RU2495337C2 - Электронасос центробежный герметичный - теплогенератор - Google Patents

Электронасос центробежный герметичный - теплогенератор Download PDF

Info

Publication number
RU2495337C2
RU2495337C2 RU2011151602/06A RU2011151602A RU2495337C2 RU 2495337 C2 RU2495337 C2 RU 2495337C2 RU 2011151602/06 A RU2011151602/06 A RU 2011151602/06A RU 2011151602 A RU2011151602 A RU 2011151602A RU 2495337 C2 RU2495337 C2 RU 2495337C2
Authority
RU
Russia
Prior art keywords
rotor
stator
heat
cavitator
hollow shaft
Prior art date
Application number
RU2011151602/06A
Other languages
English (en)
Other versions
RU2011151602A (ru
Inventor
Владислав Савельевич Медведев
Игорь Михайлович Зюкин
Иван Васильевич Ломовцев
Original Assignee
Общество с ограниченной ответственностью Научно-производственная фирма "Свет.Вода.Тепло-М"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью Научно-производственная фирма "Свет.Вода.Тепло-М" filed Critical Общество с ограниченной ответственностью Научно-производственная фирма "Свет.Вода.Тепло-М"
Priority to RU2011151602/06A priority Critical patent/RU2495337C2/ru
Publication of RU2011151602A publication Critical patent/RU2011151602A/ru
Application granted granted Critical
Publication of RU2495337C2 publication Critical patent/RU2495337C2/ru

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

Изобретение относится к области насосостроения и может найти применение в центробежных герметичных электронасосах, перекачивающих взрывопожароопасные жидкости с повышенной вязкостью. Электронасос-теплогенератор содержит в одном корпусе подвод, рабочее колесо и отвод насоса, а также статор и установленный в опорах скольжения на полом валу полый ротор приводного электродвигателя. Внутри полого ротора выполнена тепловая труба. В установленный на валу гидродинамический роторный кавитатор включен ультразвуковой резонансный усилитель кавитации. В пространстве между статором и ротором на полом валу выполнены коаксиальные тепловые трубы. Изобретение направлено па улучшение всасывающей способности электронасоса, повышение его к.п.д. и снижение потребляемой им мощности за счет повышения температуры перекачиваемой жидкости внутри электронасоса. 1 з.п. ф-лы, 1 ил.

Description

Изобретение относится к области насосостроения и может найти применение в центробежных герметичных электронасосах, перекачивающих взрывопожароопасные жидкости с повышенной вязкостью (например, нефтепродукты и др.) на предприятиях нефтехимической промышленности.
В настоящем изобретении усовершенствуются известные конструкции центробежных герметичных электронасосов, содержащие в едином корпусе подвод, рабочее колесо и отвод насоса, статор и ротор приводного электродвигателя и радиальные и осевые опоры скольжения (см. например, Васильцов Э.А., Невелич В.В. «Герметические электронасосы». - М.: «Машиностроение», 1968, с.234, а также герметичные центробежные электронасосы по SU 1038596 A и SU 1038597 A, класс F04D 13/06, лопастной насос по SU 523196 A, кл F04D 9/06, электронасос центробежный герметичный-теплогенератор по RU 2416768 C1 и др.).
Наиболее близким к изобретению является электронасос центробежный герметичный - теплогенератор, содержащий в одном корпусе подвод, рабочее колесо и отвод насоса, а также статор и, установленный в опорах скольжения на полом валу полый ротор приводного электродвигателя, внутри которого выполнена тепловая труба, а в установленный на валу гидродинамический роторный кавитатор включен ультразвуковой резонансный усилитель кавитации (RU 2416768 С1, кл. F24J 3/00, F04D 13/06, 20.04.2011).
Недостатками указанных конструкций при перекачивании жидкостей с повышенной вязкостью при обычной температуре являются:
- снижение всасывающей способности насоса, для устранения чего требуется повышение давления жидкости на входе в насос или предварительный подогрев перекачиваемой жидкости;
- снижение к.п.д. насоса и увеличение потребляемой электронасосом мощности.
Задачей настоящего изобретения является устранение указанных недостатков, т.е. улучшение всасывающей способности электронасоса, повышение его к.п.д. и снижение потребляемой им мощности за счет повышения температуры перекачиваемой жидкости внутри электронасоса.
Технический результат достигается тем, что в электронасосе центробежном герметичном - теплогенераторе, содержащем в одном корпусе подвод, рабочее колесо и отвод насоса, а также статор и, установленный в опорах скольжения на полом валу полый ротор приводного электродвигателя, внутри которого выполнена тепловая труба, а в установленный на валу гидродинамический роторный кавитатор включен ультразвуковой резонансный усилитель кавитации, согласно изобретению в пространстве между статором и ротором на полом валу выполнены коаксиальные тепловые трубы.
При этом над расположенным внутри подвода гидродинамическим роторным кавитатором установлены излучатели переменных низкочастотных колебаний.
Существенным отличием данной конструкции является то, что предварительный нагрев, протекающей по контурам охлаждения статора и ротора электродвигателя, а также радиальных и осевой опор скольжения жидкости, полезно используется в последующих ступенях встроенного теплогенератора.
Указанная охлаждающая (и смазывающая опоры скольжения) жидкость через полый вал попадает в область ротора регулируемого по частоте вращения электродвигателя (например, индукторного или моментного), где внутри ротора выполнена тепловая труба, передающая выделяемое ротором тепло с помощью собственной «рабочей» жидкости через полый вал протекающей внутри вала жидкости, а через установленные на полом валу одну или несколько коаксиальных тепловых труб (например, перед ротором и после него по ходу жидкости), тепло от протекающей в пространстве между ротором и статором охлаждающей жидкости, передается жидкости, протекающей внутри полого вала в обратном направлении, дополнительно подогревая эту жидкость (см. например, GB 1283332 A, 1970, SU 306321 A, 1971 и SU 325468 A, 1972 и др.).
Таким образом, протекающая во внутреннем контуре электронасоса жидкость, первично подогревается при охлаждении опор скольжения, а также ротора и статора, а затем дополнительно нагревается в полом валу тепловыми трубами, которые по эффективности теплопередачи и нагрева протекающей внутри них жидкости значительно превосходят вихревые трубы базового объекта по RU 2416728 C1.
Установлено, что вмонтированные в полые роторы тепловые трубы позволяют увеличить нагрузку обычных асинхронных электродвигателей примерно на 15% (без увеличения температуры обмотки), а в связи с тем, что увеличение теплопередачи вращающихся тепловых труб пропорционально росту центробежного ускорения в степени одна четвертая, то наиболее эффективным в данных случаях является применение регулируемых по частоте вращения моментных (индукторных) электродвигателей.
Затем вторично подогретая жидкость по полому валу поступает в гидродинамический роторный кавитатор, представляющий собой вращающийся ротор - ступенчатый цилиндр с равномерно распределенными сквозными радиальными цилиндрическими или ступенчатыми (конические сходящиеся насадки, переходящие в расширенные цилиндрические) отверстиями, а коаксиально ротору в подводе выполнен статор - неподвижное кольцо со сквозными радиальными отверстиями, большими по диаметру, чем выходные отверстия во вращающемся цилиндре.
В начале конических насадков и при резком переходе их в цилиндрические отверстия образуются зоны пониженных давлений, способствующих образованию кавитационных пузырьков в жидкости еще во вращающемся цилиндре. В момент совмещения отверстий ротора с отверстиями в неподвижном кольце жидкость, проходя через внезапно расширяющиеся отверстия, опять образует области пониженного давления. При понижении давления ниже давления насыщенного пара жидкости, она интенсивно закипает, насыщая струи кавитационными пузырьками. После прохода этих зон давление в жидкости повышается и кавитационные пузырьки охлопываются, образуя волну гидравлических микроударов, нагревающих перекачиваемую жидкость (см., например, US 5341768 A, US 5188090 A, SU 1329629, кл. P24J 3/00, RU 2116583 C1, кл. F24J 3/00, RU 2159901 C1, кл. F24J 3/00 и др.).
На выходе из гидродинамического роторного кавитатора нагретая кавитирующая жидкость попадает в область воздействия переменных низкочастотных излучателей (например, электроакустических преобразователей), которые конвертируют электрическую энергию сети в энергию прямоугольных импульсов чередующейся полярности (к.п.д. таких генераторов близок к 100%).
Повышение температуры жидкости (и, соответственно, снижение ее вязкости и количества растворенного в ней газа) и снижение частоты воздействия излучателей приводит к снижению порогового значения интенсивности кавитации до 0,3÷0,5 Вт/см3 и меньше.
Интенсивность кавитации обратно пропорциональна звуковой частоте и при снижении частоты размеры кавитационных пузырьков увеличиваются, а мощность облучения при этом может быть более низкой по сравнению с ультразвуковым воздействием. В результате при определенных условиях мощность кавитации на единицу объема обрабатываемой жидкости увеличивается (при резонансе частот кавитатора и излучателей генератора - на 200-300%), что позволяет увеличить эффективность электронасоса - теплогенератора в несколько раз. А одновременное введение в жидкость акустических колебаний различных низких частот позволяет даже регулировать крупность капель, например, перекачиваемых эмульсий (масел с присадками, разных сортов нефтепродуктов и т.п.). Кроме того, преимущество многочастотной системы переменных низкочастотных колебаний по сравнению с ультразвуковым резонансным усилителем кавитации состоит в том, что в объеме жидкости не образуются мертвые зоны в узлах интерференции и инициируются и ускоряются различные физические и химические процессы. А, кроме того, многочастотная система излучателей переменных низкочастотных колебаний не требует индивидуальной подстройки рабочей частоты излучателей в резонанс с частотой гидродинамического роторного кавитатора, т.к., например, в предполагаемом изобретении предусматривается система излучателей с переменной «плавающей» частотой излучения в пределах 15-30-50-30-15 гц, когда собственная частота хотя бы одного излучателя системы в процессе работы совпадает в резонанс с частотой гидродинамического кавитатора.
После кавитационных ступеней теплогенератора нагретая жидкость через кольцевые сопла попадает во всасываемую рабочим колесом жидкость, повышая ее давление и нагревая ее (тем самым, снижая ее вязкость и уменьшая энергозатраты на ее перекачивание). Кроме того, напорные струи нагретой жидкости создают дополнительный эжектирущий эффект и направленное формирование потока на входе в рабочее колесо, что повышает его гидравлический к.п.д. и антикавитационные качества.
Использование предлагаемого герметичного электронасоса-теплогенератора существенно повышает активацию и экономичность технологических процессов и значительно уменьшает энергозатраты на их осуществление, т.к. по разным данным подобные устройства имеют коэффициент преобразования энергии (отношение вырабатываемой тепловой энергии к затрачиваемой) порядка 3,5-6. Таким образом, применение ЭЦГТ, например, в нефтехимической промышленности позволяет не только перекачивать и нагревать различные вязкие жидкости, но и использовать их как специальное технологическое оборудование (применение ЭЦГТ при одновременном создании и перекачивании высокодисперсных стойких водомазутных эмульсий из дешевых низкокачественных мазутов, обеспечивающих повышение к.п.д. котлов и срок службы при экономии топлива и значительном снижении вредных выбросов).
В конструкциях устройств по RU 2416768 C1 не предусматривается выполнение дополнительных функций теплопередачи от охлаждающей жидкости к основной перекачиваемой тепловыми трубами и усиления низкочастотной кавитации за счет применения излучателей переменных низкочастотных колебаний на основе основного предназначения электронасоса. Таким образом, заявляемая конструкция ЭЦГТ имеет вышеуказанные технические преимущества по сравнению с базовым объектом.
Данные, подтверждающие достоверность решения задачи изобретения, описаны в специальной технической литературе, например: Васильев Л.Л. Низкотемпературные тепловые трубы. - Наука и техника: Минск, 1976 г. Герасимов Ю.Р. и др. Разработка и исследование тепловых труб для охлаждения вращающихся устройств. - Киев, 1982 г.
Авторские свидетельства СССР №311110 (1970 г.), №399692 (1973 г.), №1076637, патент Великобритании №283332 (1971 г.)
Флинн Г. Физика акустической кавитации в жидкостях. - Мир: М.: 1967 г.
Промтов М.А. Пульсационные аппараты роторного типа. - Машиностроение: М. 2001 г.
Маргулис М.А. Звукохимические реакции и сонолюминисценция. - Химия: М., 1986 г.
Федоткин И.М. и др. Использование кавитации в технологических процессах. - Киев, 1984 г.
Карпова Н.И. и др. Низкочастотные акустические колебания на производстве. - М., 1981 г.
Донской А.В.и др. Ультрозвуковые электротехнические установки. - Энергоиздат: Л., 1982 г.
Патент UA 37410 А, 16.09.1998.
Патент SK 283365 B6, 03.06.2003.
Сущность изобретения поясняется чертежом, на котором изображен продольный разрез электронасоса центробежного герметичного - теплогенератора (ЭЦГТ).
Данный электронасос-теплогенератор включает в себя находящиеся в одном корпусе подвод 1, организующий всасываемый поток на выходе в рабочее колесо 2, отвод 3 (например, спиральный) насоса 3, экранированный статор 4 и экранированный ротор 5 регулируемого по скорости вращения электродвигателя (например, индукторного или моментного). Полый ротор 5 закреплен на полом валу 6, который установлен в опорах скольжения 7 и зафиксирован от осевого смещения осевой опорой 8 скольжения. Внутри полого ротора 5, выполнена тепловая труба 9, а по обе стороны на полом валу 6 выполнены тепловые трубы 10 и 11.
В зоне подвода 1 насоса на полом валу 6 закреплен ротор 12 кавитатора с радиальными цилиндрическими и ступенчатыми отверстиями, а на корпусе подвода закреплен неподвижный статор 13 кавитатора, также с радиальными отверстиями. Вращающийся ротор 12 и статор 13 с совместной системой радиальных отверстий образуют гидродинамический роторный кавитатор. А над указанным кавитатором внутри полости 14, образованной подводом 1, кольцом статора 13 и обтекателем 15, по окружности установлены излучатели 16 переменных низкочастотных колебаний.
При работе ЭЦГТ часть напорной жидкости после рабочего колеса 2 проходит через его радиальное щелевое уплотнение на смазку и охлаждение радиальных опор 7, охлаждение экранированного статора 4 и экранированного ротора 5, смазку и охлаждение осевой опоры 8 скольжения, подогреваясь во всех этих узлах. При этом указанная охлаждающая жидкость, попадая в пространство между статором 4 и полым валом 6, на котором перед ротором 5 и после него установлены тепловые трубы 10 и 11, передает, посредством собственной рабочей жидкости тепловых труб, тепло от протекающей в межстаторном пространстве жидкости к этой же жидкости, протекающей уже внутри полого вала 6 в обратном направлении (к входу в рабочее колесо 2 насоса), последовательно подогревая ее. Кроме того, тепловая труба 9, установленная внутри полого ротора 5 электродвигателя, также передает тепло от нагретого ротора к протекающей внутри полого вала 6 жидкости. Затем вторично подогретая тепловыми трубами жидкость по полому валу 6 поступает в установленный на нем ротор 12, и закрепленный на корпусе подвода 1, статор 13 гидродинамического роторного кавитатора. В кавитаторе эта жидкость, проходя по радиальным цилиндрическим и коническим отверстиям ротора 12, за счет центробежных сил приобретет дополнительный напор, а затем, проходя в резко расширяющиеся цилиндрические отверстия статора 13, попадает в зоны пониженного давления в статоре 13, а потом в полости 14 над статором 13, способствующие образованию кавитационных пузырьков в жидкости.
В полости 14 нагретая кавитирующая жидкость попадает в область воздействия переменных низкочастотных излучателей 16, где интенсивность низкочастотной кавитации увеличивается.
Разогретая жидкость проходит через цилиндрическое сопло 17, на входе в которое давление в жидкости возрастает и на выходе из него кавитационные пузырьки охлопываются с образованием гидравлических микроударов, нагревающих жидкость. Нагретые напорные струи, сформированные соплами в направлении безударного входа меридианного сечения рабочего колеса 2, повышают его гидравлический к.п.д. и антикавитационные качества насоса.
Таким образом, предлагаемая конструкция центробежного герметичного электронасоса - теплогенератора имеет практическую ценность и может создать технический и экономический эффект при изготовлении технологического оборудования в нефтехимической и др. отраслях промышленности, т.к. способствует решению важной задачи повышения температуры перекачиваемых жидкостей (особенно вязких) внутри электронасоса, снижения потребляемой при этом мощности, повышения к.п.д. электронасоса и улучшения его всасывающей способности.

Claims (2)

1. Электронасос центробежный герметичный - теплогенератор, содержащий в одном корпусе подвод, рабочее колесо и отвод насоса, а также статор и, установленный в опорах скольжения на полом валу полый ротор приводного электродвигателя, внутри которого выполнена тепловая груба, а в установленный на валу гидродинамический роторный кавитатор включен ультразвуковой резонансный усилитель кавитации, отличающийся тем, что в пространстве между статором и ротором на полом валу выполнены коаксиальные тепловые трубы.
2. Электронасос по п.1, отличающийся тем, что над расположенным внутри подвода гидродинамическим роторным кавитатором установлены излучатели переменных низкочастотных колебаний.
RU2011151602/06A 2011-12-16 2011-12-16 Электронасос центробежный герметичный - теплогенератор RU2495337C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011151602/06A RU2495337C2 (ru) 2011-12-16 2011-12-16 Электронасос центробежный герметичный - теплогенератор

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011151602/06A RU2495337C2 (ru) 2011-12-16 2011-12-16 Электронасос центробежный герметичный - теплогенератор

Publications (2)

Publication Number Publication Date
RU2011151602A RU2011151602A (ru) 2013-06-27
RU2495337C2 true RU2495337C2 (ru) 2013-10-10

Family

ID=48700973

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011151602/06A RU2495337C2 (ru) 2011-12-16 2011-12-16 Электронасос центробежный герметичный - теплогенератор

Country Status (1)

Country Link
RU (1) RU2495337C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2582721C1 (ru) * 2014-12-19 2016-04-27 Акционерное общество "Гидрогаз" (АО "Гидрогаз") Насосный агрегат с устройством подогрева перекачиваемой среды
CN106194768A (zh) * 2016-08-31 2016-12-07 徐州潜龙泵业有限公司 防气蚀屏蔽泵
RU181506U1 (ru) * 2017-04-10 2018-07-17 Владислав Савельевич Медведев Ротор электродвигателя герметичного электронасоса с полым валом

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188090A (en) * 1991-04-08 1993-02-23 Hydro Dynamics, Inc. Apparatus for heating fluids
US5341768A (en) * 1993-09-21 1994-08-30 Kinetic Systems, Inc. Apparatus for frictionally heating liquid
RU2116583C1 (ru) * 1996-05-29 1998-07-27 Сибирский научно-исследовательский институт механизации и электрификации сельского хозяйства Способ нагрева жидкости
RU2279018C1 (ru) * 2004-11-09 2006-06-27 Лев Николаевич Бритвин Вихревой теплогенератор гидросистемы
RU2416768C1 (ru) * 2009-09-30 2011-04-20 Общество с ограниченной ответственностью Научно-производственная фирма ООО "Свет.Вода.Тепло" Электронасос центробежный герметичный - теплогенератор

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5188090A (en) * 1991-04-08 1993-02-23 Hydro Dynamics, Inc. Apparatus for heating fluids
US5341768A (en) * 1993-09-21 1994-08-30 Kinetic Systems, Inc. Apparatus for frictionally heating liquid
RU2116583C1 (ru) * 1996-05-29 1998-07-27 Сибирский научно-исследовательский институт механизации и электрификации сельского хозяйства Способ нагрева жидкости
RU2279018C1 (ru) * 2004-11-09 2006-06-27 Лев Николаевич Бритвин Вихревой теплогенератор гидросистемы
RU2416768C1 (ru) * 2009-09-30 2011-04-20 Общество с ограниченной ответственностью Научно-производственная фирма ООО "Свет.Вода.Тепло" Электронасос центробежный герметичный - теплогенератор

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2582721C1 (ru) * 2014-12-19 2016-04-27 Акционерное общество "Гидрогаз" (АО "Гидрогаз") Насосный агрегат с устройством подогрева перекачиваемой среды
CN106194768A (zh) * 2016-08-31 2016-12-07 徐州潜龙泵业有限公司 防气蚀屏蔽泵
RU181506U1 (ru) * 2017-04-10 2018-07-17 Владислав Савельевич Медведев Ротор электродвигателя герметичного электронасоса с полым валом

Also Published As

Publication number Publication date
RU2011151602A (ru) 2013-06-27

Similar Documents

Publication Publication Date Title
RU2150055C1 (ru) Способ нагревания жидкости и устройство для его осуществления
KR20170041197A (ko) 열 에너지를 사용하기 위한 장치, 시스템 및 방법
EP3072579B1 (en) Cavitation device
WO2005081766A2 (en) Bladeless conical radial turbine and method
RU2495337C2 (ru) Электронасос центробежный герметичный - теплогенератор
EP2918945A1 (en) Method and apparatus for heating liquids
US20130284423A1 (en) Downhole gas and liquid separation
AU2018207118A1 (en) Method and apparatus for heating and purifying liquids
RU2438769C1 (ru) Роторный гидродинамический кавитационный аппарат для обработки жидких сред (варианты)
RU2422733C1 (ru) Тепловой кавитационный генератор
RU2416768C1 (ru) Электронасос центробежный герметичный - теплогенератор
US20150326074A1 (en) Electric machine and systems comprising the same
Moloshnyi et al. Influence of an inlet rotating axial device on the cavitation processes in a low specific speed centrifugal pump
RU2329862C2 (ru) Диспергатор-активатор
RU2534198C2 (ru) Способ и устройство для получения тепловой энергии
Moloshnyi et al. Influence of Rotational Wall of Axial Inlet Device on Velocity Distribution at Impeller Inlet
RU61852U1 (ru) Теплопарогенератор приводной кавитационный
RU2593728C1 (ru) Газостабилизирующий насосный модуль (варианты)
RU2750178C1 (ru) Разогреватель турбулентный жидкостей с низкой вязкостью
RU2231004C1 (ru) Роторный кавитационный насос-теплогенератор
RU2624687C1 (ru) Устройство для получения тепловой энергии
RU2361683C1 (ru) Сирена встречных резонансных волн, снимаемых с единого однородного по длине ротора
RU2434674C1 (ru) Устройство для физико-химической обработки жидкой среды
RU2695193C1 (ru) Роторно-импульсный аппарат и способ его эксплуатации
RU2600049C1 (ru) Роторный гидродинамический аппарат

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151217