RU2493553C1 - Газоанализатор для измерения содержания ртути в газе - Google Patents

Газоанализатор для измерения содержания ртути в газе Download PDF

Info

Publication number
RU2493553C1
RU2493553C1 RU2012101704/28A RU2012101704A RU2493553C1 RU 2493553 C1 RU2493553 C1 RU 2493553C1 RU 2012101704/28 A RU2012101704/28 A RU 2012101704/28A RU 2012101704 A RU2012101704 A RU 2012101704A RU 2493553 C1 RU2493553 C1 RU 2493553C1
Authority
RU
Russia
Prior art keywords
calibration
gas
mercury
gas analyzer
cell
Prior art date
Application number
RU2012101704/28A
Other languages
English (en)
Other versions
RU2012101704A (ru
Inventor
Рольф ДИШ
Original Assignee
Зик Аг
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Зик Аг filed Critical Зик Аг
Publication of RU2012101704A publication Critical patent/RU2012101704A/ru
Application granted granted Critical
Publication of RU2493553C1 publication Critical patent/RU2493553C1/ru

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • G01N21/278Constitution of standards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/3103Atomic absorption analysis
    • G01N2021/3107Cold vapor, e.g. determination of Hg
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/066Modifiable path; multiple paths in one sample
    • G01N2201/0668Multiple paths; optimisable path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/12Circuits of general importance; Signal processing
    • G01N2201/128Alternating sample and standard or reference part in one path
    • G01N2201/1285Standard cuvette
    • G01N2201/1286More than one cuvette

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Изобретение относится к измерениям содержания ртути в газе. Газоанализатор содержит источник света, излучающий свет с длинами волн по меньшей мере одной спектральной линии ртути, измерительную кювету, в которой находится измеряемый газ, содержащий ртуть, приемник света, блок обработки данных и устанавливаемую на пути светового луча калибровочную кювету для контроля работоспособности. Для измерения содержания ртути в газе используют бензол в качестве сравнительного газа в калибровочной кювете. Изобретение позволяет упростить калибровку газоанализатора. 2 н. и 7 з.п. ф-лы, 4 ил.

Description

Данное изобретение относится к газоанализатору для измерения содержания ртути в газе, тип которого указан в ограничительной части п.1 формулы изобретения. Также данное изобретение относится к способу калибровки указанного газоанализатора.
Устройства подобного типа для измерения содержания ртути в газе известны из уровня техники. Такие устройства содержат ртутную лампу в качестве источника света, которая вдоль оптической оси испускает спектральные линии изотопически чистой ртути. Источник света находится в магнитном поле, направление которого совпадает с оптической осью, так что создаются поляризованные σ+ и σ- компоненты спектральной линии (продольный эффект Зеемана). Генерированный таким образом свет пропускают через абсорбционную кювету, в которой происходит его поглощение в газе, в котором измеряют содержание Hg. Вследствие магнитного расщепления одна из двух компонент сдвигается настолько, что она не может быть поглощена природной ртутью, в то время как вторая компонента лежит в полосе поглощения даже в сдвинутом состоянии. Сравнивая обе эти компоненты после прохождения абсорбционной кюветы, можно определить степень поглощения, а вместе с тем и содержание Hg. Чтобы исследовать по отдельности поглощение обеих компонент, их разделяют в оптическом разделительном устройстве.
Измерительную способность газоанализатора любого типа, в особенности газоанализатора для измерения содержания ртути в газе, выявляют посредством цикличных контрольных измерений.
Как известно, для калибровки газоанализатора применяют измерительные кюветы, которые продувают измеряемой компонентой известной концентрации, это можно осуществить в экстракционной системе с произвольно выбираемой концентрацией (в частности в диапазоне измерений прибора) и продолжительностью цикла.
Недостатками такого метода продувки является длительное время калибровки/проверки, так как газ приходится подавать методом отбора проб. Если измеряемым компонентом является ртуть, то реализовать калибровочную кювету с ртутью трудно, особенно в случае низких измеряемых концентраций. Одна из возможностей заключается в том, что можно очень точно установить давление пара над капелькой ртути. Однако это требует больших затрат, так как, например, чтобы получить сигнал об обнаружении ртути, соответствующий концентрации 10 мкг/м3 в тридцатисантиметровой кювете, калибровочная кювета должна иметь толщину 0,04 мм, кроме того, при помощи термостата необходимо точно поддерживать температуру 45°С. Если концентрацию через давление пара требуется установить с точностью до 1%, то температуру необходимо регулировать с точностью ≤0,15°С. Осуществить и то и другое очень трудно, и даже почти невозможно.
Другой известный вариант калибровки состоит в том, что закрытую, наполненную газом кювету с известной концентрацией ртути помещают в измерительный контур. В этом случае зависимость от температуры значительно ниже, так как ее влияние проявляется через температурные свойства и свойства в отношении уширения спектральной линии при повышении давления, но не через изменение концентрации ртути. При этом обеспечиваемый калибровочной кюветой сигнал должен соответствовать сигналу в измерительном контуре. Такую калибровку можно произвести в течение довольно короткого промежутка времени. Тем не менее из-за абсорбции ртути на кварцевой поверхности калибровочной кюветы ее концентрация остается нестабильной.
Из статьи Ганеева с соавторами (Ganeyev et al «New Zeeman atomic absorption spectroscopy approach for mercury isotope analysis»), опубликованной в журнале Spectrochimica Acta, Vol 47B, No. 11, стр.1325-1338, 1992, известен способ, при котором изотопный анализ осуществляют при помощи прямого и обратного эффекта Зеемана. При этом калибровку осуществляют с применением пробы, содержащей Hg-202.
В статье Коицуми с соавторами (Koizumi et al: «An application of the Zeeman effect to atomic absorption spectrometry: a new method for background correction»), опубликованной в журнале Spectrochimica Acta, Vol 31 В, No. 5, стр.237-255, 1976, описано устройство и способ, посредством которых атомы исследуют при помощи эффекта Зеемана и при которых необходимо учитывать фон, возникающий из-за других молекул, например, бензола.
Исходя из этого известного уровня техники, задача изобретения состоит в том, чтобы предложить усовершенствованный газоанализатор для измерения содержания ртути в газе, который можно калибровать простым способом, а также усовершенствованный способ калибровки газоанализатора для измерения содержания ртути в газе.
Указанная задача решена путем создания газоанализатора с признаками пункта 1 и способа калибровки газоанализатора с признаками пункта 7 формулы настоящего изобретения.
В настоящем изобретении предложен газоанализатор для измерения содержания ртути в газе, содержащий ртутный источник света, излучающий свет с длинами волн по меньшей мере одной спектральной линии ртути, измерительную кювету, в которой находится измеряемый газ, содержащий ртуть, приемник света, блок обработки данных и устанавливаемую на пути светового луча калибровочную кювету для контроля работоспособности, отличающийся тем, что калибровочная кювета в качестве сравнительного газа содержит бензол.
Бензол (С6Н6) представляет собой соединение, которое в соответствующей области спектра Hg абсорбирует в широкой полосе поглощения, но в месте замера в измеряемом газе либо не встречается, либо присутствует в таких концентрациях, которые не оказывают отрицательного влияния на результаты измерения. Калибровочная кювета представляет собой стандартную кварцевую кювету, которую после наполнения газом оплавляют, обеспечивая тем самым прочное закрытие кюветы.
Калибровочную кювету можно наполнить бензолом с очень высокой концентрацией, чтобы не принимать в расчет реакцию бензола, идущую у стенок кюветы. Концентрация бензола в кювете остается стабильной на протяжении длительного периода времени; измерительный сигнал зависит от температуры гораздо меньше, чем в случае кюветы с ртутью.
Предпочтительно применение бензола в качестве сравнительного газа.
Уровень калибровочного сигнала можно отрегулировать простым способом, а именно изменяя концентрацию бензола или длину калибровочной кюветы.
В сравнении с продувкой измерительной кюветы через нагреваемые газопроводы предлагаемое решение обеспечивает затрату гораздо меньшего количества времени, что повышает готовность измерительного прибора к работе.
Обычно толщина слоя калибровочной кюветы составляет от 10 до 20 мм, диаметр - 20 мм.
В предложенном усовершенствованном варианте настоящего изобретения концентрация бензола в калибровочной кювете составляет по существу 1%, оптическая длина пути составляет по существу 2 см, а давление в калибровочной кювете составляет по существу 1000 мбар. В этом случае, если температура в калибровочной кювете приблизительно соответствует комнатной температуре, то калибровочная кювета дает измерительный сигнал об обнаружении ртути, соответствующий концентрации приблизительно 15 мкг/м3. Уровень этого сигнала можно отрегулировать простым способом, а именно изменяя концентрацию газа, выступающего в качестве наполнителя.
Предпочтительно предусмотреть несколько калибровочных кювет с возможностью соединения между собой, каждая из которых имеет различную оптическую длину пути. Благодаря этому можно также быстро осуществить проверку линейности. Независимо от концентрации наполнителя измерительные сигналы отдельных калибровочных кювет должны соотноситься друг с другом, как их соответствующие оптические длины пути.
При этом предпочтительно предусмотреть возможность комбинирования из по меньшей мере трех калибровочных кювет с различными оптическими длинами пути. Чтобы обеспечить одинаковую концентрацию во всех калибровочных кюветах и осуществить указанную проверку линейности, калибровочные кюветы выполнены с возможностью соединения между собой.
Способ калибровки газоанализатора для измерения содержания ртути в газе включает следующие этапы:
- генерация света с длинами волн по меньшей мере одной спектральной линии Hg;
- подготовка калибровочной кюветы с бензолом известной концентрации, выступающим в качестве обычного сравнительного газа и, таким образом, с известными параметрами калибровки для калибровочной кюветы при длинах волн, соответствующих спектральной линии Hg;
- установка калибровочной кюветы на пути луча;
- калибровка газоанализатора по известным параметрам калибровки.
Параметры калибровки можно определить, например, следующим образом. При вводе газоанализатора в эксплуатацию газоанализатор впервые калибруют посредством загрузки в измерительную кювету известной концентрации ртути. После этого определяют измеряемое значение для калибровочной кюветы и сохраняют указанную величину в качестве калибровочного значения. При всех следующих калибровках с использованием калибровочной кюветы полученное фактическое значение сравнивают с параметром калибровки и, таким образом, калибруют газоанализатор в работе.
При этом, как сказано выше, можно применить несколько соединенных между собой калибровочных кювет, каждая из которых имеет различную оптическую длину пути.
Ниже приведено более подробное описание настоящего изобретения на основе одного из примеров его осуществления со ссылками на чертежи, на которых изображено следующее:
на фиг.1 схематично изображен газоанализатор для измерения содержания ртути в газе;
на фиг.2 изображен спектр ртути источника света газоанализатора и спектр поглощения;
на фиг.3 схематично изображен комплект калибровочных кювет;
на фиг.4 изображена часть спектра поглощения бензола.
Как схематично показано на фиг.1, устройство 10 для измерения содержания ртути в газе имеет источник 12 света, в частности безэлектродную газоразрядную лампу, для испускания спектральных линий ртути по оптической оси 14.
Источник 12 света содержит изотопически чистый Hg-198 и находится в как можно более однородном магнитном поле 16, которое создают с помощью магнита 15 и которое в месте генерации света направлено параллельно оптической оси. В результате благодаря продольному эффекту Зеемана создаются σ+ и σ- поляризованные компоненты Зеемана спектральной линии, а именно λ1 и λ2 соответственно.
С целью обеспечения значительного расщепления спектральной линии, а также чтобы спектральные линии оставались четкими, то есть в каждой точке лампы спектрально сдвигались на одинаковую величину, необходимо создать достаточно сильное, однородное магнитное поле.
На фиг.2 показаны образованные источником 12 света спектральные линии ртути и спектр 13 поглощения природной ртути, как это происходит в измеряемом газе. Магнитное поле в месте газового разряда настолько сильно, что σ+ компонента λ1 сдвигается из полосы поглощения, в то время как σ- компонента λ2 по-прежнему остается в полосе поглощения. Напряженность магнитного поля обычно составляет примерно 0,7 Тл.
Важность значительного разделения состоит в том, что, в конечном счете, λ2 представляет измеряемую величину, так как σ- компонента поглощается, а σ+ компонента λ1 представляет собой сравнительную величину, так как не поглощается ртутью в абсорбционной кювете.
Затем свет проходит через фотоупругий модулятор 24, в котором благодаря двупреломляющим свойствам модулятора 24 противоположные о компоненты с круговой поляризацией подвергаются разному воздействию. Это разное воздействие происходит с частотой приложенного переменного напряжения, которое подают от источника 28 питания. В результате в определенные моменты времени пропускается только σ+ компонента, а в другие определенные моменты времени - только σ- компонента. Таким образом, при помощи фотоупругого модулятора 24 происходит разделение по времени σ+ и σ- компонент.
Затем свет проходит через измерительную кювету 30 с содержащейся в ней измеряемой примесью ртути. Измерительная кювета имеет подвод и отвод 30-1 и 30-2 для исследуемого газа, а также нагреватель 32 для нагревания газа, чтобы по возможности обеспечить нахождение ртути в атомном состоянии. По-прежнему находящаяся в пределах спектра поглощения σ- компонента претерпевает поглощение атомами ртути в измерительной кювете 30, тогда как, σ+ компонента не претерпевает поглощения вследствие энергетического сдвига из полосы поглощения, так что свет указанной спектральной линии служит в качестве сравнительного света. Далее свет отражается от светоотражателя 35 и проходит через измерительную кювету во второй раз.
Наконец, свет проходит через лучерасщепитель 37, принимается приемником 34 света и подается в синхронный усилитель 38, запускаемый тем же переменным напряжением, что подается на фотоупругий модулятор 24. В результате этого при помощи синхронного усилителя получают сигнал, который на фиг.1 показан в виде графика с номером позиции 40. Так приемник 34 света попеременно, с частотой управляющего напряжения модулятора, принимает сравнительный свет и непоглощенную часть измеряемого света, поэтому разность, то есть амплитуда кривой 40, является мерой поглощения в измерительной кювете 30 и, следовательно, мерой концентрации ртути, так что по этому сигналу определяют концентрацию ртути в исследуемом газе.
При калибровке газоанализатора 10 используют калибровочные кюветы 31, схематично изображенные на фиг.3. В принципе для калибровки достаточно одной калибровочной кюветы 31.
Калибровочная кювета 31 состоит из кварцевого стекла, непроницаема для газа и наполнена бензолом с концентрацией приблизительно 1% при комнатной температуре под давлением 1000 бар. Для входа и выхода света предусмотрены окна 31-1 и 31-2. Предпочтительно оптическая длина пути L составляет от 10 до 20 мм, причем на фиг.3 представлен комплект калибровочных кювет 31, каждая из которых имеет различную оптическую длину пути L. Обычно диаметр калибровочных кювет 31 составляет 20 мм.
Для калибровки газоанализатора 10 такую калибровочную кювету 31 можно установить на пути луча, причем в примере осуществления, который показан на фиг.1, кювета 31 имеет зеркало 31-3, так что свет через измерительную кювету 30 не проходит, а его выводят на приемник 34. В принципе калибровочную кювету также применяют дополнительно к измерительной кювете 30 или вместо нее, причем в последнем случае кювету продувают нулевым газом, например, азотом. В этом случае для калибровочной кюветы 31 необходимы показанные на фиг.3 окна.
На фиг.4 показан спектр поглощения бензола в соответствующей области спектра. В диапазоне между значениями 230 и 270 нм бензол имеет слабую полосу А поглощения. Кроме того, на указанном чертеже показаны положения λ1 и λ2 компонент Зеемана линии поглощения Hg-198. Разность d интенсивностей калибровочного сигнала в обоих положениях при постоянных температуре и давлении бензола пропорциональна существующей в калибровочной кювете концентрации, поэтому газоанализатор калибруют по полученным измерениям при помощи калибровочной кюветы. Значение температуры в калибровочной кювете, как правило, находится в диапазоне между комнатной температурой и 50°С.
Спектр поглощения бензола не обязательно должен быть известен в виде функции (абсолютная интенсивность поглощения как функция длины волны). Важно, чтобы спектр поглощения существовал и не менялся во времени. В этом случае калибровку газоанализатора осуществляют, например, по следующему принципу. Газоанализатор впервые калибруют при вводе газоанализатора в эксплуатацию посредством загрузки в измерительную кювету известной концентрации ртути. После этого помещают калибровочную кювету и, начиная с этого момента времени, полученное с ее применением измеренное значение регистрируют как параметр калибровки. При всех следующих калибровках или проверках помещают калибровочную кювету, полученное измеренное значение сравнивают с калибровочным значением и при необходимости настраивают чувствительность газоанализатора.
Для проверки линейности газоанализатора 10 на пути луча применяют разные калибровочные кюветы 31 с разными длинами и проверяют соответствие измерительных сигналов оптическим длинам пути. Чтобы при данной проверке в калибровочных кюветах всегда имелась одинаковая концентрация бензола, и тем самым допускалось сравнение измерений при различных длинах пути, калибровочные кюветы 31 предпочтительно выполнены с возможностью соединения между собой.

Claims (9)

1. Газоанализатор для измерения содержания ртути в газе, содержащий ртутный источник света, излучающий свет с длинами волн по меньшей мере одной спектральной линии ртути, измерительную кювету, в которой находится измеряемый газ, содержащий ртуть, приемник света, блок обработки данных и устанавливаемую на пути светового луча калибровочную кювету для контроля работоспособности, отличающийся тем, что калибровочная кювета в качестве сравнительного газа содержит бензол.
2. Газоанализатор по п.1, отличающийся тем, что концентрация бензола составляет, по существу, 1%.
3. Газоанализатор по п.1, отличающийся тем, что оптическая длина пути в калибровочной кювете составляет, по существу, 2 см.
4. Газоанализатор по п.2, отличающийся тем, что давление в калибровочной кювете составляет, по существу, 1000 мбар.
5. Газоанализатор по п.3, отличающийся тем, что значение температуры в калибровочной кювете находится в диапазоне между комнатной температурой и 50°С.
6. Газоанализатор по п.1, отличающийся тем, что в нем предусмотрено несколько калибровочных кювет, выполненных с возможностью соединения между собой, каждая из которых имеет различную оптическую длину пути.
7. Способ калибровки газоанализатора для измерения содержания ртути в газе, включающий следующие этапы:
генерация света с длинами волн по меньшей мере одной спектральной линии Hg при помощи ртутного источника света;
подготовка калибровочной кюветы с бензолом известной концентрации, выступающим в качестве сравнительного газа и, таким образом, с известными параметрами калибровки для калибровочной кюветы при длинах волн, соответствующих спектральной линии Hg;
установка калибровочной кюветы на пути луча;
калибровка газоанализатора по известным параметрам калибровки.
8. Способ по п.7, отличающийся тем, что при вводе газоанализатора в эксплуатацию газоанализатор впервые калибруют посредством загрузки в измерительную кювету известной концентрации ртути, после этого определяют измеряемое значение для калибровочной кюветы и сохраняют указанную величину в качестве параметра калибровки, а при всех следующих калибровках с использованием калибровочной кюветы полученное фактическое значение сравнивают с параметром калибровки и, таким образом, калибруют газоанализатор в работе.
9. Способ по п.7 или 8, отличающийся тем, что применяют разные калибровочные кюветы с различными оптическими длинами пути.
RU2012101704/28A 2011-01-27 2012-01-19 Газоанализатор для измерения содержания ртути в газе RU2493553C1 (ru)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11152377.5 2011-01-27
EP11152377A EP2482057B1 (de) 2011-01-27 2011-01-27 Gasanalysator zur Messung des Quecksilbergehalts eines Gases und dessen Kalibrierungsverfahren

Publications (2)

Publication Number Publication Date
RU2012101704A RU2012101704A (ru) 2013-07-27
RU2493553C1 true RU2493553C1 (ru) 2013-09-20

Family

ID=44148694

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012101704/28A RU2493553C1 (ru) 2011-01-27 2012-01-19 Газоанализатор для измерения содержания ртути в газе

Country Status (6)

Country Link
US (1) US20120194818A1 (ru)
EP (1) EP2482057B1 (ru)
KR (1) KR101351491B1 (ru)
CN (1) CN102621081B (ru)
AU (1) AU2011253760B2 (ru)
RU (1) RU2493553C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007048A1 (ru) * 2014-07-09 2016-01-14 Александр Анатольевич СТРОГАНОВ Абсорбционный анализатор

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8785857B2 (en) * 2011-09-23 2014-07-22 Msa Technology, Llc Infrared sensor with multiple sources for gas measurement
CN102998268A (zh) * 2012-11-22 2013-03-27 中科天融(北京)科技有限公司 一种烟气汞在线监测仪器
US9885696B2 (en) 2013-06-21 2018-02-06 Philip J. Dufresne System for analyzing mercury
CN105372191A (zh) * 2015-10-22 2016-03-02 燕山大学 一种气态单质汞光谱监测方法及其监测装置
DE102019006343A1 (de) * 2018-09-24 2020-03-26 Merck Patent Gmbh Messkammer und Messstand

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817049A1 (de) * 1987-08-04 1989-02-16 Jenoptik Jena Gmbh Kalibrierverfahren zur quecksilberbestimmung
US7354553B2 (en) * 2005-05-02 2008-04-08 Dirk Appel Method and apparatus for detecting the presence of elemental mercury in a gas sample
US7454945B1 (en) * 2005-05-02 2008-11-25 Thermo Electron, Inc. Mercury monitoring system and calibration
CN101482506A (zh) * 2008-01-10 2009-07-15 江苏江分电分析仪器有限公司 汞含量测量方法及测量装置
RU2373522C1 (ru) * 2008-05-26 2009-11-20 Общество с ограниченной ответственностью "ВИНТЕЛ" Атомно-абсорбционный ртутный анализатор

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB818079A (en) * 1957-02-07 1959-08-12 Benzole Producers Ltd Improvements in apparatus for determining the concentration of benzole in gas mixtures
GB1105413A (en) * 1964-10-16 1968-03-06 Barringer Research Ltd Method and apparatus for detecting traces of substances
US4488814A (en) * 1981-09-28 1984-12-18 Miles Laboratories, Inc. Apparatus for and method of optical absorbance and fluorescent radiation measurement
CN2084617U (zh) * 1990-08-21 1991-09-11 何长一 交变纵向磁场塞曼效应测汞仪
DE4115425C1 (ru) 1991-05-10 1992-08-27 Hartmann & Braun Ag, 6000 Frankfurt, De
US5347475A (en) * 1991-09-20 1994-09-13 Amoco Corporation Method for transferring spectral information among spectrometers
US5436459A (en) * 1993-03-10 1995-07-25 Dragerwerk Aktiengesellschaft UV spectrometer with laser diodes and laser frequency multiplication
DE4316513B4 (de) * 1993-05-17 2006-06-29 Berthold Gmbh & Co. Kg Atomabsorptionsspektrometer
JPH08313439A (ja) * 1995-05-20 1996-11-29 Horiba Ltd 紫外線ガス分析計
US7061608B2 (en) * 2004-01-30 2006-06-13 Artel, Inc. Apparatus and method for calibration of spectrophotometers
US20100302546A1 (en) * 2009-05-27 2010-12-02 Masud Azimi Optical measurement of samples
CN101819140B (zh) * 2010-05-13 2012-04-25 哈尔滨工业大学 气态单质汞浓度的连续监测装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817049A1 (de) * 1987-08-04 1989-02-16 Jenoptik Jena Gmbh Kalibrierverfahren zur quecksilberbestimmung
US7354553B2 (en) * 2005-05-02 2008-04-08 Dirk Appel Method and apparatus for detecting the presence of elemental mercury in a gas sample
US7454945B1 (en) * 2005-05-02 2008-11-25 Thermo Electron, Inc. Mercury monitoring system and calibration
CN101482506A (zh) * 2008-01-10 2009-07-15 江苏江分电分析仪器有限公司 汞含量测量方法及测量装置
RU2373522C1 (ru) * 2008-05-26 2009-11-20 Общество с ограниченной ответственностью "ВИНТЕЛ" Атомно-абсорбционный ртутный анализатор

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016007048A1 (ru) * 2014-07-09 2016-01-14 Александр Анатольевич СТРОГАНОВ Абсорбционный анализатор
EA032852B1 (ru) * 2014-07-09 2019-07-31 Александр Анатольевич СТРОГАНОВ Абсорбционный анализатор

Also Published As

Publication number Publication date
AU2011253760A1 (en) 2012-08-16
US20120194818A1 (en) 2012-08-02
KR101351491B1 (ko) 2014-01-14
EP2482057B1 (de) 2013-03-20
CN102621081A (zh) 2012-08-01
KR20120087107A (ko) 2012-08-06
CN102621081B (zh) 2014-11-12
AU2011253760B2 (en) 2013-05-02
EP2482057A1 (de) 2012-08-01
RU2012101704A (ru) 2013-07-27

Similar Documents

Publication Publication Date Title
RU2493553C1 (ru) Газоанализатор для измерения содержания ртути в газе
KR102291810B1 (ko) 간섭을 일으키는 광학 흡수의 존재 하에서 극히 희귀한 분자 종의 분광학적 정량화
US9234905B2 (en) Method of calibrating and calibration apparatus for a moisture concentration measurement apparatus
Zellweger et al. Evaluation of new laser spectrometer techniques for in-situ carbon monoxide measurements
JP5603870B2 (ja) 波長変調スペクトロスコピー装置の較正方法
US8009293B2 (en) Modulation cancellation method in laser spectroscopy
RU2336518C2 (ru) Фотоакустический способ измерения концентрации неуглеводородного компонента в метаносодержащей газовой смеси
JPH0231820B2 (ru)
US7924006B2 (en) Method and apparatus for analyzing sample utilizing nuclear magnetic resonance under terahertz-wave irradiation
US8097859B2 (en) Oxygen concentration measuring device
Grassam et al. Application of the inverse Zeeman effect to background correction in electrothermal atomic-absorption analysis
CN104515746B (zh) 用于测量在测试气体中的气体成分的浓度的方法
US9772226B2 (en) Referenced and stabilized optical measurement system
EP2668478A1 (en) Method of absorbance correction in a spectroscopic heating value sensor
US20120210770A1 (en) Systems and methods for permeability rate testing of barrier films using vapor accumulation
JPS6394136A (ja) 蛍光分析方法及び装置
Pradhan et al. Trace detection of C 2 H 2 in ambient air using continuous wave cavity ring-down spectroscopy combined with sample pre-concentration
Singh et al. Isotopic trace analysis of water vapor with multipass cavity Raman scattering
KR101389556B1 (ko) 다채널 방식의 분광 분석기를 사용한 실시간 반도체 및 lcd 공정 혼합액 분석 장치 및 방법
US20020185608A1 (en) Measuring device and a method for determining at least one luminescence, or absorption parameter of a sample
KR20150018713A (ko) 원자 흡광법을 이용한 원소 농도 분석 장치 및 방법
Castiglioni et al. Evaluation of instrumental errors built in circular dichroism spectrometers
RU2715934C1 (ru) Анализатор для селективного определения летучих ароматических углеводородов
RU2522795C1 (ru) Способ определения концентрации изотопного состава молекулярного йода в газах
Zellweger et al. Evaluation of three new laser spectrometer techniques for in-situ carbon monoxide measurements