RU2495790C2 - Покрытие мультипликатора инжекторного ускорителя реактивного двигателя для космических и летательных аппаратов десятого поколения, подводных лодок и морских торпед - Google Patents
Покрытие мультипликатора инжекторного ускорителя реактивного двигателя для космических и летательных аппаратов десятого поколения, подводных лодок и морских торпед Download PDFInfo
- Publication number
- RU2495790C2 RU2495790C2 RU2011117391/11A RU2011117391A RU2495790C2 RU 2495790 C2 RU2495790 C2 RU 2495790C2 RU 2011117391/11 A RU2011117391/11 A RU 2011117391/11A RU 2011117391 A RU2011117391 A RU 2011117391A RU 2495790 C2 RU2495790 C2 RU 2495790C2
- Authority
- RU
- Russia
- Prior art keywords
- coating
- coat
- plates
- miu
- air flow
- Prior art date
Links
Images
Landscapes
- Application Of Or Painting With Fluid Materials (AREA)
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
Abstract
Изобретение относится к реактивной технике. Покрытие мультипликатора инжекторного ускорителя состоит из плоских, скругленных по углам пластин, изготовленных из легкого, прочного, жаростойкого сплава металла, размерами от 30 мм до 70 мм, толщиной от 3 мм до 5 мм. Покрытие крепится к поверхности неподвижно или подвижно с изменением угла атаки воздушного потока путем поворота вокруг осей шарнирных соединений кронштейнов с пластинами покрытия мультипликатора инжекторного ускорителя, приводимыми в движение рычагами-толкателями от гидропривода, с установленными под пластинами покрытия мультипликатора инжекторного ускорителя на кронштейнах соленоидами. Соленоиды изготовлены из материалов с высокими техническими характеристиками и запитаны от бортового источника электропитания. По проводникам соленоидов проходит электрический ток, создающий вокруг соленоидов с пластинами покрытия мультипликатора инжекторного ускорителя магнитные поля, взаимодействующие с заряженными частицами - ионами, заполняющими воздушный поток, придавая дополнительные импульсы кинетической энергии - ускорение, увеличивая при этом скорость движения ионизированного воздушного потока. Воздушный поток проходит через фронтально установленные ионизаторы перед поверхностью покрытия мультипликатора инжекторного ускорителя. Достигается увеличение скорости истечения реактивной струи. 3 ил.
Description
Область техники, к которой относится изобретение:
1. космическая реактивная техника;
2. летательные аппараты;
3. подводные лодки, надводные корабли;
4. морские торпеды;
5. машиностроение, моторостроение;
6. гидравлика, насосы;
7. газоперекачивающие, компрессорные станции;
8. артиллерийские орудия, стрелковое вооружение и т.д.
Уровень техники.
Аналоги подобных устройств, таких как покрытие «МИУ» мультипликатора-инжекторного ускорителя реактивного двигателя (РД) для космических и летательных аппаратов, а также какие-либо другие подобные покрытия для уменьшения силы трения воздушных потоков о поверхность покрытия вышеуказанных объектов, мне не известны.
Раскрытие изобретения.
Покрытие «МИУ» - устройство, конструкция которого позволяет существенно снизить силы трения воздушного потока с поверхностью покрытия. При прохождении воздушного и газовоздушного потоков, по поверхности покрытия, за счет рельефа поверхности покрытия «МИУ» образуется тонкий разряженный слой, который позволяет увеличить коэффициент полезного действия, далее КПД и тяговые характеристики РД.
Покрытие «МИУ» представляет собой плоские, скругленные по углам пластины из легких, прочных, жаростойких сплавов металла, габаритные размеры - толщина от 3 мм до 5 мм, ширина и длина от 30 мм до 70 мм. Покрытие «МИУ» используется двух типов «пассивное» - (неподвижное) и «активное» - (подвижное). «Пассивное» покрытие механически крепится в «челночном порядке» (в «шахматном порядке») (в виде «рыбьей чешуи») на поверхности объекта), «активное» покрытие должно быть расположено так же в «челночном порядке» (в «шахматном порядке»), (в виде «рыбьей чешуи») крепится на подвижных кронштейнах, с изменением угла атаки воздушного потока - путем поворота вокруг осей шарнирных соединений кронштейнов с пластинами покрытия МИУ, приводимыми в движение рычагами - толкателями от гидропривода (см. фигура №1).
Цели: 1) создание покрытия «МИУ», для космических и летательных аппаратов, обеспечивающего прохождение реактивной струи в воздушном потоке, далее ВП, внутри МИУ, которое значительно уменьшает силы трения реактивной струи о внутреннюю поверхность МИУ и снижение различного рода газовоздушных завихрений, что приведет к увеличению: скорости истечения реактивной струи; реактивной силы тяги (FтягиРД).
Условное обозначение:
ГВП=PC+ВП
где:
ГВП - газовоздушный поток (смесь);
PC - реактивная струя;
ВП - воздушный поток.
2) создание покрытия, используемого при облицовочном покрытии наружных поверхностей космических и летательных аппаратов, для снижения сил трения, создающихся воздушными потоками, обтекаемыми поверхности движущихся объектов.
Пассивное покрытие используется при облицовочном покрытии внутренних поверхностей МИУ, а активное покрытие «МИУ» необходимо использовать при облицовочном покрытии наружных поверхностей рассматриваемых объектов движения.
Пассивное покрытие «МИУ» без соленоидов устанавливается исключительно в зоне высоких температур реактивной струи в газовоздушном потоке.
Принцип действия покрытия «МИУ» - за счет ступенчатого рельефа поверхности покрытия «МИУ», полученного за счет крепления в челночном порядке (в виде «рыбьей чешуи» пластин покрытия «МИУ»). При прохождении ВП по поверхности покрытия «МИУ», на поверхности объекта, появляется тонкий разряженный слой, позволяющий с меньшим сопротивлением - (силами трения газовоздушного потока о поверхность покрытия «МИУ»), проходить газовоздушному потоку по поверхности покрытия «МИУ».
Для более эффективного снижения сил трения воздушного потока с поверхностью покрытия «МИУ», под каждой пластиной покрытия «МИУ», устанавливаются электромагнитные соленоиды, подключенные к бортовому источнику питания так, чтобы полярность соленоидов была сориентирована северным полюсом вперед по ходу движения летательного аппарата (см. фиг. №1, п.6). Таким образом, проходящий по проводникам соленоидов электрический ток создает магнитные поля. Силовые линии магнитных полей выходят и северного полюса и входят в южный плюс соленоидов. Так как силовые наружные линии магнитных полей Соленоидов направлены с северного полюса к южному по ходу движения летательного аппарата, то магнитные поля взаимодействует с заряженными частицами - ионами, находящимися в воздушном потоке, прошедшего через ионизаторы, расположенные фронтально к набегающему, обтекаемому, поверхность летательного аппарата, воздушному потоку. Магнитные поля взаимодействуют с заряженными частицами - ионами, придавая дополнительные импульсы кинетической энергии - ускорение, в связи с чем увеличивают скорость движения ионизированного воздушного потока, прошедшего через фронтально установленные ионизаторы перед поверхностью покрытия «МИУ».
Для взаимодействия электромагнитных полей с ионизированным воздушным потоком, необходимо иметь заряженные частицы в ВП, где необходим ионизированный поток воздушной смеси. С этой целью перед покрытием «МИУ» необходимо фронтально (перпендикулярно к воздушному потоку) установить ионизаторы (на фигурах №№1, 2, 3, ионизаторы не показаны).
У «Активного» покрытия «МИУ» принцип действия тот же самый, только увеличивается диапазон эксплуатационных возможностей и повышается его эффективность. Соленоиды выполняются из материалов с высоким техническими характеристиками, располагаются непосредственно на кронштейнах крепления под каждой пластиной покрытия «МИУ» и перемещаются одновременно с пластинами (см. фиг. №1, п.6), с изменением угла атаки воздушного потока - путем поворота вокруг осей шарнирных соединений кронштейнов с пластинами покрытия «МИУ», приводимыми в движение рычагами-толкателями от гидропривода.
При использовании «Активного» покрытия «МИУ» при повороте кронштейнов с пластинами покрытия с изменением угла атаки, под пластинами появляются полости, в которых возникает нежелательное разряжение, завихрение воздушного потока. Чтобы избежать этих неприятностей, необходимо использовать принудительную подачу воздуха, или использовать встречный поток воздуха, направляя его в места разряжения под пластины покрытия, до уравновешивания давления воздушного потока над поверхностью покрытия «МИУ» с давлением под пластинами покрытия, что несомненно устранит разряжение и завихрение воздушного потока.
Еще один положительный фактор, несмотря на очень большие скорости движения воздушных потоков, в непосредственной близости поверхностей различных объектов, благодаря покрытию «МИУ», практически отсутствуют силы трения между покрытием и воздушным потоком, проходящим с большой скоростью, что сопровождается понижением температуры самого покрытия «МИУ». Это имеет большое практическое значение при движении различных объектов как в космосе, в воздухе, над водой и под водой.
При сверхзвуковых скоростях, из-за наличия трения воздушных потоков о поверхность покрытия, температура обшивки (керамической) на космических «челноках», при входе в плотные слои атмосферы, достигает 4500°С.
Покрытие «МИУ» - устройство, состоящее из пластин прочных, жаростойких сплавов металла, толщиной от 3 мм до 5 мм, шириной и длиной от 30 мм до 70 мм, расположенных в «шахматном порядке» в виде «рыбьей чешуи» с креплением к поверхности объекта неподвижным - «пассивным» и подвижным - «активным» способом крепления, имеющее общее с прототипом - «рыбья чешуя» (фигура №1 вид сверху), отличающееся тем, что у покрытия «МИУ»:
1. плоские, скругленные по краям пластины, изготовленные из легких, прочных, жаростойких сплавов металла, толщиной от 3 мм до 5 мм, шириной и длиной от 30 мм до 70 мм (см. фигура №1 вид сверху);
2. крепление пластин к поверхности объекта предусмотрено двумя способами - неподвижным «Пассивным» и подвижным «Активным» (см. фигуры №№1, 2);
3. при прохождении воздушного потока по поверхности покрытия «МИУ», за счет рельефа поверхности покрытия, образуется тонкий разряженный слой, снижающий силы трения ВП о поверхность покрытия «МИУ» (см. фигуру №3);
4. для более эффективного снижения сил трения с поверхностью покрытия, во время прохождения ВП, создаются магнитные поля посредством соленоидов, установленных под пластинами покрытия «МИУ», из материалов с высокими техническими характеристиками, и одновременным с ними перемещением (см. фигура №1). Магнитные поля создается вокруг соленоидов при прохождении электрического тока по проводникам, подключенным к бортовому источнику элктропитания. Созданные магнитные поля взаимодействуют с заряженными частицами - ионами, придавая дополнительный импульс кинетической энергии - ускорение, увеличивая при этом скорость движения ионизированного воздушного потока, прошедшего через фронтально установленные ионизаторы перед поверхностью покрытия «МИУ»;
5. для взаимодействия электромагнитных полей с воздушным потоком, необходимо иметь заряженные частицы в ВП, т.е. необходим ионизированный поток воздушной смеси. С этой целью перед покрытием «МИУ» устанавливается ионизаторы (на фигурах №№1, 2, 3 не показан);
6. при прохождении ВП и ГВП по поверхности покрытия«МИУ» воспроизводится следующая аэродинамическая характеристика (см. фиг. №3, которая справедлива как для «Пассивного», так и для «Активного» покрытия:
1. VГВП - max - скорость ГВП;
2. (-Р)разряж ГВП - max - разряжение ГВП;
3. Сопротивление ГВП - min.
Краткое описание чертежей
Покрытие «МИУ»
Фигура №1.
Покрытие «МИУ» (подвижное) - «Активное».
Изображен продольный разрез подвижного «активного» покрытия «МИУ» с механическим приводом для изменения угла атаки пластин по направлению к воздушному потоку. Проходящий по проводникам соленоидов электрический ток создает магнитные поля, которые взаимодействуют с заряженными частицами - ионами, находящимися в воздушном потоке, придавая дополнительные импульсы кинетической энергии - ускорение, увеличивая при этом скорость движения ионизированного воздушного потока, прошедшего через фронтально установленные ионизаторы перед поверхностью покрытия «МИУ».
1. Электромагнитные поля;
2. пластины покрытия «МИУ»;
3. кронштейн;
4. рычаг механического привода;
5. шарнирные соединения;
6. соленоиды;
7. шарнирные проушины с овальными отверстиями.
Нижний вид - вид сверху на пластины покрытия с их расположением в «челночном порядке» - в «шахматном порядке» («рыбья чешуя»).
Фигура №2.
Покрытие «МИУ» (неподвижное) - «Пассивное».
Изображен продольный вид неподвижного покрытия, крепление пластин болтами впотай, направление воздушного потока (электромагниты не показаны).
2. пластины покрытия «МИУ»;
8. основа для крепления пластин покрытия «МИУ»;
9. крепление пластин высокопрочными болтами впотай.
Фигура №3.
1. Схема прохождения газовоздушного потока при использовании покрытия «МИУ». Изображен продольный вид неподвижного «пассивного» покрытия, направление ВП с указанием аэродинамической характеристики покрытия «МИУ», которая справедлива как для пассивного, так и для активного покрытия.
Осуществление изобретения
Покрытие «МИУ»
Осуществить изобретение в жизни можно путем изготовления покрытия «МИУ» (см. фигуры №№1, 2), которое представляет из себя пластины из легких, прочных, жаростойких сплавов металла, габаритные размеры - толщина от 3 мм до 5 мм, ширина и длина от 30 мм до 70 мм.
Покрытие «МИУ» используется двух типов «пассивное» - (неподвижное) и «активное» - (подвижное). «Пассивное» покрытие механически крепится в «челночном порядке» - в «шахматном порядке» (в виде «рыбьей чешуи») на поверхности объекта). «Активное» покрытие должно быть расположено так же в «челночном порядке» - в «шахматном порядке», (в виде «рыбьей чешуи»), крепится на подвижных кронштейнах, с изменением угла атаки воздушного потока - путем поворота вокруг осей шарнирных соединений кронштейнов с пластинами покрытия «МИУ», приводимыми в движение рычагами-толкателями от гидропривода (см. фигура №1).
Пассивное покрытие «МИУ» используется при облицовочном покрытии внутренних поверхностей МИУ, а активное покрытие необходимо использовать при облицовочном покрытии наружных поверхностей рассматриваемых объектов движения (см. фиг. №2, 1).
Пассивное покрытие «МИУ» без соленоидов устанавливается исключительно в зоне высоких температур реактивной струи в газовоздушном потоке.
Крепление пластин покрытия «МИУ» «пассивного» и «активного» (установленного на кронштейнах) производится на основу, для крепления покрытия объекта, через высокопрочные болтовые соединения с головками болтов, выполненными впотай.
Для более эффективного снижения сил трения воздушного потока с поверхностью покрытия «МИУ», устанавливаются электромагнитные соленоиды, подключенные к бортовому источнику питания так, чтобы полярность соленоидов была сориентирована северным полюсом вперед по ходу движения летательного аппарата (см. фиг. №1, п.6). Таким образом, проходящий по проводникам соленоидов электрический ток создает магнитные поля. Силовые линии магнитных полей выходят и северного полюса и входят в южный плюс соленоидов. Так как силовые наружные линии магнитных полей соленоидов направлены с северного полюса к южному по ходу движения летательного аппарата, то магнитные поля взаимодействует с заряженными частицами - ионами, находящимися в воздушном потоке, прошедшего через ионизаторы, расположенные фронтально к набегающему, обтекаемому, поверхность летательного аппарата, воздушному потоку. Магнитные поля взаимодействует с заряженными частицами - ионами, придавая дополнительные импульсы кинетической энергии - ускорение, в связи с чем увеличивают скорость движения ионизированного воздушного потока, прошедшего через фронтально установленные ионизаторы перед поверхностью покрытия МИУ.
Для взаимодействия электромагнитных полей с ионизированным воздушным потоком, необходимо иметь заряженные частицы в ВП, где необходим ионизированный поток воздушной смеси. С этой целью перед покрытием «МИУ» необходимо фронтально (перпендикулярно к воздушному потоку) установить ионизаторы (на фигурах №№1, 2, 3, ионизаторы не показаны).
Claims (1)
- Покрытие мультипликатора инжекторного ускорителя, состоящее из плоских, скругленных по углам пластин, изготовленных из легкого, прочного, жаростойкого сплава металла, размерами от 30 мм до 70 мм, толщиной от 3 мм до 5 мм, крепится к поверхности летательного или космического аппаратов неподвижно или подвижно с изменением угла атаки воздушного потока путем поворота вокруг осей шарнирных соединений кронштейнов с пластинами покрытия мультипликатора инжекторного ускорителя, приводимыми в движение рычагами-толкателями от гидропривода, с установленными под пластинами покрытия мультипликатора инжекторного ускорителя на кронштейнах соленоидами, изготовленными из материалов с высокими техническими характеристиками, запитанными от бортового источника электропитания, по проводникам которых проходит электрический ток, создающий вокруг соленоидов с пластинами покрытия мультипликатора инжекторного ускорителя магнитные поля, взаимодействующие с заряженными частицами - ионами, заполняющими воздушный поток, проходящий по поверхности покрытия мультипликатора инжекторного ускорителя, придавая дополнительные импульсы кинетической энергии - ускорение, увеличивая при этом скорость движения ионизированного воздушного потока, прошедшего через фронтально установленные ионизаторы перед поверхностью покрытия мультипликатора инжекторного ускорителя.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011117391/11A RU2495790C2 (ru) | 2011-04-29 | 2011-04-29 | Покрытие мультипликатора инжекторного ускорителя реактивного двигателя для космических и летательных аппаратов десятого поколения, подводных лодок и морских торпед |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011117391/11A RU2495790C2 (ru) | 2011-04-29 | 2011-04-29 | Покрытие мультипликатора инжекторного ускорителя реактивного двигателя для космических и летательных аппаратов десятого поколения, подводных лодок и морских торпед |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011117391A RU2011117391A (ru) | 2012-11-10 |
RU2495790C2 true RU2495790C2 (ru) | 2013-10-20 |
Family
ID=47321934
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011117391/11A RU2495790C2 (ru) | 2011-04-29 | 2011-04-29 | Покрытие мультипликатора инжекторного ускорителя реактивного двигателя для космических и летательных аппаратов десятого поколения, подводных лодок и морских торпед |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2495790C2 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2116223C1 (ru) * | 1994-10-04 | 1998-07-27 | ОЛЕЙНОВ Геннадий Александрович | Устройство для улучшения аэрогидродинамических качеств конструкций |
RU2163207C1 (ru) * | 2000-02-04 | 2001-02-20 | Гуляев Дмитрий Анатольевич | Аэро(гидро)динамическое устройство |
US20050016157A1 (en) * | 2003-07-22 | 2005-01-27 | National Aerospace Laboratory Of Japan | Combined engine for single-stage spacecraft |
EP2239428A2 (en) * | 2009-03-31 | 2010-10-13 | General Electric Company | Exhaust plenum for a turbine engine |
-
2011
- 2011-04-29 RU RU2011117391/11A patent/RU2495790C2/ru not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2116223C1 (ru) * | 1994-10-04 | 1998-07-27 | ОЛЕЙНОВ Геннадий Александрович | Устройство для улучшения аэрогидродинамических качеств конструкций |
RU2163207C1 (ru) * | 2000-02-04 | 2001-02-20 | Гуляев Дмитрий Анатольевич | Аэро(гидро)динамическое устройство |
US20050016157A1 (en) * | 2003-07-22 | 2005-01-27 | National Aerospace Laboratory Of Japan | Combined engine for single-stage spacecraft |
EP2239428A2 (en) * | 2009-03-31 | 2010-10-13 | General Electric Company | Exhaust plenum for a turbine engine |
Also Published As
Publication number | Publication date |
---|---|
RU2011117391A (ru) | 2012-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8006939B2 (en) | Over-wing traveling-wave axial flow plasma accelerator | |
US7637455B2 (en) | Inlet distortion and recovery control system | |
CN109665093B (zh) | 一种可延缓流动分离的翼型及置于翼型上的激励器 | |
US7183515B2 (en) | Systems and methods for plasma jets | |
CN109760818B (zh) | 一种基于合成双射流激励器的超声速边界层转捩控制方法 | |
US7744039B2 (en) | Systems and methods for controlling flows with electrical pulses | |
US10358208B2 (en) | Hybrid flow control method for simple hinged flap high-lift system | |
US9587585B1 (en) | Augmented propulsion system with boundary layer suction and wake blowing | |
EP2317107B1 (en) | A boundary layer energiser | |
CN107645822A (zh) | 一种基于表面磁控电弧放电的进气道激波控制装置及方法 | |
RU2495790C2 (ru) | Покрытие мультипликатора инжекторного ускорителя реактивного двигателя для космических и летательных аппаратов десятого поколения, подводных лодок и морских торпед | |
US20220411046A1 (en) | Vortex control on engine nacelle strake and other vortex generators | |
CN1126868C (zh) | 磁流体加速器和使用磁流体加速器的磁流体喷气发动机 | |
US20160208695A1 (en) | Gas turbine engine inlet | |
JP3165679U (ja) | 流体に対する抵抗体 | |
US11014651B1 (en) | Enhanced high-speed airfoil performance, including increased lift/drag ratio, from localized high-temperature speed of sound increases, and associated systems and methods | |
CN109665092A (zh) | 一种可延缓流动分离的圆柱体及置于圆柱体上的激励器 | |
RU2788231C1 (ru) | Самолёт вертикального взлёта и посадки | |
RU2603705C1 (ru) | Способ торможения сверхзвукового потока | |
US20220063821A1 (en) | Ionic propulsion system | |
CN108408022B (zh) | 增升发电飞翼 | |
EP3904202A1 (en) | A rear end section for an aircraft | |
CN203512027U (zh) | 飞行器反重力电子喷射动力系统 | |
Cozma | UNCONVENTIONAL TECHNOLOGIES IN THE MODERN WARFARE: WEAPONS, CONCEALMENT/CAMOUFLAGE SYSTEMS, MEANS OF TRANSPORTATION | |
CN112918662A (zh) | 新原理机翼及低速升降飞行器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20180430 |