапультного кресла пилотируемого летательного аппарата
RU2232698C1 (ru) * 2002-12-23 2004-07-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Катапультное устройство для аварийного спасения пилота
RU2287714C2 (ru) * 2004-11-03 2006-11-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Форсажный заряд твердого топлива для газогенератора катапультного устройства ракеты
RU2391255C1 (ru) * 2009-01-11 2010-06-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Катапультное устройство

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB832849A (en) * 1957-10-07 1960-04-13 Talco Engineering Co Inc Improvements in or relating to vehicle ejection seats
RU2213245C1 (ru) * 2002-04-01 2003-09-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Твердотопливный заряд газогенератора
RU2230211C1 (ru) * 2002-10-14 2004-06-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Пиропатрон для катапультного кресла пилотируемого летательного аппарата
RU2232698C1 (ru) * 2002-12-23 2004-07-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Катапультное устройство для аварийного спасения пилота
RU2287714C2 (ru) * 2004-11-03 2006-11-20 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Форсажный заряд твердого топлива для газогенератора катапультного устройства ракеты
RU2391255C1 (ru) * 2009-01-11 2010-06-10 Федеральное государственное унитарное предприятие "Научно-исследовательский институт полимерных материалов" Катапультное устройство

Similar Documents

Publication Publication Date Title
US2703960A (en) Rocket
US6382105B1 (en) Agent defeat warhead device
JP6131711B2 (ja) 発射装薬
KR101839193B1 (ko) 다발형 추진제 고정장치 및 이의 제조방법
RU2497005C1 (ru) Твердотопливный газогенератор для катапультного устройства ракеты
CN102645137A (zh) 一种展开机构燃气作动筒
RU2443967C1 (ru) Кассетная головная часть
US7640858B1 (en) Stacked pellet flare assembly and methods of making and using the same
EP1962047A1 (en) A propellant charge for launching fireworks projectiles
RU2441192C2 (ru) Заряд к артиллерийскому орудию
RU2513052C2 (ru) Ракетный двигатель твердого топлива для увода отделяемых частей ракеты
US20120192704A1 (en) Systems and methods for neutralizing explosive devices
US9360223B1 (en) High velocity ignition system for ammunition
RU2357181C1 (ru) Газодинамический источник давления
JP2014163577A (ja) 焼尽容器、並びにこれを使用したモジュール式発射装薬
RU2601662C1 (ru) ЕДИНЫЙ ПОЛНЫЙ ПЕРЕМЕННЫЙ ЗАРЯД МИНОМЁТНОГО 82-мм ВЫСТРЕЛА
RU2289036C2 (ru) Твердотопливный газогенератор для катапультного устройства ракеты
US20150323296A1 (en) Countermeasure Flares
RU2260143C2 (ru) Твердотопливный газогенератор
RU2005138818A (ru) Способ исследования условий воспламенения пороховых зарядов взрывоопасной топливовоздушной смесью при ее подрыве и устройство для его осуществления
RU2225586C1 (ru) Кассетная боевая часть
RU2287714C2 (ru) Форсажный заряд твердого топлива для газогенератора катапультного устройства ракеты
RU2449236C2 (ru) Метательный заряд минометного выстрела
RU2230211C1 (ru) Пиропатрон для катапультного кресла пилотируемого летательного аппарата
RU2391255C1 (ru) Катапультное устройство

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150410