RU2494808C2 - Реактор, содержащий наполнитель для распределения жидкости - Google Patents
Реактор, содержащий наполнитель для распределения жидкости Download PDFInfo
- Publication number
- RU2494808C2 RU2494808C2 RU2011137202/05A RU2011137202A RU2494808C2 RU 2494808 C2 RU2494808 C2 RU 2494808C2 RU 2011137202/05 A RU2011137202/05 A RU 2011137202/05A RU 2011137202 A RU2011137202 A RU 2011137202A RU 2494808 C2 RU2494808 C2 RU 2494808C2
- Authority
- RU
- Russia
- Prior art keywords
- filler
- liquid
- layer
- reactor according
- channels
- Prior art date
Links
- 239000000945 filler Substances 0.000 title claims abstract description 133
- 239000012530 fluid Substances 0.000 title claims abstract description 54
- 238000009826 distribution Methods 0.000 title abstract description 31
- 239000000919 ceramic Substances 0.000 claims abstract description 50
- 239000007788 liquid Substances 0.000 claims description 82
- 238000011068 loading method Methods 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 18
- 230000002093 peripheral effect Effects 0.000 claims description 8
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 239000002184 metal Substances 0.000 claims description 4
- 239000003463 adsorbent Substances 0.000 claims description 2
- 238000001914 filtration Methods 0.000 claims 1
- 239000000126 substance Substances 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 2
- 238000010327 methods by industry Methods 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 47
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000000203 mixture Substances 0.000 description 12
- 238000000576 coating method Methods 0.000 description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 7
- 238000001125 extrusion Methods 0.000 description 7
- 239000004927 clay Substances 0.000 description 5
- 239000011247 coating layer Substances 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 238000010304 firing Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 238000009827 uniform distribution Methods 0.000 description 4
- 239000006057 Non-nutritive feed additive Substances 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000010433 feldspar Substances 0.000 description 3
- 239000012467 final product Substances 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000323 aluminium silicate Inorganic materials 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 229910010293 ceramic material Inorganic materials 0.000 description 2
- 238000012993 chemical processing Methods 0.000 description 2
- 239000011436 cob Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- RBTBFTRPCNLSDE-UHFFFAOYSA-N 3,7-bis(dimethylamino)phenothiazin-5-ium Chemical compound C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 RBTBFTRPCNLSDE-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 241000365446 Cordierites Species 0.000 description 1
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 229960000907 methylthioninium chloride Drugs 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 239000010434 nepheline Substances 0.000 description 1
- 229910052664 nepheline Inorganic materials 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229910052573 porcelain Inorganic materials 0.000 description 1
- 229940072033 potash Drugs 0.000 description 1
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 1
- 235000015320 potassium carbonate Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000010435 syenite Substances 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
- GFQYVLUOOAAOGM-UHFFFAOYSA-N zirconium(iv) silicate Chemical compound [Zr+4].[O-][Si]([O-])([O-])[O-] GFQYVLUOOAAOGM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0242—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical
- B01J8/025—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds the fluid flow within the bed being predominantly vertical in a cylindrical shaped bed
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D15/00—Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D24/00—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof
- B01D24/02—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration
- B01D24/10—Filters comprising loose filtering material, i.e. filtering material without any binder between the individual particles or fibres thereof with the filter bed stationary during the filtration the filtering material being held in a closed container
- B01D24/14—Downward filtration, the container having distribution or collection headers or pervious conduits
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J19/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J19/30—Loose or shaped packing elements, e.g. Raschig rings or Berl saddles, for pouring into the apparatus for mass or heat transfer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J8/00—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
- B01J8/02—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
- B01J8/0292—Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds with stationary packing material in the bed, e.g. bricks, wire rings, baffles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/00796—Details of the reactor or of the particulate material
- B01J2208/00884—Means for supporting the bed of particles, e.g. grids, bars, perforated plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2208/00—Processes carried out in the presence of solid particles; Reactors therefor
- B01J2208/02—Processes carried out in the presence of solid particles; Reactors therefor with stationary particles
- B01J2208/023—Details
- B01J2208/024—Particulate material
- B01J2208/025—Two or more types of catalyst
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/302—Basic shape of the elements
- B01J2219/30215—Toroid or ring
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/304—Composition or microstructure of the elements
- B01J2219/30416—Ceramic
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/308—Details relating to random packing elements filling or discharging the elements into or from packed columns
- B01J2219/3081—Orientation of the packing elements within the column or vessel
- B01J2219/3083—Random or dumped packing elements
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/31—Size details
- B01J2219/315—Two or more types of packing elements or packing elements of different sizes present in the column
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2219/00—Chemical, physical or physico-chemical processes in general; Their relevant apparatus
- B01J2219/30—Details relating to random packing elements
- B01J2219/318—Manufacturing aspects
- B01J2219/3188—Extruding
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Fluid Mechanics (AREA)
- Analytical Chemistry (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
- Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
- Filtering Materials (AREA)
Abstract
Реактор содержит загрузку из произвольно ориентированного керамического наполнителя, имеющего на своей внешней поверхности каналы для распределения жидкости. Каналы захватывают и перенаправляют жидкость, таким образом, улучшая распространение жидкости. Изобретение обеспечивает улучшенное перераспределение потока поступающей жидкости, подаваемой на загрузку из произвольно ориентированных элементов керамического наполнителя, посредством включения во внешнюю поверхность элемента наполнителя каналов для отведения жидкости. 12 з.п. ф-лы, 1 табл., 7 ил.
Description
ПРЕДПОСЫЛКИ СОЗДАНИЯ ИЗОБРЕТЕНИЯ
Настоящее изобретение главным образом относится к загрузке из произвольно ориентированных элементов керамического наполнителя, используемого для улучшения распределения жидкости посредством перенаправления жидкости по увеличивающейся площади по мере прохождения жидкости через загрузку. Конкретнее, настоящее изобретение относится к покрывающему наполнителю загрузки, расположенному с одной стороны защитного контейнера химического реактора, распределяющему жидкость в слое компонентов, которые могут включать такие материалы как каталитически активный материал, адсорбенты или активированный уголь.
Примером патента, раскрывающего материалы для распределения жидкости, которые могут быть использованы для снижения неравномерного распределения жидкости в химическом реакторе, является документ US 6291603.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
Настоящее изобретение обеспечивает улучшенное перераспределение потока поступающей жидкости, подаваемой на загрузку из произвольно ориентированных элементов керамического наполнителя, посредством включения во внешнюю поверхность элемента наполнителя каналов для отведения жидкости. Каналы сконфигурированы для захвата и последующего перенаправления части жидкости по мере ее протекания через загрузку. В некоторых случаях, наполнитель может перенаправлять жидкость перпендикулярно первоначальному направлению поступающей жидкости.
В одном варианте осуществления настоящее изобретение включает сосуд, содержащий точку поступления жидкости и загрузку. Загрузка включает первый слой, содержащий множество расположенных в нем отдельных элементов. По меньшей мере, большинство элементов в первом слое содержат произвольно ориентированный керамический наполнитель. Элемент керамического наполнителя имеет внешнюю поверхность с образованным в ней одним или более каналами для отведения жидкости. Загрузка также включает второй слой, содержащий компоненты, причем большая часть этих компонентов физически отличается от керамического наполнителя. Первый слой загрузки размещается между вторым слоем и точкой поступления жидкости.
КРАТКОЕ ОПИСАНИЕ ГРАФИЧЕСКИХ МАТЕРИАЛОВ
Фиг.1 представляет собой поперечное сечение химического реактора, содержащего сосуд согласно данному изобретению;
Фиг.2 представляет собой общий вид первого варианта осуществления элемента керамического наполнителя, применимого в первом слое, показанном на фиг.1;
Фиг.3 представляет собой вид с боку второго варианта осуществления элемента керамического наполнителя, применимого в первом слое, показанном на фиг.1;
Фиг.4 представляет собой схематическое изображение поперечного сечения схемы распределения жидкости;
Фиг.5 представляет собой схематическое изображение испытательного устройства для проверки распределения жидкости;
Фиг.6 представляет собой схему центральной, средней и внешней зоны испытательного устройства, показанного на фиг.5; и
Фиг.7 представляет собой график отношения спада давления в зависимости от массовой скорости.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
В настоящем описании, словосочетание "аппарат для химической обработки" применяется для описания оборудования, такого как емкости, горелки, камеры сгорания, трубы, и т.д., принимающего один или более видов сырья и затем химически и/или физически преобразующий его в один или более конечных продуктов, выгружаемых из аппарата. Преобразование может включать химическую реакцию с использованием катализатора для обращения сырья в конечный продукт; десорбцию или абсорбцию; изменение физических свойств (например, из жидкости в газ) агрегатного состояния сырья; и/или повышение или понижение температуры сырья. Химические реакторы широко используются в отраслях химической и обрабатывающей промышленности для различных целей, и они приняты в качестве сокращения словосочетания "аппарат для химической обработки". Химические реакторы могут содержать сосуд, в котором происходит процесс преобразования.
Химические реакторы, генерирующие конечный продукт, содержат сосуд с находящейся в нем зоной реакции, в которой два или более реактива могут взаимодействовать для производства конечного продукта, причем реакторы также могут включать слой покрывающего материала загрузки, расположенный с одной стороны зоны реакции, и слой материала подложки загрузки, расположенный с противоположной стороны зоны реакции. Примеры имеющихся на рынке покрывающих материалов загрузки включают керамические сферы и сетчатые пеноматериалы. Одна из функций покрывающего материала загрузки состоит в приеме поступающей жидкости, подаваемой на определенную площадь слоя покрывающего материала загрузки, и в последующем перенаправлении жидкости на большую площадь по мере прохождения жидкости и ее выхода из покрывающего слоя загрузки. Поступающая жидкость может подаваться на покрывающий слой загрузки посредством механического устройства, известного как распределитель, которое может включать одно или более выпускных отверстий. Распределитель здесь может быть описан как "точка поступления жидкости". Термин "точка поступления жидкости" может также относиться к отдельной трубе или нескольким трубам, которые совместно или по отдельности подают одну или более жидкостей на покрывающий слой загрузки. Когда поступающая жидкость контактирует с покрывающим слоем загрузки, жидкость по существу формирует начальную схему распределения жидкости. Когда жидкость выходит из покрывающего материала загрузки, жидкость по существу формирует конечную схему распределения жидкости. Известно, что покрывающие слои загрузки, состоящие из керамических сфер, обеспечивают умеренное перераспределение поступающей жидкости, но существующая потребность в значительном увеличении перераспределения с использованием сфер не была удовлетворена. Также, покрывающий слой загрузки из сетчатой пенокерамики может содержать множество элементов заполнения, определяющих каналы прохождения жидкости через керамический материал. Элементы заполнения делят поступающую жидкость на множество более мелких потоков жидкости, которые затем протекают через реактор. Тогда как разделение отдельного большего потока на много меньших потоков является достаточным для некоторых промышленных процессов, боковое перераспределение жидкости на площадь большую, чем у схемы распределения поступающей жидкости может быть необходимо, если работа химического реактора зависит от обширного однородного распределения одной или более жидкостей.
Теперь обратимся к графическим материалам, в частности к фиг.1, где показано поперечное сечение химического реактора 10, содержащего сосуд 12, механический распределитель 14, и выходную трубу 16. Сосуд вмещает загрузку 18, содержащую первый слой 20 произвольно ориентированных элементов керамического наполнителя 22, второй слой 24 компонентов 26, включающих каталитически активный металл, нанесенный на поверхность керамической пеллеты, и третий слой 28 наполнителя подложки 30 загрузки. В настоящем описании, керамический наполнитель первого слоя рассматривается как физически отличный от компонентов второго слоя, если керамический наполнитель имеет каналы для отведения жидкости, а компоненты не имеют каналов для отведения жидкости. Кроме того, первый слой 20 может включать элементы, которые не являются произвольно ориентированными элементами керамического наполнителя, притом, что, по меньшей мере, большинство элементов первого слоя являются произвольно ориентированными элементами керамического наполнителя. Предпочтительно, все элементы первого слоя являются элементами керамического наполнителя, имеющего включенные в них каналы для отведения жидкости. Также, керамические компоненты, составляющие второй слой, полностью лишены каналов для отведения жидкости на своей внешней поверхности и, таким образом, отличаются от наполнителя первого слоя. Однако преимущества настоящего изобретения могут быть реализованы, если, по меньшей мере, большинство компонентов второго слоя физически отличаются от керамического наполнителя первого слоя. Согласно фиг.1, второй слой также может быть описан как зона реакции. Загрузка 18 имеет известную высоту, и первый слой занимает менее 20% высоты загрузки. Второй слой может занимать более 50% высоты загрузки. При необходимости третий слой может быть замещен решеткой, расположенной под вторым слоем. Имеющийся на рынке подходящий наполнитель для подложки загрузки, торговой марки deltaP™, производится корпорацией Saint-Gobain NorPro, г.Стоу, штат Огайо, США.
Фиг.2 раскрывает общий вид варианта осуществления элемента керамического наполнителя 22, подходящего для использования в первом слое 20 сосуда 12, показанного на фиг.1. Элемент наполнителя включает периферийную стенку 32, первый торец 34, второй торец 36, и четыре канала для отведения жидкости 38, 40, 42 и 44, распространяющиеся от первого торца до второго торца. В этом варианте осуществления, четыре канала для отведения жидкости имеют одинаковую форму поперечного сечения. Как будет показано на фиг.3, формы каналов могут быть видоизменены. Отверстие 46, которое является опционной характеристикой подходящего элемента наполнителя, определяет внутренние проходы через элемент наполнителя и также распространяется от первого торца до второго торца. Форма, размер и наличие отверстия 46 может в значительной степени варьироваться, не оказывая влияние на эффективность каналов для отведения жидкости.
На фиг.3 показан вид сбоку подходящего элемента наполнителя 48 для использования в первом слое 20. Как показано на фиг.3, форма поперечного сечения каналов для отведения жидкости может видоизменяться, при условии, что каналы эффективно захватывают и отводят части жидкости, контактирующей с периферийной поверхностью элемента наполнителя (см. стрелку 50), а затем протекающей по криволинейной поверхности периферийной стенки в один или более каналов для отведения жидкости (см. стрелки 52 и 54), где, по меньшей мере, часть жидкости перенаправляется к торцу элемента наполнителя. Жидкость, воздействующая на периферийную стенку под прямым углом, затем протекающая в канал для отведения жидкости и проходящая через него, таким образом, изменяя направление потока жидкости, в настоящем описании определяется как горизонтально перемещаемая жидкость. Множество описываемых здесь произвольно ориентированных элементов наполнителя, имеющих каналы для отведения жидкости, будет приводить к тому, что жидкость, протекающая через наполнитель, будет быстро отводиться на 90° относительно первоначального направления потока жидкости. Отведение происходит повторно, когда жидкость вступает в контакт с первым наполнителем и затем выходит из него, затем вступает в контакт со вторым наполнителем и выходит из него, затем вступает в контакт с третьим наполнителем и выходит из него, и т.д.
Когда элемент наполнителя, имеющий сформированные на внешней поверхности каналы для отведения жидкости, используется в сосуде по фиг.1 и наполнитель образует первый слой, расположенный между точкой поступления жидкости и вторым слоем компонентов, тогда каналы для отведения жидкости в керамических элементах наполнителя взаимодействуют, образуя многочисленные проходы для дисперсии жидкости сквозь первый слой. Проход для дисперсии жидкости содержит два или более каналов, образованных в двух или более элементах наполнителя, через которые жидкость протекает после выхода из точки поступления и перед контактом со вторым слоем. Если жидкость протекает через канал для отведения жидкости в первом элементе наполнителя, а затем протекает через другой канал для отведения жидкости во втором элементе наполнителя, то считается, что жидкость прошла через проход для дисперсии жидкости. Направление, в котором протекает жидкость, не имеет значение при условии, что жидкость протекает сначала через первый слой и затем через второй слой. В химическом реакторе с нисходящим потоком, сила тяжести заставляет жидкость течь вниз из распределителя, через первый слой и затем через второй слой. В химическом реакторе с восходящим потоком точка поступления жидкости расположена у дна сосуда, и первый слой расположен ниже второго слоя. Насос подобного устройства используется для направления воды вверх через первый слой, а затем через второй слой.
Как показано на фиг.4, схематическое изображение поперечного сечения схемы распределения жидкости, образованной жидкостью по мере ее протекания через множество элементов наполнителя, может напоминать зону конической формы (см. стрелки 56 и 58), причем вершиной конуса 60 является точка, в которой жидкость 62 контактирует с верхней поверхностью элементов наполнителя, а основанием конуса 64 является схема, образуемая жидкостью на выходе из нижней части множества элементов наполнителя. Каналы для отведения жидкости элементов наполнителя могут одновременно достигать двух целей. Во-первых, жидкость, протекающая через наполнитель, перенаправляется на все большую площадь, когда жидкость проходит через загрузку из наполнителя. Величина горизонтального перемещения на единицу вертикального перемещения может быть измерена и использована для расчета угла распределения жидкости в загрузке из наполнителя, который определяется как угол между линией, такой как линия 66, определяющая центр конуса на фиг.4, и ближайшей боковой стенкой конуса, как показано стрелкой 56. Большой угол распределения, такой как 15° или более, предпочтительнее, чем маленький угол распределения, такой как 10° или менее. Помимо обеспечения большого угла распределения, элемент наполнителя с размещенными в нем каналами для отведения жидкости преимущественно обеспечивает однородность распределения жидкости в зоне дисперсии, имеющей форму конуса. Достижение одновременно однородности распределения жидкости в зоне, имеющей форму конуса, и большого угла распределения жидкости может быть предпочтительнее, чем достижение либо большего угла распределения при неоднородном распределении в пределах конуса, либо однородного распределения в пределах конуса с маленьким углом распределения жидкости.
Для эффективного отведения жидкости по расширяющейся схеме при перемещении жидкости через множество элементов наполнителя, такие параметры, как физические характеристики наполнителя; каналы для отведения жидкости элементов наполнителя, и множество элементов наполнителя могут быть изменены независимо, или, предпочтительно, согласованно. Характеристики канала, которые могут быть изменены, чтобы оказать влияние на горизонтальное перемещение жидкости, включают ширину канала, глубину канала, длину канала, и форма поперечного сечения канала. Также, характеристики элемента наполнителя, которые могут быть изменены, чтобы оказать влияние на горизонтальное перемещение жидкости включают: угол вращения между центральными осями каналов; и соотношение максимального диаметра элемента наполнителя к его длине. Одной характеристикой загрузки, которая может быть изменена, чтобы оказать влияние на горизонтальное перемещение жидкости, является глубина загрузки.
Что касается каналов, канал для отведения жидкости может быть сконфигурирован таким образом, чтобы позволять некоторому количеству жидкости легко проникать в канал и затем препятствовать выходу, по меньшей мере, части жидкости из канала, пока жидкость перемещается к одному торцу элемента наполнителя. Глубина канала 68 на фиг.3 составляет приблизительно 17% максимального диаметра Dmax элемента наполнителя. Глубина канала может составлять между 15% и 25% максимального диаметра элемента наполнителя. Каналы, имеющие глубину между 10% и 45% максимального диаметра элемента наполнителя, являются осуществимыми. Для каналов, которые определяются противоположными стенками, в значительной степени параллельными друг другу, такими как стенки, определяющие канал 70, ширина канала определяется измерением расстояния между противоположными стенками 72 и 74. В отличие от каналов, имеющих в значительной степени параллельные стенки, такой канал, как канал 76, может быть сконструирован имеющим выступ 78, уменьшающий размер отверстия канала. Для каналов, содержащих выступ, шириной отверстия является расстояние между противоположными частями выступа, см. части выступа 80 и 82. Если канал постепенно сужается в ширине от верхней части канала к нижней части канала, тогда ширина канала определяется как ширина между противоположными стенками на половине глубины канала. См. фиг.3, канал 84, стрелка 86. Каналы, функционирующие должным образом, могут иметь соотношение глубины к ширине между 1,2:1,0 и 3,0:1,0. Каналы, имеющие соотношение глубины к ширине менее 1,2:1,0 могут быть слишком мелкими для удержания жидкости внутри канала. Каналы, функционирующие должным образом, могут иметь соотношение длины к ширине между 2:1 и 20:1.
Как указано выше, одной характеристикой элемента наполнителя, оказывающей влияние на способность распределения жидкости элемента наполнителя, является угол вращения между каналами. Угол вращения определяется как угол, образованный пересечением 88 центральной оси канала 90 в канале 68 и центральной оси 92 смежного канала 70. Как показано на фиг.3, каналы могут размещаться под углом 90° относительно друг друга, таким образом, что элемент наполнителя имеет четыре канала. Тогда как минимум три отстоящие на равном расстоянии канала могут быть действующими, предпочтительно наличие четырех отстоящие на равном расстоянии каналов. Элементы наполнителя, имеющие пять или шесть отстоящих на равном расстоянии каналов, являются осуществимыми. Как показано на фиг.2, форма поперечного сечения каждого канала в одном элементе наполнителя может быть одинаковой. Однако, как показано на фиг.3, форма поперечного сечения каналов не обязательно должна быть одинаковой для каждого канала. Более того, все элементы наполнителя в слое наполнителя не обязательно должны быть идентичными.
Другой характеристикой элемента наполнителя, которая может быть изменена для улучшения распределения жидкости в слое керамического наполнителя в сосуде, является отношение длины элемента наполнителя к его диаметру, которое определяется в настоящем описании как соотношение L:D, и может варьироваться от 0,5:1,0 до 2,5:1,0. Если соотношение составляет менее 0,5:1, элементы наполнителя будут иметь тенденцию ориентироваться торцами перпендикулярно потоку жидкости, что неблагоприятно сказывается на способности каналов диспергировать жидкость в горизонтальном направлении. Если отношение длины элемента наполнителя к диаметру более чем 2,5:1,0, подавляющее большинство элементов наполнителя могут иметь тенденцию ориентироваться перпендикулярно относительно направления первоначального потока жидкости, что может чрезмерно усилить спад давления в загрузке. Если спад давления в пределах загрузки возрастает, превышая допустимый уровень, реактор должен быть остановлен.
Что касается характеристик загрузки, которые могут быть изменены для достижения надлежащего распределения многих жидкостей, средняя глубина загрузки должна, по меньшей мере, в пять раз превышать длину элемента наполнителя. В некоторых применениях средняя глубина загрузки может, по меньшей мере, в 10 раз превышать длину элемента наполнителя. Если минимальная глубина загрузки слишком мелкая, наполнитель будет слабо влиять на распределение жидкости.
Элементы керамического наполнителя, используемые в сосуде, согласно настоящему изобретению, включая элементы керамического наполнителя, показанные на фиг.2 и 3, могут быть изготовлены из любого керамического материала, обеспечивающего достаточную прочность элементам наполнителя и совместимого с используемой жидкостью. Например, могут использоваться такие материалы, как натуральные и синтетические глины, шпаты, цеолиты, кордиериты, глиноземы, цирконий, кремнезем или их смеси. Глины главным образом являются смесью оксида алюминия и кремния, и включает такие материалы, как каолин, комовая глина, огнеупорная глина, фарфоровая, такими как глина, и т.п.Подходящие глины являются высокопластичными глинами, комовая глина и огнеупорная глина. Глина может иметь показатель по метиленовому синему, ("MBI"), около 11-13 мг.-экв/100 г. Термин "шпаты" применяется в настоящем описании для обозначения алюмосиликатов с содой, поташом и известью. Другие компоненты, такие как кварц, силикат циркония, полевошпатовая глина, монтмориллонит, нефелиновый сиенит и т.п., могут также быть представлены в незначительном количестве в других керамических формирующих компонентах.
Материалы, обжигаемые вместе для производства покрывающего наполнителя загрузки, могут поставляться в виде тонкого порошка и могут быть превращены в пластичную смесь посредством добавления воды и/или технологических добавок, таких как связующие вещества, добавки для экструдирования, скользящие вещества, и т.п., для содействия процессу экструзии. Смесь может обрабатываться с использованием нескольких различных технологий, таких как экструдирование или прессование, с использованием технологии сухого прессования для достижения желаемой формы. Например, за начальным процессом экструдирования может следовать обрезка до желаемой длины перпендикулярно направлению экструзии. Начальная сушка может применяться для выведения воды. Это позволит избежать разрыва относительно слабой структуры сырца и может осуществляться при температуре примерно ниже 120°С и, в одном варианте осуществления, примерно ниже 70°С, и может продолжаться около 5 часов. Затем массы могут спрессовываться при высоких температурах, например, при максимальной температуре от 1100°С до 1400°С, в одном варианте осуществления, по меньшей мере, 1200°С, и в другом варианте осуществления, около 1250°С, для формирования плотной массы, которая обычно содержит 1,5% видимой пористости, и в одном варианте осуществления, менее 0,7% видимой пористости. Однако пористость может составлять примерно до 15% для некоторых применений. Температура обжига может зависеть, в определенной степени, от композиции элементов и, главным образом, может быть достаточной для основной массы материала для получения его низкой пористости. В отличие от сетчатых керамических масс, которые обычно содержат до 30-80% видимой пористости или пустоты внутри материала, и которые, таким образом, могут быть непригодными для того, чтобы захватывать жидкость в канал для отведения жидкости вместо того, чтобы пропускать жидкость через пустоты внутри материала элементов наполнителя.
Керамический наполнитель может быть изготовлен из смеси глин и полевых шпатов и других компонентов, вводимых в малых количествах, для формирования конечной массы, состоящей, главным образом, из диоксида кремния и оксида алюминия (алюмосиликата). Например, смесь, используемая для формирования элементов, может содержать, по меньшей мере, 90% керамических формирующих компонентов и остальной состав (обычно примерно до 10%) технологических добавок. Керамические формирующие компоненты могут содержать 20-99% оксида алюминия и 0-80% диоксида кремния. Технологические добавки могут в значительной степени испаряться во время обжига. Сухие компоненты могут быть тщательно перемешаны перед добавлением воды в количестве, достаточном, для того, чтобы дать возможность придать смеси желаемую форму и удержать эту форму во время обжига. Обычно, добавляемое количество воды может составлять от 12 до 30 мл на каждые 100 г смеси сухих компонентов. Смесь, которой придается форма, может затем подвергаться лепке, или экструдированию для придания желаемой формы, перед тем как форму подвергают обжигу в печи при максимальной температуре от 1100°С до 1400°С. Температура в печи может повышаться со скоростью между 50-90°С/ч и время выдержки при температуре обжига может составлять от 1 до 4 ч до того, как печи не будет позволено остыть до температуры окружающей среды.
Поскольку керамические наполнители изготавливают посредством процесса экструдирования или сухого прессования, они могут иметь в значительной степени одинаковое поперечное сечение вдоль одного осевого направления, что обеспечивает ось симметрии элемента наполнителя.
Для оценки характеристик распределения жидкости различных покрывающих элементов наполнителя загрузки, включая элемент наполнителя, показанный на фиг.2, было сконструировано и приведено в действие описываемое здесь устройство для проверки распределения жидкости, показанное на фиг.5. Испытательное устройство включает вертикально ориентированную подпорную стенку 100 трубчатой формы, открытую с обоих торцов, и вмещающую загрузку наполнителя 102, механический распределитель 104, расположенный над загрузкой, первое разделительное кольцо 106 и второе разделительное кольцо 108, причем оба кольца расположены под загрузкой, и их центры совпадают с центром сосуда, и несколько емкостей для сбора жидкости 110, 112, 114, 116 и 118, размещенные под кольцами. Фиг.6 показывает вид сверху испытательного устройства. Кольца были размещены таким образом, чтобы первое разделительное кольцо определяло центральную зону 120, второе разделительное кольцо и первое разделительное кольцо, соединяясь вместе, определяли границы средней зоны 122, и второе разделительное кольцо и подпорная стенка определяли границы внешней зоны 124. Каждая из зон заняла одну треть площади поверхности загрузки. Достаточное количество элементов наполнителя, показанных на фиг.2 было изготовлено посредством формирования смеси из глин, полевых шпатов, и органических добавок для экструзии, составляющую около 25 вес.% глинозема, 68 вес.% диоксида кремния, смешанного с водой. Часть смеси была экструдирована через головку экструдера, разделенную на секторы, и обжигалась при температуре около 1200°С для формирования керамического наполнителя. Оценочное испытание началось с загрузки множества элементов наполнителя в испытательное устройство. Наполнитель был загружен на постоянную глубину, составляющую 18 см, и оставлен сверху на металлической сетке поддерживающей решетки 126 с определенными квадратными отверстиями, примерно 5 мм × 5 мм. Распределитель включает соединительную трубу 128, как показано на фиг.5, и восемь горизонтальных рычагов 130, см. фиг.6, которые закреплены на соединительной трубе 128 и радиально распределены от центра 109 испытательного устройства. Каждый из восьми горизонтальных рычагов включает три отверстия 132, таким образом, обеспечивается всего 24 отверстия, отстоящие на равном расстоянии вдоль рычага и играющие роль выпускных отверстий. Шестнадцать из 24 отверстий размещены над центральной зоной. Восемь из 24 отверстий размещены над средней зоной. Ни одно из отверстий не размещено над внешней зоной. Диаметр каждого отверстия 132 составляет приблизительно 8 мм. Перед тем как измерить величину расхода воды в каждой зоне и таким образом определить схему распределения жидкости, наполнитель полностью намачивают, позволяя воде течь через распределитель и на верхнюю часть загрузки из наполнителя примерно в течение тридцати минут без захвата и измерения количества воды, которая стекла из загрузки. После того, как наполнитель был намочен, жидкости позволяют течь на загрузку из наполнителя со скоростью 18,9 л/мин (5 Г./мин). Средний расход воды для каждого выпускного отверстия составил 0,79 л/мин (0,208 Г./мин). Как описано выше, когда вода контактирует с отдельными элементами загрузки из наполнителя, вода протекает по все более расширяющейся площади, поскольку вода отводится каналами для распределения жидкости элементов наполнителя. После того, как вода вышла из загрузки наполнителя и вытекла через металлическую сетку решетки, вода была собрана в ряд цилиндрических лотков 134, 136 и 138, соответствующих центральной зоне, средней зоне и внешней зоне, соответственно. Количество жидкости в каждом лотке было измерено, и затем был подсчитан весовой процент жидкости в каждом лотке.
Вышеописанное испытательное устройство было использовано для оценки характеристик распределения жидкости в двух существующих на рынке покрывающих элементов наполнителя и элемента наполнителя, показанного на фиг.2. Два существующих на рынке наполнителя широко известны как Pentaring диаметром 19 мм и керамические сферы диаметром 19 мм. И наполнитель Pentaring, и керамические сферы производятся корпорацией Saint-Gobain NorPro, г.Стоу, штат Огайо, США. Pentaring является керамическим наполнителем, который при рассмотрении с торца напоминает колесо телеги, имеющее расположенную по центру ступицу и пять равноудаленных спиц, которые расходятся радиально от ступицы к периферийной стенке. Спицы и стенка образуют пять треугольных отверстий в элементе наполнителя Pentaring. Элемент Pentaring имеет размер 10 мм в высоту 19 мм в диаметре. Ниже, в таблице 1 показаны количества воды, измеренные в кг/мин, протекавшей через центральную, среднюю и внешнюю зону, при оценке каждого из вышеописанных покрывающих. Отклонения в процентном соотношении между количеством воды, протекавшей через центральную и среднюю зону, показаны в правой колонке таблице.
Таблица 1 | ||||
Центральная зона, кг/мин | Средняя зона, кг/мин | Внешняя зона, кг/мин | Отклонение в процентном соотношении между центральной и средней зоной | |
Элементы Pentaring ⌀19 мм | 9,5 | 10,9 | 2,0 | 14,7 |
Керамические сферы ⌀ 19 мм | 8,0 | 11,0 | 1,6 | 37,5 |
Наполнитель, показанный на фиг.2 | 8,1 | 7,4 | 2,5 | 8,6 |
Полученные данные ясно показывают, что элементы наполнителя с содержащимися на их внешней поверхности каналами для отведения жидкости обеспечивает большее боковое распределение воды, чем элементы Pentaring и керамические сферы, поскольку процент отклонения между центральной зоной и средней зоной для элементов наполнителя, показанных на фиг.2, составил 8,6%, тогда как процент отклонения между центральной зоной и средней зоной для элементов Pentaring и керамических сфер составил 14,7% и 37,5%, соответственно. Данные подтверждают вывод, что наполнитель с каналами для распределения жидкости обеспечил большее горизонтальное перемещение, чем любой из других покрывающих наполнителей загрузки, при оценке, проводимой на одной и той же глубине загрузки. Наполнитель, подходящий для использования в сосуде согласно настоящему изобретению имеет менее 12% разницу между распределением в центральной зоне и средней зоне испытательного устройства. Предпочтительно, разница составляет менее 10%.
Кроме обеспечения бокового перераспределения жидкости, по мере того как жидкость проходит через первый слой, керамический наполнитель в первом слое по определению влияет на спад давления, действующего перпендикулярно загрузке относительно спада давления действующего перпендикулярно загрузке без первого покрывающего слоя загрузки. Однако, элементы керамического наполнителя, с каналами для распределения жидкости на внешней поверхности преимущественно обеспечивают меньшее увеличение спада давления, чем первый слой, состоящий из керамических сфер диаметром 19 мм или элементов наполнителя Pentaring. На фиг.7 изображен график спада давления относительно массовой скорости для керамических сфер, элементов наполнителя Pentaring и элементов керамического наполнителя, показанных на фиг.2. Линия 138 представляет данные, полученные при оценке только сфер. Также, линии 140 и 142 представляют данные, полученные при оценке только элементов наполнителя Pentaring и керамических сфер, показанных на фиг.2, соответственно. График подтверждает вывод, что спад давления возрастает для сфер быстрее всего, и медленней всего для элементов керамического наполнителя с каналами для распределения жидкости на внешней поверхности. Сочетание относительно низкого спада давления с обширным, однородным горизонтальным распределением жидкости по мере ее прохождения через загрузку с керамическим наполнителем может быть желательной характеристикой для работы химического реактора.
Настоящее описание рассмотрено с приведением только отдельных вариантов осуществления. Возможные изменения изобретения могут быть понятны специалистам в данной области и тем, кто будет осуществлять или использовать настоящее изобретение. Следовательно, понятно, что варианты осуществления, показанные на графических материалах, и описанные выше исключительно с целью иллюстрации и не подразумевают ограничение объема изобретения, определяемого следующими пунктами формулы согласно нормам патентного права.
Claims (13)
1. Реактор, содержащий сосуд, имеющий: точку поступления жидкости; и загрузку, причем указанная загрузка содержит первый слой, включающий множество размещенных в нем отдельных элементов, причем, по меньшей мере, большинство элементов в первом слое составляют произвольно ориентированные элементы керамического наполнителя, при этом указанный элемент керамического наполнителя имеет внешнюю поверхность с образованным в ней одним или более каналами для отведения жидкости; а второй слой включает компоненты, где большая часть этих компонентов отличается от керамической среды; при этом первый слой загрузки размещается между вторым слоем и точкой поступления жидкости, и отношение глубины к ширине канала превышает 1,2:1,0 и не превышает 3,0:1,0.
2. Реактор по п.1, в котором только указанные элементы керамического наполнителя в указанном первом слое содержат внешнюю поверхность с образованными в ней каналами для отведения жидкости.
3. Реактор по п.1, в котором элемент наполнителя указанного первого слоя содержит первый торец, второй торец, и указанные каналы для отведения жидкости расположены между ними.
4. Реактор по п.2, в котором каждый элемент наполнителя указанного первого слоя содержит периферийную стенку, расположенную между указанными торцами, и указанные каналы для отведения жидкости образованы в указанной периферийной стенке.
5. Реактор по п.4, в котором периферийная стенка определяет максимальный диаметр элемента наполнителя, и глубина указанного канала для отведения жидкости превышает 10% от максимального диаметра элемента наполнителя.
6. Реактор по п.5, в котором глубина каждого канала для отведения жидкости превышает 15% от максимального диаметра элемента наполнителя.
7. Реактор по п.5, в котором глубина каждого канала для отведения жидкости не превышает 40% от максимального диаметра элемента наполнителя.
8. Реактор по п.6, в котором глубина каждого канала для отведения жидкости не превышает 25% от максимального диаметра элемента наполнителя.
9. Реактор по п.1, в котором отношение длины к ширине канала превышает 2:1 и не превышает 20:1.
10. Реактор по п.1, в котором большая часть указанных элементов наполнителя имеет длину и диаметр поперечного сечения, и отношение длины к диаметру элемента наполнителя превышает 0,5:1,0 и не превышает 2,5:1,0.
11. Реактор по п.1, в котором указанный первый слой занимает менее 20% глубины указанной загрузки.
12. Реактор по п.1, в котором большая часть элементов указанного наполнителя имеет, по существу, одинаковую длину, и минимальная глубина указанного первого слоя, по меньшей мере, в 5 раз превышает длину указанного элемента наполнителя.
13. Реактор по п.1, в котором компоненты указанного второго слоя включают материал, выбранный из группы, состоящей из: каталитически активного металла, адсорбентов, наполнителя для переноса массы, наполнителя для теплопередачи и наполнителя для фильтрации.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15291209P | 2009-02-16 | 2009-02-16 | |
US61/152,912 | 2009-02-16 | ||
PCT/US2010/023974 WO2010093841A2 (en) | 2009-02-16 | 2010-02-12 | Vessel containing fluid distribution media |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011137202A RU2011137202A (ru) | 2013-03-27 |
RU2494808C2 true RU2494808C2 (ru) | 2013-10-10 |
Family
ID=42560088
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011137202/05A RU2494808C2 (ru) | 2009-02-16 | 2010-02-12 | Реактор, содержащий наполнитель для распределения жидкости |
Country Status (13)
Country | Link |
---|---|
US (1) | US8282890B2 (ru) |
EP (1) | EP2396110A4 (ru) |
JP (1) | JP2012517347A (ru) |
KR (1) | KR101381843B1 (ru) |
CN (1) | CN102333586B (ru) |
AU (1) | AU2010213665A1 (ru) |
CA (1) | CA2752606C (ru) |
MX (1) | MX2011008575A (ru) |
RU (1) | RU2494808C2 (ru) |
SG (1) | SG173599A1 (ru) |
TW (1) | TWI435766B (ru) |
WO (1) | WO2010093841A2 (ru) |
ZA (1) | ZA201106580B (ru) |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7722832B2 (en) | 2003-03-25 | 2010-05-25 | Crystaphase International, Inc. | Separation method and assembly for process streams in component separation units |
JP5453363B2 (ja) * | 2011-09-14 | 2014-03-26 | カルファケミカル株式会社 | 固液分離装置 |
JP5742032B2 (ja) * | 2012-03-16 | 2015-07-01 | 株式会社石垣 | ろ過装置 |
US20160122214A1 (en) * | 2013-11-11 | 2016-05-05 | Ching-Chao Lin | Bio-block |
ES1139983Y (es) * | 2015-05-29 | 2015-09-07 | Univ Girona | Filtro de matriz granular |
US10744426B2 (en) | 2015-12-31 | 2020-08-18 | Crystaphase Products, Inc. | Structured elements and methods of use |
US10054140B2 (en) | 2016-02-12 | 2018-08-21 | Crystaphase Products, Inc. | Use of treating elements to facilitate flow in vessels |
US9732774B1 (en) | 2016-02-12 | 2017-08-15 | Crystaphase Products, Inc. | Use of treating elements to facilitate flow in vessels |
KR101834467B1 (ko) | 2016-03-21 | 2018-03-05 | 금오공과대학교 산학협력단 | 확산효율 향상을 위한 유체 필터링 구조 |
CN111918708A (zh) * | 2018-03-28 | 2020-11-10 | 诺雷尔公司 | 多通道蒸馏柱填充件 |
MX2022007367A (es) | 2019-12-20 | 2022-07-12 | Crystaphase Products Inc | Resaturacion de gas en una corriente de alimentacion liquida. |
WO2022056154A1 (en) * | 2020-09-09 | 2022-03-17 | Crystaphase Products, Inc. | Process vessel entry zones |
CN114082383B (zh) * | 2021-12-27 | 2023-08-08 | 红宝丽集团泰兴化学有限公司 | 环氧化反应稳定性的提升方法及提升装置 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4471154A (en) * | 1983-06-10 | 1984-09-11 | Chevron Research Company | Staged, fluidized-bed distillation-reactor and a process for using such reactor |
US4487727A (en) * | 1981-05-18 | 1984-12-11 | Ballato Jr Joseph F | Packing material for contacting towers |
US4541967A (en) * | 1982-12-08 | 1985-09-17 | Ngk Insulators, Ltd. | Packing for packed towers for inter-fluid contact |
RU2134154C1 (ru) * | 1991-12-19 | 1999-08-10 | Дзе Стэндард Оил Компани | Аппарат для проведения эндотермической реакции |
RU2135258C1 (ru) * | 1998-02-25 | 1999-08-27 | Осипов Эдуард Ваганович | Устройство для очистки и кондиционирования воды |
RU2156651C2 (ru) * | 1995-04-04 | 2000-09-27 | Снампрогетти С.П.А. | Реактор флюидизированного слоя и способ выполнения в нем химических реакций |
WO2007104354A1 (en) * | 2006-03-13 | 2007-09-20 | Agilent Technologies, Inc | Elastic porous column material |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4006087A (en) * | 1975-05-23 | 1977-02-01 | Combustion Engineering, Inc. | Fluid distribution system |
US4904456A (en) * | 1985-06-20 | 1990-02-27 | Phillips Petroleum Company | Apparatus for treating fluids in a bed of particulate material |
GB2224341B (en) * | 1988-10-13 | 1992-08-05 | Regenerative Environ Equip | Heat transfer or tower packing element |
US5304423A (en) * | 1992-07-16 | 1994-04-19 | Norton Chemical Process Products Corp. | Packing element |
US6291603B1 (en) | 1997-07-18 | 2001-09-18 | Crystaphase International, Inc. | Filtration and flow distribution method for chemical reactors using reticulated ceramics with uniform pore distributions |
US8062521B2 (en) * | 1998-05-29 | 2011-11-22 | Crystaphase Products, Inc. | Filtering medium and method for contacting solids-containing feeds for chemical reactors |
RU2302288C2 (ru) * | 2001-12-21 | 2007-07-10 | Эмэлгэмэйтед Рисерч, Инк. | Тороидальный резервуар для однородного распределения потока текучей среды в пробковом режиме |
US20030232172A1 (en) * | 2002-06-12 | 2003-12-18 | Niknafs Hassan S. | Ceramic packing element |
US7265189B2 (en) * | 2003-03-25 | 2007-09-04 | Crystaphase Products, Inc. | Filtration, flow distribution and catalytic method for process streams |
US7166151B2 (en) * | 2004-01-15 | 2007-01-23 | Praxair Technology, Inc. | Flow distributor for PSA vessel |
US7566428B2 (en) * | 2005-03-11 | 2009-07-28 | Saint-Gobain Ceramics & Plastics, Inc. | Bed support media |
US20060204414A1 (en) * | 2005-03-11 | 2006-09-14 | Saint-Gobain Ceramics & Plastics, Inc. | Bed support media |
US7523923B2 (en) * | 2006-04-18 | 2009-04-28 | Shell Oil Company | Fluid distribution tray and method for the distribution of a highly dispersed fluid across a bed of contact material |
US7862013B2 (en) * | 2006-10-19 | 2011-01-04 | Saint-Gobain Ceramics & Plastics, Inc. | Packing element for use in a chemical processing apparatus |
-
2010
- 2010-02-08 TW TW099103867A patent/TWI435766B/zh not_active IP Right Cessation
- 2010-02-12 US US12/704,556 patent/US8282890B2/en not_active Expired - Fee Related
- 2010-02-12 EP EP10741752.9A patent/EP2396110A4/en not_active Withdrawn
- 2010-02-12 RU RU2011137202/05A patent/RU2494808C2/ru not_active IP Right Cessation
- 2010-02-12 SG SG2011057106A patent/SG173599A1/en unknown
- 2010-02-12 MX MX2011008575A patent/MX2011008575A/es active IP Right Grant
- 2010-02-12 CA CA2752606A patent/CA2752606C/en not_active Expired - Fee Related
- 2010-02-12 KR KR1020117021373A patent/KR101381843B1/ko active IP Right Grant
- 2010-02-12 CN CN201080007621.2A patent/CN102333586B/zh not_active Expired - Fee Related
- 2010-02-12 JP JP2011550242A patent/JP2012517347A/ja active Pending
- 2010-02-12 AU AU2010213665A patent/AU2010213665A1/en not_active Abandoned
- 2010-02-12 WO PCT/US2010/023974 patent/WO2010093841A2/en active Application Filing
-
2011
- 2011-09-08 ZA ZA2011/06580A patent/ZA201106580B/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4487727A (en) * | 1981-05-18 | 1984-12-11 | Ballato Jr Joseph F | Packing material for contacting towers |
US4541967A (en) * | 1982-12-08 | 1985-09-17 | Ngk Insulators, Ltd. | Packing for packed towers for inter-fluid contact |
US4471154A (en) * | 1983-06-10 | 1984-09-11 | Chevron Research Company | Staged, fluidized-bed distillation-reactor and a process for using such reactor |
RU2134154C1 (ru) * | 1991-12-19 | 1999-08-10 | Дзе Стэндард Оил Компани | Аппарат для проведения эндотермической реакции |
RU2156651C2 (ru) * | 1995-04-04 | 2000-09-27 | Снампрогетти С.П.А. | Реактор флюидизированного слоя и способ выполнения в нем химических реакций |
RU2135258C1 (ru) * | 1998-02-25 | 1999-08-27 | Осипов Эдуард Ваганович | Устройство для очистки и кондиционирования воды |
WO2007104354A1 (en) * | 2006-03-13 | 2007-09-20 | Agilent Technologies, Inc | Elastic porous column material |
Also Published As
Publication number | Publication date |
---|---|
ZA201106580B (en) | 2012-05-30 |
US20100209315A1 (en) | 2010-08-19 |
US8282890B2 (en) | 2012-10-09 |
CA2752606A1 (en) | 2010-08-19 |
KR20110127210A (ko) | 2011-11-24 |
JP2012517347A (ja) | 2012-08-02 |
EP2396110A2 (en) | 2011-12-21 |
MX2011008575A (es) | 2011-09-06 |
CN102333586A (zh) | 2012-01-25 |
RU2011137202A (ru) | 2013-03-27 |
AU2010213665A1 (en) | 2011-09-22 |
SG173599A1 (en) | 2011-09-29 |
TW201031466A (en) | 2010-09-01 |
KR101381843B1 (ko) | 2014-04-07 |
WO2010093841A2 (en) | 2010-08-19 |
WO2010093841A3 (en) | 2010-12-02 |
CN102333586B (zh) | 2015-09-09 |
TWI435766B (zh) | 2014-05-01 |
EP2396110A4 (en) | 2014-01-29 |
CA2752606C (en) | 2013-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2494808C2 (ru) | Реактор, содержащий наполнитель для распределения жидкости | |
CA2599456C (en) | Bed support media | |
US20060204414A1 (en) | Bed support media | |
KR101417049B1 (ko) | 공정 스트림 분리 방법 및 어셈블리 | |
US20090115077A1 (en) | Packing elements for mass transfer applications | |
US9101863B2 (en) | Filtering medium and method for contacting solids containing feeds for chemical reactors | |
US20110201856A1 (en) | Filtration and predistribution device for a fixed catalytic bed reactor and use thereof | |
KR19980080275A (ko) | 혼합 장치 | |
JP6983042B2 (ja) | ガスが通過するチムニー内に分散材料を備えている、交換塔の分配トレイ | |
WO2011149802A2 (en) | Mass transfer packing element and method of making the same | |
US20020038066A1 (en) | Fixed catalytic bed reactor | |
KR101670144B1 (ko) | 탈수소화 반응기용 가스분산장치 | |
US20200353434A1 (en) | Methods and systems for sock-loading fixed bed reactors | |
CN1995093A (zh) | 卧式聚酯固相缩聚反应装置 | |
WO2008086024A1 (en) | Packing elements for mass transfer applications | |
US2880038A (en) | Gas solids separation in a pneumatic lift | |
GB2224341A (en) | Heat transfer or chemical tower packing element | |
CN105582862A (zh) | 一种用于上流式反应器的气液分配盘 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20200213 |