RU2492112C1 - Heavy-duty multi-propeller converter plate - Google Patents
Heavy-duty multi-propeller converter plate Download PDFInfo
- Publication number
- RU2492112C1 RU2492112C1 RU2012115839/11A RU2012115839A RU2492112C1 RU 2492112 C1 RU2492112 C1 RU 2492112C1 RU 2012115839/11 A RU2012115839/11 A RU 2012115839/11A RU 2012115839 A RU2012115839 A RU 2012115839A RU 2492112 C1 RU2492112 C1 RU 2492112C1
- Authority
- RU
- Russia
- Prior art keywords
- wing
- screws
- fuselage
- cantilever
- along
- Prior art date
Links
Images
Landscapes
- Transmission Devices (AREA)
Abstract
Description
Изобретение относится к авиационной техники и касается создания тяжелых многовинтовых конвертопланов, выполненных по концепции тандемного расположения поворотных винтов на высокорасположенном крыле и двухбалочным оперением или с двухфюзеляжной схемой, или с крупномерным несущим фюзеляжем, обеспечивающих их использование как вертолета, так и самолета, но и винтокрыла.The invention relates to aircraft and relates to the creation of heavy multi-rotor convertiplanes made according to the concept of a tandem arrangement of rotary screws on a high wing and two-beam plumage or with a two-fuselage scheme, or with a large-sized supporting fuselage, ensuring their use as a helicopter and an airplane, but also a rotorcraft.
Известен тяжелый конвертоплан модели TR-65 компании "Karem Aircraft" (США), содержащий моноплан с высокорасположенным крылом обратной стреловидности и на концах его консолей смонтированы двигатели с редукторами и винтами, установленные в поворотных мотогондолах, при повороте которых он преобразовывается в вертолет двухвинтовой поперечной схемы, имеющий трансмиссию с синхронизирующим валом, проложенным в крыле, однокилевое хвостовое оперение и трехопорное убирающееся колесное шасси с носовой вспомогательной опорой.Known heavy tiltrotor model TR-65 company "Karem Aircraft" (USA), containing a monoplane with a high-back wing sweep and at the ends of its consoles mounted motors with gears and screws mounted in rotary engine nacelles, when turned, it is converted into a twin-rotor helicopter having a transmission with a synchronizing shaft laid in the wing, a single-tail tail and a three-leg retractable retractable wheel chassis with a nose support.
Признаки, совпадающие - наличие поворотных мотогондол с тянущими винтами (диаметром 19,8 м), создающими горизонтальную и соответствующим отклонением вверх вертикальную тягу, диапазон поворота винтов от 0° до +97,5°, при корабельном базировании лопасти винтов складываются и прямое крыло разворачивается вдоль верхней части фюзеляжа, избыточная тяговооруженность обеспечивает вертикальный взлет и посадку при взлетном его весе 50400 кг и продолжение полета на одном работающем двигателе, площадь минимальной взлетной его площадки по оценке составит 1725 м2 (с удельной ее возможностью 0,0695 чел./м2 при пассажировместимости 120 чел.), шасси трехопорное, убирающееся в носовой отсек, и боковые обтекатели.Signs of coincidence - the presence of rotary engine nacelles with pulling screws (19.8 m in diameter) that create horizontal and corresponding upward vertical thrust, the rotation range of the screws is from 0 ° to + 97.5 °, with ship-based propeller blades fold and the direct wing unfolds along the upper part of the fuselage, excessive thrust-to-weight ratio ensures vertical take-off and landing with its take-off weight of 50,400 kg and continued flight on one engine running, its minimum take-off area according to the composition t 1725 m 2 (with a specific capacity of 0.0695 people / m 2 with a passenger capacity of 120 people), a tricycle landing gear that retracts into the bow compartment and side cowls.
Причины, препятствующие поставленной задаче: первая - это то, что консольное размещение на концах крыла поворотных двигателей с редукторами и винтами предопределяет конструктивно сложное прямое крыло, оснащенное сложной системой поворота винтов и механизации крыла, что усложняет конструкцию и уменьшает надежность. Вторая - это то, что диаметры двух винтов ограничены размахом консолей крыла и, как следствие, при висении поток от винтов, обдувая консоли крыла и создавая значительную общую потерю в вертикальной их тяге, затормаживается и большие скорости потока отбрасываемого от них предопределяют образование вихревых колец, которые на низких скоростях снижения могут резко уменьшать силу тяги винтов и создавать ситуацию неуправляемого падения, что снижает стабильность управления и безопасность. Третья - это то, что горизонтальная тяга винтов обеспечивается только в крейсерском полете, поэтому (при отказе узлов поворота мотогондол после выполнения крейсерского полета) взлетать и садиться "по-самолетному", как обычный самолет, этот конвертоплан, снижая безопасность, не может, т.к. расположенные на крыле поворотные винты имеют радиус, превышающий высоту установки их мотогондол, но это не исключает возможности короткого взлета и посадки.Reasons that impede the task: the first is that the cantilever placement of rotary engines with gears and screws at the wing ends predetermines a structurally complex straight wing equipped with a complex system of turning the screws and wing mechanization, which complicates the design and reduces reliability. The second is that the diameters of the two screws are limited by the span of the wing consoles and, as a result, when the thread hangs from the screws, blowing over the wing consoles and creating a significant overall loss in their vertical thrust, it brakes and the large flow rates of the discarded ones determine the formation of vortex rings, which at low lowering speeds can drastically reduce the thrust force of the screws and create an uncontrolled fall situation, which reduces the stability of control and safety. The third one is that the horizontal thrust of the propellers is provided only during cruise flight, therefore (if the engine nacelle turning points fail after the cruise flight), take-off and landing “in the plane”, like a regular plane, cannot reduce safety, t .to. rotary screws located on the wing have a radius exceeding the installation height of their nacelles, but this does not exclude the possibility of short take-off and landing.
Известен палубный тяжелый конвертоплан проекта QTR компаний "Bell" и "Boeing" (США), содержащий моноплан с размещенными тандемом высокорасположенными крыльями обратной стреловидности и на концах консолей которых смонтированы в поворотных мотогондолах двигатели с редукторами и винтами, создающими горизонтальную и соответствующим отклонением вверх вертикальную тягу при его преобразовании в вертолет четырехвинтовой несущей схемы, трансмиссию с синхронизирующей системой валов, проложенной в каждом крыле и вдоль оси симметрии, имеющий в кормовой части фюзеляжа вертикальное оперение и трехопорное убирающееся колесное шасси с носовой вспомогательной опорой.Known deck heavy tiltrotor project of QTR project of Bell and Boeing companies (USA), containing a monoplane with tandem-mounted high-back sweep wings and at the ends of the cantilevers of which are mounted engines with gearboxes and screws that create horizontal and corresponding upward vertical thrust when it is converted into a helicopter of a four-screw carrier circuit, a transmission with a synchronizing system of shafts laid in each wing and along the axis of symmetry, having aft th vertical tail fuselage and retractable wheeled tricycle landing gear of the auxiliary support.
Признаки, совпадающие - наличие четырех поворотных мотогондол с тянущими винтами на концах двух тандемных крыльев, создающими горизонтальную и соответствующим отклонением вверх вертикальную тягу, диапазон поворота винтов от 0° до +97,5°, избыточная тяговооруженность обеспечивает вертикальный взлет и посадку при взлетном его весе 45360 кг и продолжение полета на трех работающих двигателях, выполнен по концепции Quart Tilt Rotor (QTR-четыре поворотных винта диаметром 15,0 м), минимальная площадь для взлетно-посадочной его площадки по оценке составит 1638 м2 (с удельной ее возможностью 0,0549 чел./м2 при пассажировместимости 90 чел.), размеры грузового отсека с рампой, имеющего объем 161,3 м3, соответствуют размерам отсека самолета C-130J-30 (длина 17,07 × ширина 3,12 × высота 2,74, м), шасси трехопорное, убирающееся в носовой отсек, и боковые обтекатели.Signs of coincidence - the presence of four rotary engine nacelles with pulling screws at the ends of two tandem wings, creating horizontal and corresponding upward deviation of vertical thrust, the range of rotation of the screws from 0 ° to + 97.5 °, excessive thrust-weight ratio ensures vertical takeoff and landing with its take-off weight 45 360 kg and the continuation of the flight on three working engines, made according to the Quart Tilt Rotor concept (QTR-four rotary screws with a diameter of 15.0 m), the minimum area for its take-off and landing site is estimated to be 1638 2 (with its specific ability 0.0549 pers. / M 2, with passenger 90 pers.), The dimensions of the cargo hold with a ramp having a volume of 161.3 m 3 correspond to the dimensions C-130J-30 aircraft compartment (17,07 × length width 3.12 × height 2.74, m), tricycle landing gear, retractable in the bow compartment, and side fairings.
Причины, препятствующие поставленной задаче: первая - это то, что консольное размещение на концах его крыльев поворотных мотогондол с винтами предопределяет конструктивно сложное прямое переднее и заднее крылья со сложной их механизацией и мощной системой поворота мотогондол, а также заднее большее крыло имеет размах 30,0 м, что не уменьшает геометрических размеров планера и максимальной удельной нагрузки на крылья (порядка ≈490 кг/м2) и не обеспечивает также возможность сокращения массы конструкции планера и уменьшения геометрических размеров как планера, так и взлетной площадки. Вторая - это то, что на режиме висения поток от винтов, обдувая консоли крыльев и создавая значительную общую потерю в их вертикальной тяге, затормаживается. При этом скоростной воздушный поток, отбрасываемый от консолей крыльев, предопределяет образование вихревых колец, которые могут на низких скоростях снижения резко уменьшать силу тяги винтов и создавать ситуацию неуправляемого падения. Третья - это то, что сложность его общей Н-образной в плане трансмиссии валов (длиною ≈70 м) не позволит уменьшить общие потери вертикальной тяги четырех винтов и реализовать при висении более полное использование вертикальной тяговооруженности. Последнее, увеличивая удельный вес силовой установки, значительно сокращает удельный вес топлива и, как следствие, снижает дальность его полета. Четвертая - это то, что горизонтальная тяга винтов обеспечивается только в крейсерском полете, поэтому (при отказе узлов поворота мотогондол после выполнения крейсерского полета) взлетать и садиться "по-самолетному", как обычный самолет, этот конвертоплан, снижая безопасность, также не может, но это не исключает возможности короткого его взлета и посадки.Reasons that impede the task: the first is that the cantilever placement at the ends of its wings of rotary engine nacelles with screws predetermines a structurally complex straight front and rear wings with complex mechanization and a powerful system for turning the engine nacelles, and the rear larger wing has a wingspan of 30.0 m, which does not reduce the geometrical dimensions of the airframe and the maximum specific load on the wings (of the order of ≈490 kg / m 2 ) and does not also provide the possibility of reducing the mass of the airframe and reducing the geometric dimensions Zmera as a glider, and the take-off area. The second is that in the hovering mode, the flow from the screws, blowing around the wing consoles and creating a significant overall loss in their vertical thrust, is inhibited. At the same time, the high-speed air flow discarded from the wing consoles predetermines the formation of vortex rings, which can at low lowering speeds sharply reduce the propulsive force of the propellers and create an uncontrolled fall situation. The third one is that the complexity of its overall H-shaped in terms of transmission of shafts (≈70 m long) will not allow to reduce the total loss of vertical thrust of four screws and realize a more complete use of vertical thrust-weight ratio when hanging. The latter, increasing the specific gravity of the power plant, significantly reduces the specific gravity of fuel and, as a result, reduces its range. The fourth one is that the horizontal thrust of the propellers is provided only during cruise flight, therefore (if the engine nacelle turning points fail after the cruise flight), take-off and landing “in the plane”, like a regular plane, cannot reduce safety, but this does not exclude the possibility of a short take-off and landing.
Наиболее близким к предлагаемому изобретению является многоцелевой многовинтовой вертолет-самолет (Россия), содержащий на консолях высокорасположенного крыла две мотогондолы, имеющие в передних и задних их окончаниях соответственно тянущие и толкающие винты, фюзеляж, хвостовое оперение, двигатели силовой установки, передающие мощность через синхронизирующий вал, расположенный в носке крыла, на тянущие и толкающие поворотные винты, обеспечивающие горизонтальную и их соответствующим отклонением вверх и вниз вертикальную тягу, и трехопорное убирающееся колесное шасси с носовой вспомогательной опорой.Closest to the proposed invention is a multi-purpose multi-rotor helicopter-plane (Russia), containing on the consoles of a high wing two engine nacelles having pulling and pushing screws, a fuselage, tail unit, propulsion engines transmitting power through a synchronizing shaft at the front and rear ends, located in the nose of the wing, on the pulling and pushing rotary screws, providing horizontal and their corresponding deviation up and down vertical draft, and three ornoe retractable wheeled landing gear of the auxiliary support.
Признаки, совпадающие - наличие моноплана с высокорасположенным крылом, снабженным двумя мотогондолами, каждая из которых имеет переднюю и заднюю продолговатые, вынесенные за соответствующие кромки крыла, надкрыльевые ее части с поворотными винтами, имеет двухкилевое оперение. Поворотные тянущие и толкающие винты, расположенные соответственно спереди и сзади крыла, обеспечивают горизонтальную тягу и соответствующим отклонением вверх и вниз от горизонтального положения вертикальную на угол 90° или наклонную тягу на угол 65° соответственно при вертикальном взлете и посадке или коротком взлете и посадке.Signs that coincide - the presence of a monoplane with a high wing, equipped with two engine nacelles, each of which has an elongated front and rear, extended beyond the corresponding wing edges, its wing parts with rotary screws, has a two-wing tail. Rotary pulling and pushing screws located respectively in front and behind the wing provide horizontal thrust and a corresponding deviation up and down from the horizontal position, vertical 90 ° or inclined thrust 65 °, respectively, for vertical take-off and landing or short take-off and landing.
Причины, препятствующие поставленной задаче: первая - это то, что аэродинамический его облик с круглым или овальным поперечным сечением сигарообразного фюзеляжа, имеющего высокорасположенное крыло и двухкилевое оперение на конце фюзеляжа, форма и длина кормовой части которого определяется различными требованиями, часто противоречивыми, что не способствует снижению массы фюзеляжа. Вторая - это то, что крыльевые мотогондолы с расположенными в них газотурбинными двигателями, имеющими выхлопы, направленные с боку и назад, осуществляют вредную обдувку задних поворотных винтов на вертолетных и на самолетных режимах его полета. Что также усложняет конструкцию крыла с мотогондолами и, как следствие, увеличивает массу его крыла. Третья - это то, что расположенные на крыльевых мотогондолах тандемом поворотные винты одинакового диаметра и, особенно задние, отклоняющиеся вниз, имеют радиусы, не превышающие высоту установки мотогондол на крыле, что ограничивает взлетный его вес. Четвертая - это то, что традиционная аэродинамическая его схема, у которой основную подъемную силу, необходимую для полета, создает крыло, являясь основной несущей аэродинамической поверхностью, а дополнительную подъемную силу - стабилизатор и фюзеляж, которые также являются аэродинамическими поверхностями, но их составляющая в общей аэродинамической подъемной силе с традиционной схемой незначительна. Последнее, в частности, предопределяет большую удельную нагрузку на крыло (порядка ≈460 кг/м2), которая будет повышаться пропорционально увеличению размеров. Это подтверждается при сравнении традиционных схем турбовинтовых самолетов, например, C-27J имеет Go/Sкр=366 кг/м2, C-130J - 490 кг/м2, Ан-70 - 637 кг/м2 и Ан-22 - 725 кг/м2. Поэтому если их использовать в качестве прототипов и создавать тяжелые многовинтовые вертолеты-самолеты на базе их платформ, то возможность увеличения весовой отдачи при повышении взлетного веса и дальнейшего уменьшения массы конструкции, но и геометрических размеров планера, весьма ограничена.Reasons that impede the task: the first is that its aerodynamic appearance with a round or oval cross-section of the cigar-shaped fuselage, having a high wing and two-fin plumage at the end of the fuselage, the shape and length of the stern of which is determined by various requirements, often contradictory, which does not contribute reduce the mass of the fuselage. The second is that the wing nacelles with gas turbine engines located in them, having exhausts directed from the side and back, carry out harmful blowing of the rear rotary screws in helicopter and in airplane modes of its flight. Which also complicates the design of the wing with nacelles and, as a result, increases the mass of its wing. The third is that the rotary screws of the same diameter located on the wing nacelles in tandem and, especially the rear ones, tilting down, have radii not exceeding the height of the engine nacelles on the wing, which limits its take-off weight. The fourth is that its traditional aerodynamic design, in which the wing creates the main lifting force necessary for flight, being the main supporting aerodynamic surface, and the additional lifting force is the stabilizer and the fuselage, which are also aerodynamic surfaces, but their component in common aerodynamic lift with traditional design is negligible. The latter, in particular, predetermines a large specific load on the wing (of the order of ≈460 kg / m 2 ), which will increase in proportion to the increase in size. This is confirmed by comparing traditional schemes of turboprop aircraft, for example, C-27J has G o / S cr = 366 kg / m 2 , C-130J - 490 kg / m 2 , An-70 - 637 kg / m 2 and An-22 - 725 kg / m 2 . Therefore, if you use them as prototypes and create heavy multi-rotor helicopters based on their platforms, the possibility of increasing the weight return with increasing take-off weight and further reducing the weight of the structure, but also the geometrical dimensions of the airframe, is very limited.
Предлагаемым изобретением решается задача в указанном выше известном многоцелевом многовинтовом вертолете-самолете значительного повышения взлетного веса и увеличения весовой отдачи, упрощения конструкции крыльевых мотогондол и исключения конструкции элеронов на крыле и вредной обдувки выхлопными газами газотурбинных двигателей задних толкающих поворотных винтов, упрощения конструкции планера и уменьшения его массы и удельной нагрузки на крыло, увеличения дальности полета, транспортной и экономической эффективности.The present invention solves the problem in the above-mentioned well-known multi-rotor multi-rotor helicopter-aircraft to significantly increase take-off weight and increase weight return, simplify the design of wing nacelles and eliminate the design of ailerons on the wing and harmful exhaust gas blowing of gas turbine engines of the rear pushing rotary screws, simplify the design of the airframe and reduce its mass and specific load on the wing, increasing flight range, transport and economic efficiency.
Отличительными признаками предлагаемого изобретения от указанного выше известного многовинтового вертолета-самолета, наиболее близкого к нему, являются наличие того, что он выполнен по конструктивно-силовой двухфюзеляжной схеме с межфюзеляжной частью крыла, оснащенной по оси симметрии центральной мотогондолой с передним и задним винтами, свободно поворачивающимися соответственно между носовыми и кормовыми частями несущих фюзеляжей, что обеспечит возможность преобразования его полетной конфигурации с самолета, имеющего на крыле закрылки по всему размаху и расположенные тандемом два межфюзеляжных и четыре консольных винта, в вертолет шестивинтовой несущей схемы, обеспечивающей при вертикальном взлете, посадке и висении управляющие моменты, необходимые как для осуществления продольной управляемости, создаваемой при помощи дифференцированных изменений угла установки лопастей переднего и заднего межфюзеляжных винтов, так и поперечного управления, осуществляемого при помощи увеличения угла установки лопастей обоих переднего и заднего консольных винтов с одной стороны от оси симметрии и уменьшения углов установки лопастей обоих переднего и заднего консольных винтов - с другой, но и путевого управления - изменением угла установки лопастей в каждой группе диагонально расположенных переднего и заднего консольных винтов и, следовательно, увеличивая мощность на двух консольных винтах одной диагональной группы и одновременно уменьшая на двух других консольных винтах, обеспечивается момент рысканья, но и обратно; каждый несущий фюзеляж, имеющий аэродинамический профиль и в кормовой части вдоль продольной своей оси хвостовую балку, снабженную на изогнутом вверх конце, выполненным в виде силовой балки-форкиля, хвостовым оперением со стреловидным горизонтальным оперением, левое и правое из последних, образуя внутренними их консолями межфюзеляжный стабилизатор, имеющий по передней кромке V-образный излом в плане, оснащено на внешних и внутренних их консолях рулевыми поверхностями, имеющими возможность соответственно дифференциального и синфазного отклонения, две пилотские закрытые левая и правая кабины, вынесенные за носок соответствующего несущего фюзеляжа, имеющего переднюю кромку с углом стреловидности, повторяющим угол стреловидности передней кромки соответствующего горизонтального оперения, каждая левая и правая пара опор велосипедной схемы убирающегося шасси со спаренными тормозными колесами и на задней, и на управляемой передней опорах, размещена по продольной оси соответствующего несущего фюзеляжа.Distinctive features of the invention from the above-mentioned well-known multi-rotor helicopter, the closest to it, are the fact that it is made according to the structural-power two-fuselage scheme with the interfuselage part of the wing, equipped with a central engine nacelle along the symmetry axis with front and rear screws, freely rotating respectively, between the bow and stern parts of the supporting fuselages, which will enable the conversion of its flight configuration from an airplane having the wings are all wide and in tandem there are two inter-fuselage and four cantilever rotors, into a helicopter of a six-rotor supporting circuit, providing vertical take-off, landing and hovering control moments necessary for the implementation of longitudinal controllability created by differentiated changes in the installation angle of the front and rear interfusal blades screws, and lateral control, carried out by increasing the angle of installation of the blades of both the front and rear cantilever screws with one torons from the axis of symmetry and decreasing the angles of installation of the blades of both front and rear cantilever screws - on the other, but also of the track control - by changing the angle of installation of the blades in each group of diagonally located front and rear cantilever screws and, therefore, increasing the power on two cantilever screws of the same diagonal groups and at the same time reducing on two other cantilever screws, the moment of yaw is ensured, but also vice versa; each bearing fuselage, having an aerodynamic profile and in the rear part along its longitudinal axis, a tail beam, equipped at the upward curved end, made in the form of a force fork-tail, tail unit with arrow-shaped horizontal tail, left and right of the latter, forming interfuselage with their inner consoles the stabilizer, having a V-shaped kink in plan along the leading edge, is equipped on the outer and inner consoles with steering surfaces having the ability of differential and common mode, respectively deviations, two pilot closed left and right cockpits handed over the nose of the corresponding carrier fuselage, having a leading edge with a sweep angle that repeats the sweep angle of the leading edge of the corresponding horizontal tail, each left and right pair of bicycle supports of the retractable chassis with paired brake wheels and on the rear , and on the controlled front bearings, is placed along the longitudinal axis of the corresponding supporting fuselage.
Кроме того, он выполнен по концепции крупномерного несущего фюзеляжа прямоугольного сечения с закругленными углами, имеющего аэродинамический профиль крыла с относительной его толщиной
Благодаря наличию этих признаков это позволит выполнить тяжелый многовинтовой вертолет-самолет с двумя несущими фюзеляжами и по концепции тандемного расположения поворотных винтов на крыле в мотогондолах, каждая из которых на передних и задних продолговатых надкрыльевых частях гондол имеет соответствующие поворотные винты. Это обеспечит возможность преобразования его полетной конфигурации с вертолета, имеющего шестивинтовую несущую схему, включающую три передних и три задних винта, отклоненные соответственно вверх и вниз и расположенные перед и за крылом, в шестивинтовой самолет, имеющий на мотогондолах двухвинтовые тандемные движительные системы, но и обратно. Двухфюзеляжный вертолет-самолет позволяет быстро и сравнительно дешево удвоить вертикальную грузоподъемность, обеспечить удобную погрузку-выгрузку и сэкономить место на стоянке, что весьма важно при городском и, особенно, палубном его базировании. Кроме того, в двух несущих фюзеляжах размещается экипаж и полезная нагрузка, причем на каждом из них, соединенных межфюзеляжной частью крыла, устанавливается половина оперения и шасси, что позволит, уменьшая массу и габариты планера, значительно увеличить вес топлива и весьма повысить дальность его полета.Due to the presence of these signs, this will make it possible to carry out a heavy multi-rotor helicopter-plane with two supporting fuselages and according to the concept of the tandem arrangement of the rotary screws on the wing in the engine nacelles, each of which has corresponding rotary screws on the front and rear elongated wing parts of the nacelles. This will make it possible to convert its flight configuration from a helicopter having a six-rotor supporting circuit, including three front and three rear rotors, deflected up and down, respectively, located in front of and behind the wing, into a six-rotor airplane having twin-rotor tandem propulsion systems on engine nacelles, but also vice versa . A two-fuselage helicopter-plane allows you to quickly and relatively cheaply double your vertical carrying capacity, provide convenient loading and unloading and save parking space, which is very important in urban and, especially, deck-based it. In addition, a crew and a payload are placed in two bearing fuselages, with each of them connected by the interfuselage of the wing, installed half of the plumage and landing gear, which will, by reducing the mass and dimensions of the airframe, significantly increase the weight of the fuel and greatly increase its flight range.
Кроме того, он выполнен по концепции крупномерного несущего фюзеляжа, имеющего аэродинамический профиль крыла с относительной его толщиной
Предлагаемое изобретение с вариантами использования тяжелого многовинтового вертолета-самолета (ТМВС), выполненного по концепции тандемного расположения поворотных винтов (ТРПВ) на высокорасположенном крыле и двухбалочным оперением или с двухфюзеляжной схемой, или с крупномерным несущим фюзеляжем соответственно исполнения ТРПВ-Х6 или ТРПВ-Х4+2, представлено на фиг.1 и 2.The present invention with options for using a heavy multi-rotor helicopter aircraft (TMVS), made according to the concept of a tandem arrangement of rotary propellers (TRVP) on a high wing and two-beam plumage or with a two-fuselage scheme, or with a large-sized bearing fuselage, respectively, of the TRVV-X6 or T4
На фиг.1 изображен двухфюзеляжный ТМВС (ДТМВС) в полетной конфигурации вертолета на общем виде сверху с размещением поворотных винтов по концепции ТРПВ-Х6 с тремя передними и тремя задними в шестивинтовой несущей схеме.Figure 1 shows the twin-body TMVS (DTMVS) in the flight configuration of the helicopter in a general top view with the placement of rotary screws according to the TRPV-X6 concept with three front and three rear in a six-screw carrier circuit.
На фиг.2 изображен ТМВС в полетной конфигурации самолета и вертолета на общих видах сбоку и сверху соответственно с размещением передних больших и задних меньших поворотных винтов, включая и спаренные, по концепции ТРПВ-Х4+2.Figure 2 shows the TMVS in the flight configuration of the aircraft and helicopter in general side and top views, respectively, with the placement of the front large and rear smaller rotary screws, including paired ones, according to the TRPV-X4 + 2 concept.
Тяжелый многовинтовой вертолет-самолет, представленный на фиг.2, выполнен по концепции крупномерного несущего фюзеляжа 1, имеющего аэродинамический профиль крыла (NACA0012) и транспортный отсек-центроплан 1, снабжен высокорасположенным крылом 2. Несущий фюзеляж 1 интегрирован в конструктивно-силовую двухбалочную схему с крылом 2 и плавно образованными на уровне консолей последнего удобообтекаемой формы двумя разнесенными высоко поднятыми плоскими балками 3, смонтированными по бокам в задней части и на верхней поверхности несущего фюзеляжа 1, имеющего сверху мотогондолы 4, плавно переходящих к разнесенным плоским балкам 3. Пилотская закрытая кабина 5, вынесенная вперед, смонтирована в верхней части носка транспортного отсека-центроплана 1. По бокам и в передней части несущего фюзеляжа 1 расположены две двери 6 (в грузопассажирском его варианте фюзеляж по бокам оснащается бортовыми люками с размерами 2,74×3,51 м). На консолях крыла 2, оснащенных закрылками 7 по всему размаху, смонтированы крыльевые гондолы 8, имеющие передние 9 и задние 10 продолговатые надкрыльевые их части. В передних и задних окончаниях последних смонтированы поворотные корпуса с выходными валами редукторов винтов соответственно с тянущими 11 и толкающими 12 винтами. На конце продолговатой фюзеляжной задней гондоле 13, вынесенной за соответствующую кромку транспортного отсека-центроплана 1 и смонтированной над и в задней части последнего на пилоне 14, установленным по оси симметрии, расположены толкающие поворотные спаренные винты 12. Все реверсивные винты передние 11 и задние 12, выполненные с жестким креплением лопастей и возможностью изменения углов их установки, смонтированы в соответствующих обтекателях гондол 8, имеющих соответственно сверху от начала и снизу от конца раскрываемые продольные проемы 15, снабженные направляющими для поворота корпуса поворотного вала с винтом соответствующего редуктора. Поворот четырехлопастных винтов 11 и 12, преобразующих его полетную конфигурацию с вертолета, имеющего многовинтовую несущую схему с двумя передними 11 большего диметра и тремя задними 12 меньшего диметра винтами, в турбовинтовой самолет, имеющий на концах гондол 8 передние два тянущих 11 и задние два толкающих 12 винта, а на задней гондоле 13 - толкающие спаренные винты 12, осуществляется с помощью электромеханических приводов (на фиг.2 не показаны). Трапециевидное крыло 2 с отклоняемыми консолями 16, выполненными до и после гондол соответственно с положительным +3° и отрицательным -3° углом поперечного V, позволит увеличить высоту установки гондол 8 на крыле 2 и, следовательно, предопределит в 1,06 раза увеличение диаметра, особенно, передних винтов 11. При этом крыло 2 имеет умеренную стреловидность по передней кромке χ=13° и большое удлинение, что уменьшает его ширину и, как следствие, вылет надкрыльевых частей гондол 8. Хвостовые оперения с верхними 17 и нижними 18 форкилями, выполненные, уменьшая длину плоских балок 3, отклоненными с последними наружу от оси симметрии, снабжены стреловидными разнесенными консолями цельноповоротного стабилизатора (ЦПС) 19, имеющего в плане заднюю кромку обратной стреловидности и образующего в поперечном направлении Т-образные конфигурации с вертикальными оперениями, каждое из последних имеет снизу и сверху плоских балок 3 трапециевидные соответственно неподвижно закрепленный 20 и цельноповортный 21 кили, верхние из них снабжены возможностью их складывания от оси симметрии. Последнее наряду с возможностью складывания консолей 16 крыла 2 значительно улучшает удобство размещения на палубе (в ангаре) и возможность эксплуатации на кораблях. Разнесенные Т-образные в поперечном направлении хвостовые оперения с ЦПС 19 и двухбалочная схема ТМВС позволяют в транспортном его варианте, наряду с возможностью складывания лопастей спаренных винтов, иметь в задней части несущего фюзеляжа 1 по обе стороны от оси симметрии два грузовых люка 22 с наклонными трап-рампами.The heavy multi-rotor helicopter-plane shown in Fig. 2 is made according to the concept of a large-sized supporting fuselage 1, having an aerodynamic wing profile (NACA0012) and a transport section-center wing 1, equipped with a highly located
Силовая установка (СУ) размещена по бокам несущего фюзеляжа 1 в задней его части в мотогондолах 4, сопла их двигателей имеют выхлопные коллекторы 23, направленные к нижней поверхности соответствующих плоских разнесенных балок 3, исключая вредную обдувку задних винтов 12. Двигатели, например, турбовальные газотурбинные двигатели (ГТД) установлены с максимальной их простотой обслуживания и эксплуатации. Мощность от ГТД передается поворотным тандемным винтам 11 и 12 и спаренным винтам 12, посредством системы трансмиссии, связанной с передними и задними редукторами этих винтов (на фиг.2 не показаны). Выходные валы первых снабжены возможностью их поворота с тянущими винтами 11 относительно оси соответствующего редуктора винта вверх от горизонтального положения параллельно плоскости симметрии, а выходные валы вторых редукторов с толкающими винтами 12 - вниз синхронно первым (см. фиг.2а). Трансмиссия, имеющая в крыльевых гондолах 8 наряду с двумя Т-образными в плане левым и правым консольными редукторами, снабжена по оси симметрии Т-образным в плане главным редуктором, связанным продольным и поперечными левым и правым консольными валами соответственно с редуктором спаренных винтов 12 и соответствующим Т-образным в плане консольным редуктором и приводимым, по меньшей мере двумя, ГТД, каждый из которых имеет передний вывод вала для отбора мощности и Г-образную в плане синхронизирующую систему валов с муфтой сцепления. Избыточная тяговооруженность СУ, обеспечивающая вертикальный взлет, посадку и висение ТМВС, предопределяет в крейсерском его полете муфтами сцепления отключение любого избыточного ГТД или одного из них при отказе (на фиг.2 не показаны). При полете в случае отказа двух ГТД возможна посадка ТМВС в конфигурации крылатого автожира на режиме авторотации его несущих винтов 11 и 12. Четырехопорное убирающееся велосипедной схемы шасси, передние опоры с колесами 24 убираются в носовые отсеки, главные боковые опоры с колесами 25 - в кормовые отсеки несущего фюзеляжа 1.The power plant (SU) is located on the sides of the supporting fuselage 1 in its rear part in the
Управление ТМВС обеспечивается общим и дифференциальным изменением шага поворотных винтов консольных тандемных 11 и 12 и задних спаренных 12 и отклонением рулевых поверхностей 19 и 21, работающих в зоне активного обдува этих винтов. При крейсерском полете подъемная сила создается крылом 2 и несущим фюзеляжем 1, горизонтальная тяга - винтами 11 и 12, на режиме висения только винтами 11 и 12, на режиме перехода - крылом 2, несущим фюзеляжем 1 и винтами 11 и 12. При переходе к вертикальному взлету-посадке (висению) раскрываются проемы 15 и затем закрылки 7 отклоняются на максимальные их углы синхронно с поворотов винтов 11 и 12 параллельно плоскости симметрии от горизонтального положения, отклоняясь соответственно вверх и вниз, устанавливаются вертикально (см. фиг.2а). При переходе с самолетного режима полета на режим висения и если возникает момент тангажа (Mz), то он парируется отклонением ЦПС 19, создающего парирующую силу. После установки поворотных винтов тянущих 11 и толкающих 12 в вертикальное положение вдоль линий вертикальной их тяги осуществляется возможность вертолетных режимов полета. С приближением к поверхности земли (палубы) и полете вблизи них винты 11 и 12, имея взаимно противоположное их вращение, образуют под ТМВС область уплотненного воздуха, создающего эффект воздушной подушки и, тем самым, повышают их эффективность. Поворотные винты тянущие 11 и толкающие 12 отклоняются от горизонтального положения вверх и вниз на угол 90° и 65° соответственно при вертикальном взлете-посадке (ВВП) и коротком взлете-посадке (КВП) на вертолетных и самолетных режимах полета ТМВС. Не исключено и при взлете с максимальным взлетным его весом использование ТМВС как винтокрыла по технологии короткого взлета и вертикальной посадке (КВВП). Для соответствующей его посадки на поверхность земли (палубы) используются колеса 24 и 25, убирающегося шасси.TMVS control is provided by the general and differential variation of the pitch of the rotary screws of the
При вертикальном взлете, посадке и висении продольное управление осуществляется путем изменения шага пары консольных передних 11 и пары консольных задних 12 винтов, поперечное управление - изменением шага левой и правой пары консольных групп винтов переднего 11 и заднего 12, путевое управление - изменением крутящих моментов диагонально расположенных консольных групп винтов передних 11 и задних 12. При этом винты, расположенные по диагонали, снабжены возможностью одинакового направления их вращения и противоположного - между их диагональными группами (см. фиг.2б). Поэтому консольные винты имеют одинаковое направление вращения: левый передний 11 с правым задним 12 винтом и правый передний 11 с левым задним 12 винтом, выполнены с возможностью синхронного изменения углов установки их лопастей. Причем, увеличиваясь на двух первых и одновременно уменьшаясь на двух других винтах, при соответствующем создании изменения крутящих моментов этих групп винтов, обеспечивается путевое управление. Полный момент рыскания образуется без изменения тангажа, крена и вертикальной тяги. При висении направление полета ТМВС может осуществляться как вперед, так и назад, а также как влево, так и вправо. Полет ТМВС при его максимальном взлетном весе может осуществляться по технологии КВВП, как винтокрыла. Причем для короткого его взлета отклоняются от горизонтального положения вверх на угол 65° только поворотные валы редукторов консольных винтов 11 и 12, а поворотные валы редукторов задних спаренных винтов 12 остаются в горизонтальном положении и создают соответственно подъемно-маршевую тягу и маршевую тягу. После взлета и набора высоты, убираются шасси 24 и 25, горизонтальный полет при удвоенной его полезной нагрузке может осуществляться как у винтокрыла, или как у крылатого автожира. В последнем случае устанавливаются вертикально и горизонтально соответственно поворотные валы редукторов передних 11 и задних 12 винтов. При этом задние консольные винты 12 создают горизонтальную тягу, а спаренные винты 12 и несущие передние винты 11 отключаются от привода двигателей СУ и соответственно первые устанавливаются во флюгерное положение, а вторые, начиная авторотировать, создают дополнительную подъемную силу наравне с подъемной силой крыла 2 и обеспечивают автожирный режим полета. На этом режиме основную долю создания подъемной аэродинамической силы обеспечивают поровну несущий фюзеляж 1 и крыло 2. Другими словами, происходит разгрузка крыла 2 и изменения условий работы двух передних 11 несущих винтов. В результате почти при одинаковой скорости полета на автожирном режиме он потребляет меньшую мощность, чем на винтокрылом. Кроме того, при авторотации срыв потока на лопастях двух передних 11 несущих винтов у ТМВС отодвигается на более высокие скорости полета. Одновременно на автожирном режиме полета значительно экономится топливо. Все это дает возможность получить на ТМВС крейсерские скорости на винтокрылом и автожирном режимах полета в перегрузочном варианте до 580-600 км/ч, а на самолетном - 700 км/ч, что значительно больше скорости и дальности полета, чем на скоростных вертолетах. Причем появляется возможность использовать меньшую мощность СУ, снизить удельный расход топлива, а значит увеличить дальность и скорость полета и, как следствие, повысить транспортную эффективность. Использование его при коротком взлете как винтокрыла, а в крейсерском полете как самолета позволит значительно увеличить и дальность его полета с удвоенной полезной нагрузкой. Поскольку при создании подъемной силы и горизонтальной тяги для достижения высоких крейсерских скоростей полета комбинация крыла 2 с винтами 11 и 12 в движительной системе гораздо выгоднее, чем крыла 2 с двумя передними 11 несущими винтами и толкающими задними винтами 12. Однако для сокращения дистанции до 160 и 240 м соответственно при взлете с коротким разбегом м и при посадке с пробегом создание подъемной силы и горизонтальной тяги в комбинации крыла 2 с передними 11 и задними 12 несущими винтами, отклоненными вверх и вниз на угол 65°, и двумя спаренными толкающими винтами 12 гораздо выгоднее, чем крыла 2 с многовинтовой несущей схемой, все винты которой передние 11 и задние 12 отклоняются на угол 65°. Поэтому после крейсерского полета его посадка может осуществляться как винтокрыла и вертолета при выполнении КВП и ВВП в перегрузочном и нормальном посадочном весе соответственно.In vertical take-off, landing and hovering, longitudinal control is carried out by changing the pitch of a pair of
Для перехода на самолетный режим полета после вертикального взлета и набора высоты все валы редукторов винтов 11 и 12 синхронно устанавливаются в горизонтальное положение. После чего производится крейсерский полет, при котором путевое управление обеспечивается рулями направления 21 (см. фиг.2а). Продольное и поперечное управление осуществляется соответственно синфазным и дифференциальным отклонением рулевых поверхностей - ЦПС 19. При полетной конфигурации ТМВС на самолетных режимах полета консольные винты левой и правой групп винтов передних тянущих 11 и задних толкающих 12 имеют в каждой группе противоположное вращение для создания горизонтальной тяги, тем самым, создается значительное повышение эффективности каждой двухвинтовой группы. При его полетной конфигурации как вертолета реактивные моменты от консольных винтов, используемых как несущие винты, смонтированные попарно, компенсируются полностью также за счет того, что снабжены возможностью взаимно противоположного вращения между собой как передние 11, но и задние 12 винты, но и левой и правой групп (см. фиг.2б).To switch to airplane mode of flight after vertical take-off and climb, all the shafts of the gearboxes of
Таким образом, многоцелевой ТМВС, выполненный по концепции ТРПВ-Х4+2 и крупномерного несущего фюзеляжа, снабженного сзади толкающими поворотными спаренными винтами, имеет на консолях высокорасположенного крыла две гондолы, каждая из которых снабжена двухвинтовой тандемной системой, вынесенной за переднюю и заднюю кромки крыла на продолговатых надкрыльевых гондолах, имеющих в передних и задних их окончаниях соответствующие поворотные винты, представляет собой многовинтовой конвертоплан. Выбор такой концепции для ТМВС обусловлен простотой и возможностью преобразования его полетной конфигурации с вертолета многовинтовой несущей схемы в полетную конфигурацию турбовинтового самолета и обратно. Кроме того, концепция несущего фюзеляжа обеспечивает возможность сокращения массы конструкции и геометрических размеров планера и, в частности, увеличивает весовую отдачу и, как следствие, вес полезной нагрузки. Поскольку возможные формы и аэродинамические компоновки самолетов, выполненных по двухфюзеляжной схеме, и концепции несущего фюзеляжа с двухбалочным оперением соответственно "Boeing B-747twin " и "Burnelli CBY-3" (США), а также конвер-топланов с четырехвинтовыми несущими схемами, например, мод. Х-19 ф. "Curtiss" (США), о которых в настоящее время известно, что конструктивно-силовые двухфюзеляжная и, особенно, двухбалочная схема с несущим фюзеляжем самолетов обеспечивает максимальную разгрузку крыла и фюзеляжа от действия аэродинамических и массовых сил, а многовинтовых конвертопланов, что они устойчивы и управляемы, то, следовательно, все они пригодны для дальнейших инженерных приложений, могут и должны являться предметом дальнейшего исследования и усовершенствования.Thus, the multi-purpose TMVS, made according to the concept of TRPV-
Поэтому освоение ТМВС, особенно, по концепции ТРПВ-Х4+2 обусловлено также простотой его общей трансмиссии, что позволит, уменьшая общие потери вертикальной тяги винтов (потери от обдува консолей крыла и надкрыльевых частей гондол отличаются в 5 раз), реализовать при технологии ВВП более полное использование вертикальной тяговооруженности. Последнее позволит, уменьшая удельный вес СУ, значительно увеличить удельный вес топлива и, как следствие, повысить дальность полета ТМВС сопоставимую с дальностью турбовинтового самолета. Очевидно, создание для авиатранспорта семейства ТМВС по интегральной конструктивно-силовой двухбалочной схеме с крупномерным несущим фюзеляжем и по концепции ТРПВ-Х4+2 позволит, исключая недостатки конвертопланов TR-65 и QTR, освоить широкую их гамму. Важной особенностью применения концепции ТРПВ-Х4+2 в ТМВС, обеспечивающей качественный рост потребительских свойств, является то, что она масштабируемая и позволяющая наряду с ТМВС-130 создать и ТМВС-260, но и освоить ДТМВС-125 и ДТМВС-250 двухфюзеляжного исполнения с ТРПВ-Х6.Therefore, the development of TMVS, especially according to the TRPV-
Возможное освоение, например, ТМВС-130 с двумя ГТД мод. Д-27 (мощностью по 14000 л.с.), обеспечивающими по технологии ВВП и КВП соответственно взлетный вес 50,0 и 67,0 т и с соответствующей полезной нагрузкой в грузовом отсеке 13,0 и 26,0 т, позволит реализовать реально высокие технико-экономические результаты, позволяющие достойно конкурировать с компаниями "Bell/Boeing" (США). Поскольку ТМВС-130, используя при ВВП минимальную взлетную площадку 1069 м2 (с удельной ее возможностью 0,1216 чел./м2 при пассажировместимости 130 чел.), имеет размеры салона без рампы (длина 9,2 × ширина 8,7 × высота 2,74 м), объем грузового отсека которого будет гораздо больше (почти в 1,58 раза) объема грузового отсека тяжелого конвертоплана QTR. Поэтому ТМВС-130 при выполнении технологии ВВП, превосходя в полезной нагрузке в 1,44 раза, будет иметь и дальность полета до 2800 км - это почти в 1,46 раза больше, чем у этого конвертоплана, а при меньшей удельной нагрузке на крыло в 1,63 раза, будет иметь гораздо меньшие и габариты в плане (в 1,54 и 1,62 раза меньше, чем для аналогичных тяжелых конвертопланов QTR "Bell/Boeing" и TR-65 "Karem Aircraft" соответственно). Последнее преимущество позволит также широко использовать такие ТМВС на площадках ограниченного размера как для трудно доступной местности, так и снабжения авианесущих кораблей, что исключительно важно при наземном и, особенно, корабельном их базировании.Possible development, for example, TMVS-130 with two gas turbine engines mod. D-27 (with a capacity of 14,000 hp), each providing a take-off weight of 50.0 and 67.0 tons, with a corresponding payload in the cargo compartment of 13.0 and 26.0 tons, according to the GDP and KVP technology, will allow realizing high technical and economic results, allowing us to compete with Bell / Boeing (USA) companies. Since TMVS-130, using a minimum take-off area of 1069 m 2 for GDP (with a specific capacity of 0.1216 people / m 2 with a passenger capacity of 130 people), it has the dimensions of a passenger compartment without a ramp (length 9.2 × width 8.7 × height 2.74 m), the cargo compartment volume of which will be much more (almost 1.58 times) the volume of the cargo compartment of the heavy QTR. Therefore, TMVS-130, when implementing the GDP technology, exceeding the payload by 1.44 times, will have a flight range of up to 2800 km - this is almost 1.46 times more than that of the tiltrotor, and with a lower specific wing load 1.63 times, it will have much smaller dimensions in terms of plan (1.54 and 1.62 times less than for similar heavy convertiplanes QTR "Bell / Boeing" and TR-65 "Karem Aircraft", respectively). The latter advantage will also make it possible to widely use such TMVS on sites of limited size both for hard-to-reach areas and for supplying aircraft-carrying ships, which is extremely important for ground and, especially, ship-based them.
В конечном итоге широкое использование ТМВС позволит в полной мере также осуществить создание специальной транспортной системы городского и пригородного базирования для региональных воздушных грузопассажирских перевозок и возможности обеспечения транспортной связью большей части территории РФ. Поскольку без ее создания дальнейшее освоение регионов Сибири, Дальнего Востока и Крайнего Севера невозможно, то качественно новым подходом к освоению любых неподготовленных поверхностей земли, городских и корабельных вертолетных площадок, а также морских добывающих платформ остается за использованием ТМВС.Ultimately, the widespread use of TMVS will also make it possible to fully implement the creation of a special urban and suburban-based transportation system for regional air cargo and passenger transportation and the possibility of providing transport links to most of the territory of the Russian Federation. Since without its creation further development of the regions of Siberia, the Far East and the Far North is impossible, a qualitatively new approach to the development of any unprepared land surfaces, city and ship helipads, as well as offshore production platforms remains with the use of TMVS.
Очевидно, создание семейства ТМВС с улучшенными тактико-техническими показателями для авиатранспорта в современных условиях - задача многоплановая и не является технически неразрешимой. Поэтому в процессе дальнейшего развития транспортной авиации самой жизнью будет продиктована задача освоения и ТМВС.Obviously, the creation of a TMVS family with improved tactical and technical indicators for air transport in modern conditions is a multidimensional task and is not technically unsolvable. Therefore, in the process of further development of transport aviation, life itself will dictate the task of mastering and TMVS.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012115839/11A RU2492112C1 (en) | 2012-04-19 | 2012-04-19 | Heavy-duty multi-propeller converter plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2012115839/11A RU2492112C1 (en) | 2012-04-19 | 2012-04-19 | Heavy-duty multi-propeller converter plate |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2492112C1 true RU2492112C1 (en) | 2013-09-10 |
Family
ID=49164844
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2012115839/11A RU2492112C1 (en) | 2012-04-19 | 2012-04-19 | Heavy-duty multi-propeller converter plate |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2492112C1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2532672C1 (en) * | 2013-11-19 | 2014-11-10 | Дмитрий Сергеевич Дуров | Heavy convertible electric drone |
RU2633667C2 (en) * | 2016-02-29 | 2017-10-16 | Дахир Курманбиевич Семенов | Transport system (versions) |
CN108382578A (en) * | 2018-04-09 | 2018-08-10 | 北京航空航天大学 | A kind of mixed at high speed layout vertically taking off and landing flyer |
CN109050898A (en) * | 2018-08-16 | 2018-12-21 | 南京壹诺为航空科技有限公司 | Non-homogeneous ten rotor wing unmanned aerial vehicle of power arrangement formula |
RU2766284C1 (en) * | 2021-11-09 | 2022-03-11 | Закрытое акционерное общество "Инновационный центр "Бирюч" (ЗАО "ИЦ "Бирюч") | Multicopter with two-tier arrangement of propeller-driven groups |
CN114852324A (en) * | 2022-05-19 | 2022-08-05 | 亿维特(南京)航空科技有限公司 | Vertical take-off and landing passenger plane |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6655631B2 (en) * | 2000-07-28 | 2003-12-02 | John Frederick Austen-Brown | Personal hoverplane with four tiltmotors |
RU2264951C1 (en) * | 2004-02-24 | 2005-11-27 | Дуров Дмитрий Сергеевич | Hydroconverti ground-effect craft |
US20110315827A1 (en) * | 2009-03-12 | 2011-12-29 | Bob Collins | Wing Extension Control Surface |
RU2446078C2 (en) * | 2010-04-02 | 2012-03-27 | Российская Федерация в лице Министерства промышленности и торговли Российской Федерации (Минпромторг России) | Convertiplane (versions) |
US8152096B2 (en) * | 2005-10-18 | 2012-04-10 | Smith Frick A | Apparatus and method for vertical take-off and landing aircraft |
-
2012
- 2012-04-19 RU RU2012115839/11A patent/RU2492112C1/en not_active IP Right Cessation
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6655631B2 (en) * | 2000-07-28 | 2003-12-02 | John Frederick Austen-Brown | Personal hoverplane with four tiltmotors |
RU2264951C1 (en) * | 2004-02-24 | 2005-11-27 | Дуров Дмитрий Сергеевич | Hydroconverti ground-effect craft |
US8152096B2 (en) * | 2005-10-18 | 2012-04-10 | Smith Frick A | Apparatus and method for vertical take-off and landing aircraft |
US20110315827A1 (en) * | 2009-03-12 | 2011-12-29 | Bob Collins | Wing Extension Control Surface |
RU2446078C2 (en) * | 2010-04-02 | 2012-03-27 | Российская Федерация в лице Министерства промышленности и торговли Российской Федерации (Минпромторг России) | Convertiplane (versions) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2532672C1 (en) * | 2013-11-19 | 2014-11-10 | Дмитрий Сергеевич Дуров | Heavy convertible electric drone |
RU2633667C2 (en) * | 2016-02-29 | 2017-10-16 | Дахир Курманбиевич Семенов | Transport system (versions) |
CN108382578A (en) * | 2018-04-09 | 2018-08-10 | 北京航空航天大学 | A kind of mixed at high speed layout vertically taking off and landing flyer |
CN108382578B (en) * | 2018-04-09 | 2024-03-29 | 北京航空航天大学 | High-speed hybrid layout vertical take-off and landing aircraft |
CN109050898A (en) * | 2018-08-16 | 2018-12-21 | 南京壹诺为航空科技有限公司 | Non-homogeneous ten rotor wing unmanned aerial vehicle of power arrangement formula |
RU2766284C1 (en) * | 2021-11-09 | 2022-03-11 | Закрытое акционерное общество "Инновационный центр "Бирюч" (ЗАО "ИЦ "Бирюч") | Multicopter with two-tier arrangement of propeller-driven groups |
CN114852324A (en) * | 2022-05-19 | 2022-08-05 | 亿维特(南京)航空科技有限公司 | Vertical take-off and landing passenger plane |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200407060A1 (en) | Novel aircraft design using tandem wings and a distributed propulsion system | |
CN104477377B (en) | A kind of multi-modal all-rounder of combined type | |
RU2310583C2 (en) | Amphibious convertible helicopter | |
CN111315655B (en) | Assembly of three composite wings for an air, water, land or space vehicle | |
RU2394723C1 (en) | Multi-purpose cryogenic convertiplane | |
RU2448869C1 (en) | Multipurpose multi-tiltrotor helicopter-aircraft | |
RU2492112C1 (en) | Heavy-duty multi-propeller converter plate | |
RU2629475C1 (en) | High-speed turbofan combined helicopter | |
RU2527248C1 (en) | Drone with hybrid power plant (versions) | |
RU2629478C2 (en) | High-speed helicopter with propulsion-steering system | |
RU2521090C1 (en) | High-speed turboelectric helicopter | |
CN211808877U (en) | Semi-split type flying automobile | |
RU2648503C1 (en) | Unmanned convertiplane with an arched wing | |
RU2548304C1 (en) | Multirotor convertible high-speed helicopter | |
RU2582743C1 (en) | Aircraft vertical take-off system | |
RU2609856C1 (en) | Fast-speed convertible compound helicopter | |
RU2351506C2 (en) | Multipurpose hydroconvertipropeller plane | |
RU2661277C1 (en) | Unmanned carrier-based convertible rotorcraft | |
RU2542805C1 (en) | Vtol aircraft with hybrid power plant | |
RU2264951C1 (en) | Hydroconverti ground-effect craft | |
RU2611480C1 (en) | Multi-screw unmanned rotorcraft | |
RU2534676C1 (en) | Cryogenic turbo-electric stol aircraft | |
EP2508401A1 (en) | Combined aircraft | |
RU2521121C1 (en) | Heavy-duty multirotor convertible rotorcraft | |
RU2283795C1 (en) | Multi-purpose vertical takeoff and landing aircraft |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20150420 |