RU2491349C2 - Способ экспресс-прогноза общей микробной обсемененности воздушной среды - Google Patents

Способ экспресс-прогноза общей микробной обсемененности воздушной среды Download PDF

Info

Publication number
RU2491349C2
RU2491349C2 RU2011141704/10A RU2011141704A RU2491349C2 RU 2491349 C2 RU2491349 C2 RU 2491349C2 RU 2011141704/10 A RU2011141704/10 A RU 2011141704/10A RU 2011141704 A RU2011141704 A RU 2011141704A RU 2491349 C2 RU2491349 C2 RU 2491349C2
Authority
RU
Russia
Prior art keywords
air
per unit
diameter
aerosol particles
microbial contamination
Prior art date
Application number
RU2011141704/10A
Other languages
English (en)
Other versions
RU2011141704A (ru
Inventor
Валерий Васильевич Григорьев
Станислав Степанович Афанасьев
Владимир Андрианович Алёшкин
Андрей Владимирович Алёшкин
Халил Мингалиевич Галимзянов
Олег Васильевич Рубальский
Денис Станиславович Афанасьев
Елена Александровна Воропаева
Сергей Георгиевич Цвилев
Галина Валерьевна Григорьева
Максим Станиславович Афанасьев
Евгений Олегович Рубальский
Максим Олегович Рубальский
Original Assignee
Федеральное бюджетное учреждение науки "Московский научно-исследовательский институт эпидемиологии и микробиологии имени Г.Н. Габричевского" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора)
Государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханская государственная медицинская академия" Министерства здравоохранения и социального развития Российской Федерации (ГБОУ ВПО АГМА Минздравсоцразвития России)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное бюджетное учреждение науки "Московский научно-исследовательский институт эпидемиологии и микробиологии имени Г.Н. Габричевского" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора), Государственное бюджетное образовательное учреждение высшего профессионального образования "Астраханская государственная медицинская академия" Министерства здравоохранения и социального развития Российской Федерации (ГБОУ ВПО АГМА Минздравсоцразвития России) filed Critical Федеральное бюджетное учреждение науки "Московский научно-исследовательский институт эпидемиологии и микробиологии имени Г.Н. Габричевского" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН МНИИЭМ им. Г.Н. Габричевского Роспотребнадзора)
Priority to RU2011141704/10A priority Critical patent/RU2491349C2/ru
Publication of RU2011141704A publication Critical patent/RU2011141704A/ru
Application granted granted Critical
Publication of RU2491349C2 publication Critical patent/RU2491349C2/ru

Links

Landscapes

  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Определяют количества аэрозольных частиц с диаметром 0,3 мкм, 0,5 мкм и 1,0 мкм в единице объема воздуха с использованием счетчика аэрозольных частиц. Рассчитывают прогнозируемую общую микробную обсемененность воздушной среды по формуле: Y=0,0003(n0,5+n1,0)-1,2, по меньшей мере, при одном из условий n0,3≤2,95n0,5 и/или n0,5≤3,99n1,0, где: Y - прогнозируемая общая микробная обсемененность воздушной среды, КОЕ на единицу объема воздуха; n0,3 - количество аэрозольных частиц диаметром 0,3 мкм в единице объема воздуха; n0,5 - количество аэрозольных частиц диаметром 0,5 мкм в единице объема воздуха; n1,0 - количество аэрозольных частиц диаметром 1,0 мкм в единице объема воздуха; 0,0003; 2,95 и 3,99 - коэффициенты; 1,2 - корректирующая безразмерная величина. Изобретение позволяет уменьшить продолжительности анализа при экспресс-прогнозе общей микробной обсемененности воздушной среды до 5 мин. 1 табл., 4 пр.

Description

Изобретение относится к способам контроля уровня микробной обсемененности воздушной среды.
Известным способом контроля уровня бактериальной обсемененности воздушной среды является определение общего количества микроорганизмов в 1 м3 воздуха (КОЕ/м3) (СанПиН 2.1.3.2630-10 «Санитарно-эпидемиологические требования к организациям, осуществляющим медицинскую деятельность»). При этом более расширенным термином является «микробная обсемененность» (МУ 2.1.4.1057-01 «Организация внутреннего контроля качества санитарно-микробиологических исследований воды»).
Согласно известному способу производят забор определенного объема исследуемого воздуха с использованием различных приборов, обеспечивающих равномерное распределение частиц на поверхности питательных сред (авторское свидетельство SU 1303611 от 15.04.87; авторское свидетельство SU 1546481 от 28.02.90; авторское свидетельство SU 1620476 от 15.01.91; МУК 4.2.734-99 «Микробиологический мониторинг производственной среды»; МУ 2.1.4.1057-01; МУК 4.2.1089-02 «Использование установки обеззараживания воздуха УОВ «Поток 150-М-01» и контроль микробной обсемененности воздуха при ее работе»), с последующими выделением, посевом, культивированием, идентификацией и подсчетом в единице объема воздуха количества микроорганизмов.
Основными существенными недостатками известных способов являются сложность большая продолжительность определения уровня микробной обсемененности воздушной среды (не менее двух суток) и непригодность для экспресс-прогноза общей микробной обсемененности воздушной среды.
Наиболее близким аналогом - прототипом заявляемого технического решения является способ оценки бактериальной контаминации воздуха при микробиологическом мониторинге окружающей среды при производстве медицинских иммунобиологических препаратов (МУК 4.2.734-99). Согласно известному техническому решению производят забор определенного объема исследуемого воздуха с использованием различных приборов, удовлетворяющих по диапазону пробоотбора требованиям, предъявляемым уровню допустимой контаминации к классам чистоты А, В (100), С (10000) и D (100000), с последующими выделением, посевом, культивированием, идентификацией и подсчетом в единице объема воздуха количества микроорганизмов. Для репрезентативной оценки бактериальной нагрузки воздушной среды при использовании известного технического решения необходимо соблюдение целого ряда условий, например: объем пробы воздуха должен быть достаточным как для обнаружения микроорганизмов в заданном объеме воздуха, так и для роста дискретных и пригодных к подсчету колоний и устанавливается опытным путем, с учетом концентрации микроорганизмов в тестируемой зоне; питательная среда должна поддерживать рост широкого спектра микроорганизмов, включая дрожжи и грибы, ее ростовые свойства должны быть проверены соответствующими тест-штаммами; все выявленные в процессе мониторинга микроорганизмы подлежат макроскопической, микроскопической и биохимической идентификации.
Основными недостатками прототипа являются сложность и большая продолжительность (до двух суток) определения общей микробной обсемененности воздушной среды, что не позволяет проводить исследование в режиме реального времени (в виде экспресс-прогноза).
Главной задачей изобретения является обеспечение проведения в режиме реального времени экспресс-прогноза общей микробной обсемененности воздушной среды.
Поставленная задача реализуется за счет того, что при экспресс-прогнозе уровня общей микробной обсемененности воздушной среды определяют количества аэрозольных частиц с диаметром 0,3 мкм, 0,5 мкм и 1,0 мкм в единице объема воздуха с использованием счетчика аэрозольных частиц, а затем рассчитывают прогнозируемую общую микробную обсемененность воздушной среды по формуле:
Y=0,0003(n0,5+n1,0)-1,2,
по меньшей мере, при одном из условий
n0,3≤2,95 n0,5 и/или n0,5≤3,99n1,0,
где: Y - прогнозируемая общая микробная обсемененность воздушной среды, КОЕ в единице объема воздуха;
n0,3 - количество аэрозольных частиц диаметром 0,3 мкм в единице объема воздуха;
n0,5 - количество аэрозольных частиц диаметром 0,5 мкм в единице объема воздуха;
n1,0 - количество аэрозольных частиц диаметром 1,0 мкм в единице объема воздуха;
0,0003; 2,95 и 3,99 - коэффициенты;
1,2 - корректирующая безразмерная величина.
Коэффициенты и корректирующая безразмерная величина, обеспечивающие информативность прогноза общей микробной обсемененности воздушной среды обследуемого помещения, определены экспериментальным путем.
В основу заявляемого изобретения положена обеспечивающая решение поставленной задачи новая совокупность оригинальных отличительных признаков.
Впервые проводится прогноз уровня общей микробной обсемененности воздушной среды.
Впервые для определения прогнозируемой общей микробной обсемененности воздушной среды используются диаметры аэрозольных частиц и количества аэрозольных частиц определенных диаметров в единице объема воздуха. Использование для прогноза общей микробной обсемененности воздушной среды определения в единице объема воздуха (1 м3) количества аэрозольных частиц диаметром 0,3 мкм, количества аэрозольных частиц диаметром 0,5 мкм и количества аэрозольных частиц диаметром 1,0 мкм, обусловлено тем, что в соответствии с полученными собственными результатами исследования соотношение количеств этих частиц коррелирует с микробной обсемененностью воздуха, а именно, при наличии микробной обсемененности воздуха количество частиц меньшего диаметра уменьшается, количество частиц большего диаметра увеличивается. Это, в свою очередь, связано с более выраженной адгезией живых микроорганизмов и их большими размерами по сравнению с неживыми в воздушной среде.
Впервые прогнозируемое общее количество микроорганизмов (КОЕ) в единице объема воздуха (прогнозируемая общая микробная обсемененность воздушной среды) рассчитывается по формуле, включающей показатели количества аэрозольных частиц диаметром 0,5 мкм и 1,0 мкм в единице объема воздуха с учетом соотношения количеств аэрозольных частиц диаметром 0,3 мкм, 0,5 мкм и 1,0 мкм в единице объема воздуха.
Из патентно-технической литературы и практики контроля уровня микробной обсемененности воздушной среды неизвестно о способе экспресс-прогноза уровня общей микробной обсемененности воздушной среды, который был бы идентичен заявляемому.
Отсюда правомерен вывод о соответствия заявляемого решения критерию «новизна».
Указанная выше совокупность существенных признаков необходима и достаточна для получения технического результата - обеспечения проведения в режиме реального времени экспресс-прогноза общей микробной обсемененности воздушной среды. Между существующими признаками и решаемой задачей существует причинно-следственная связь, где каждый признак необходим и влияет на получение технического результата, а вместе взятые признаки достаточны для его получения. Правомерен вывод о соответствии заявляемого технического решения критерию «изобретательский уровень».
Предлагаемый способ может быть реализован многократно с использованием присущих ему существенных признаков, а значит, заявляемое техническое решение соответствует критерию «промышленная применимость».
Заявляемое изобретение апробировано в условиях производства медицинских иммунобиологических препаратов. Ниже приводятся результаты этой апробации. При этом приведенные примеры экспресс-прогноза общей микробной обсемененности воздушной среды показывают конкретную реализацию заявляемого изобретения, но не ограничивают объем притязаний формулы заявляемого изобретения.
Пример 1. Проводили экспресс-прогноз уровня общей микробной обсемененности воздушной среды помещения производства медицинских иммунобиологических препаратов класса чистоты «С» в оснащенном состоянии, то есть при неработающем технологическом оборудовании, при включенной вентиляции, но без присутствия обслуживающего персонала.
В качестве счетчика аэрозольных частиц был использован портативный счетчик частиц аэрозолей Solair 3100 фирмы Lighthouse Worldwide Solutions, США (Портативный счетчик частиц Solair 3100 // Cleanroom Instruments - «Клинрум Инструментс»: [сайт]. - URL: http://clri.ru/ftpgetfile.php?id=21 (дата обращения: 31.07.2011)).
Определяли количества аэрозольных частиц с диаметром 0,3 мкм, 0,5 мкм и 1,0 мкм в единице объема (1 м3) воздуха с использованием счетчика аэрозольных частиц Solair 3100. При этом количество аэрозольных частиц диаметром 0,3 мкм в единице объема воздуха (n0,3) составило 573525, количество аэрозольных частиц диаметром 0,5 мкм в единице объема воздуха (n0,5) составило 179227, а количество аэрозольных частиц диаметром 1,0 мкм в единице объема воздуха (n1,0) составило 43714.
Рассчитывали соотношения количеств аэрозольных частиц:
n0,3=573525≈3,2×179227=3,2n0,5>2,95n0,5;
n0,5=179227≈4,1×43714=4,1n1,0>3,99n1,0.
Учитывая отсутствие обоих условий для расчета прогнозируемой общей микробной обсемененности воздушной среды, расчет прогнозируемой общей микробной обсемененности воздушной среды не проводили, что явилось основанием для продолжения испытаний данного помещения в функционирующем состоянии.
Значение общей микробной обсемененности, полученное по известному методу (МУК 4.2.734-99), составило 7 КОЕ/м3.
Продолжительность экспресс-прогноза общей микробной обсемененности воздушной среды помещения производства медицинских иммунобиологических препаратов составила 4 минуты.
Пример 2. В соответствии с примером 1 проводили экспресс-прогноз уровня общей микробной обсемененности воздушной среды помещения производства медицинских иммунобиологических препаратов класса чистоты «С» в функционирующем состоянии, то есть при работающем технологическом оборудовании, при включенной вентиляции и в присутствии обслуживающего персонала, одетого в нестерильную одежду.
Определяли количества аэрозольных частиц с диаметром 0,3 мкм, 0,5 мкм и 1,0 мкм в единице объема (1 м3) воздуха с использованием счетчика аэрозольных частиц Solair 3100. При этом количество аэрозольных частиц диаметром 0,3 мкм в единице объема воздуха (n0,3) составило 746850, количество аэрозольных частиц диаметром 0,5 мкм в единице объема воздуха (n0,5) составило 287250, а количество аэрозольных частиц диаметром 1,0 мкм в единице объема воздуха (n1,0) составило 95750.
Рассчитывали соотношения количеств аэрозольных частиц:
n0,3=746850≈2,6×287250-2,6n0,5<2,95n0,5;
n0,5=287250≈3,0×95750-3,0n1,0<3,99n1,0.
Учитывая наличие обоих условий для расчета прогнозируемой общей микробной обсемененности воздушной среды (n0,3≤2,95n0,5 и n0,5≤3,99n1,0), рассчитывали прогнозируемую общую микробную обсемененность воздушной среды по формуле:
Y=0,0003(n0,5+n1,0)-1,2,
где: Y - прогнозируемая общая микробная обсемененность воздушной среды, КОЕ на единицу объема воздуха (1 м3);
n0,3 - количество аэрозольных частиц диаметром 0,3 мкм в единице объема воздуха (1 м3);
n0,5 - количество аэрозольных частиц диаметром 0,5 мкм в единице объема воздуха (1 м3);
n1,0 - количество аэрозольных частиц диаметром 1,0 мкм в единице объема воздуха (1 м3);
0,0003; 2,95 и 3,99 - коэффициенты;
1,2 - корректирующая безразмерная величина.
Y2=0,0003(287250+95750) - 1,2≈114 (КОЕ/м3)
Рассчитанное значение прогнозируемой общей микробной обсемененности воздушной среды помещения производства медицинских иммунобиологических препаратов подтвердилось значением общей микробной обсемененности, полученным по известному методу (МУК 4.2.734-99), которое составило 109 КОЕ/м3.
В связи с превышением значения общей микробной обсемененности воздушной среды максимально допустимого количества живых микроорганизмов в помещении класса чистоты «С» (МУ-44-116 департамента ГСЭН Минздрава России) эксплуатация данного помещения производства медицинских иммунобиологических препаратов прекращена.
Продолжительность экспресс-прогноза общей микробной обсемененности воздушной среды помещения производства медицинских иммунобиологических препаратов составила 5 минут.
Пример 3. В соответствии с примером 1 проводили экспресс-прогноз уровня общей микробной обсемененности воздушной среды помещения производства медицинских иммунобиологических препаратов класса чистоты «С» в функционирующем состоянии, то есть при работающем технологическом оборудовании, при включенной вентиляции и в присутствии обслуживающего персонала, одетого в стерильную одежду.
Определяли количества аэрозольных частиц с диаметром 0,3 мкм, 0,5 мкм и 1,0 мкм в единице объема (1 м3) воздуха с использованием счетчика аэрозольных частиц Solair 3100. При этом количество аэрозольных частиц диаметром 0,3 мкм в единице объема воздуха (n0,3) составило 685125, количество аэрозольных частиц диаметром 0,5 мкм в единице объема воздуха (n0,5) составило 228375, а количество аэрозольных частиц диаметром 1,0 мкм в единице объема воздуха (n1,0) составило 78750.
Рассчитывали соотношения количеств аэрозольных частиц:
n0,3=685125=3,0×228375=3,0n0,5>2,95n0,5;
n0,5=228375=2,9×78750=2,9n1,0<3,99n1,0.
Учитывая наличие одного из условий для расчета прогнозируемой общей микробной обсемененности воздушной среды (n0,5≤3,99n1,0), рассчитывали прогнозируемую общую микробную обсемененность воздушной среды по формуле:
Y=0,0003(n0,5+n1,0)-1,2,
где: Y - прогнозируемая общая микробная обсемененность воздушной среды, КОЕ на единицу объема воздуха (1 м3);
n0,3 - количество аэрозольных частиц диаметром 0,3 мкм в единице объема воздуха (1 м3);
n0,5 - количество аэрозольных частиц диаметром 0,5 мкм в единице объема воздуха (1 м3);
n1,0 - количество аэрозольных частиц диаметром 1,0 мкм в единице объема воздуха (1 м3);
0,0003; 2,95 и 3,99 - коэффициенты;
1,2 - корректирующая безразмерная величина.
Y2=0,0003(228375+78750) - 1,2≈91 (КОЕ/м3)
Рассчитанное значение прогнозируемой общей микробной обсемененности воздушной среды помещения производства медицинских иммунобиологических препаратов подтвердилось значением общей микробной обсемененности, полученным по известному методу (МУК 4.2.734-99), которое составило 83 КОЕ/м3.
В связи с отсутствием превышения значения общей микробной обсемененности воздушной среды максимально допустимого количества живых микроорганизмов в помещении класса чистоты «С» (МУ-44-116 департамента ГСЭН Минздрава России) эксплуатация данного помещения производства медицинских иммунобиологических препаратов разрешена.
Продолжительность экспресс-прогноза общей микробной обсемененности воздушной среды помещения производства медицинских иммунобиологических препаратов составила 5 минут.
Пример 4. Неоднократное сопоставление результатов экспресс-прогноза общей микробной обсемененности воздушной среды помещений по заявляемому способу и по известному методу (МУК 4.2.734-99) показало достаточную информативность экспресс-прогноза при использовании заявляемого способа. Часть данных исследований приведена в таблице.
№ п/п Показатели для расчета прогнозируемой общей микробной обсемененности воздушной среды Прогнозируемая общая микробная обсемененность воздушной среды, КОЕ/м3 (Y) Общая микробная обсемененность, полученная по МУК 4.2.734-99, КОЕ/м3
Количество частиц 0,3 мкм в 1 м3 воздуха (n0,3) Количество частиц 0,5 мкм в 1 м3 воздуха(n0,5) Количество частиц 1,0 мкм в 1 м3 воздуха(n1,0) Соответствие условиям n0,3≤2,95n0,5 и/или n0,5<3,99n1,0
1. 573525 179227 43714 Нет Не рассчитывалась 7
2. 746850 287250 95750 Да 114 109
3. 685125 228375 78750 Да 91 83
4. 802345 323491 94264 Да 124 127
5. 665411 229452 58833 Да 85 83
6. 667516 230178 59021 Да 86 82
7. 952735 398703 107619 Да 151 146
8. 536415 166723 39641 Нет Не рассчитывалась 8
9. 663711 228566 58684 Да 84 80
10. 667346 230119 59005 Да 85 81
11. 665689 229548 58858 Да 85 81
12. 663474 228784 58663 Да 85 80
13. 667258 230089 58997 Да 86 82
14. 665486 229478 58841 Да 85 81
15. 664051 228983 58714 Да 85 80
Примечания:
1) номера пунктов соответствуют номерам экспериментов;
2) строки 1, 2 и 3 соответствуют примерам 1, 2 и 3;
3) количества аэрозольных частиц диаметром 0,3 мкм, 0,5 мкм и 1,0 мкм определялись с использованием счетчика аэрозольных частиц Solair 3100;
4) забор проб для определения общей микробной обсемененности по МУК 4.2.734-99 производился с использованием пробоотборника биологически активных частиц ActivCjunt 90C.
Таким образом, в примерах показаны преимущества заявляемого технического решения по сравнению с прототипом, заключающиеся в обеспечении проведения в режиме реального времени экспресс-прогноза общей микробной обсемененности воздушной среды на основе приборного контроля при упрощении и уменьшении продолжительности анализа при использовании заявляемого способа.

Claims (1)

  1. Способ экспресс-прогноза общей микробной обсемененности воздушной среды, характеризующийся тем, что определяют количества аэрозольных частиц с диаметром 0,3 мкм, 0,5 мкм и 1,0 мкм в единице объема воздуха с использованием счетчика аэрозольных частиц, а затем производят расчет прогнозируемой общей микробной обсемененности воздушной среды по формуле:
    Y=0,0003(n0,5+n1,0)-1,2,
    по меньшей мере, при одном из условий
    n0,3≤2,95n0,5 и/или n0,5≤3,99n1,0,
    где Y - прогнозируемая общая микробная обсемененность воздушной среды, КОЕ на единицу объема воздуха;
    n0,3 - количество аэрозольных частиц диаметром 0,3 мкм в единице объема воздуха;
    n0,5 - количество аэрозольных частиц диаметром 0,5 мкм в единице объема воздуха;
    n1,0 - количество аэрозольных частиц диаметром 1,0 мкм в единице объема воздуха;
    0,0003; 2,95 и 3,99 - коэффициенты;
    1,2 - корректирующая безразмерная величина.
RU2011141704/10A 2011-10-14 2011-10-14 Способ экспресс-прогноза общей микробной обсемененности воздушной среды RU2491349C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011141704/10A RU2491349C2 (ru) 2011-10-14 2011-10-14 Способ экспресс-прогноза общей микробной обсемененности воздушной среды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011141704/10A RU2491349C2 (ru) 2011-10-14 2011-10-14 Способ экспресс-прогноза общей микробной обсемененности воздушной среды

Publications (2)

Publication Number Publication Date
RU2011141704A RU2011141704A (ru) 2013-04-20
RU2491349C2 true RU2491349C2 (ru) 2013-08-27

Family

ID=49151907

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011141704/10A RU2491349C2 (ru) 2011-10-14 2011-10-14 Способ экспресс-прогноза общей микробной обсемененности воздушной среды

Country Status (1)

Country Link
RU (1) RU2491349C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784291C1 (ru) * 2021-07-08 2022-11-23 Общество с ограниченной ответственностью "АВТЭКС" (ООО "АВТЭКС") Способ экспресс-диагностики вирусных заболеваний в фазе активного выделения вируса

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1620476A1 (ru) * 1988-12-26 1991-01-15 Всесоюзный научно-исследовательский институт ветеринарной санитарии Устройство дл бактериологического анализа воздуха
RU2397801C2 (ru) * 2008-06-24 2010-08-27 Самсунг Электроникс Ко., Лтд. Устройство и способ для сбора и определения концентрации аэрозольных частиц

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1620476A1 (ru) * 1988-12-26 1991-01-15 Всесоюзный научно-исследовательский институт ветеринарной санитарии Устройство дл бактериологического анализа воздуха
RU2397801C2 (ru) * 2008-06-24 2010-08-27 Самсунг Электроникс Ко., Лтд. Устройство и способ для сбора и определения концентрации аэрозольных частиц

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
МУК 4.2.734 - 99 (Утв. Главным государственным санитарным врачом РФ) "Микробиологический мониторинг производственной среды". 10.03.1999, весь документ. http://edepot.wur.nl/165388 - ZHAO YANG ЕТ ALL. Detection of airborne Campylobacter with three bioaerosol samplers for alarming bacteria transmission in broilers. MEASURING AIRBORNE MICROORGANISMS AND DUST FROM LIVESTOCK HOUSES. Tests. Submitted in fulfilment of the requirements for the degree of doctors at Wageningen University, 20.04.2011, весь документ. [Найдено в Интернет 23.07.2012.]. РУКОВОДСТВО Р 3.1.683 - 98. (Утв. Главным государственным санитарным врачом РФ) 8.2. Исследование микробной обсемененности воздуха, 19.01.1998, весь документ. *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2784291C1 (ru) * 2021-07-08 2022-11-23 Общество с ограниченной ответственностью "АВТЭКС" (ООО "АВТЭКС") Способ экспресс-диагностики вирусных заболеваний в фазе активного выделения вируса

Also Published As

Publication number Publication date
RU2011141704A (ru) 2013-04-20

Similar Documents

Publication Publication Date Title
Gilbert et al. Microbiology of the built environment
Sanchez-Vizuete et al. Pathogens protection against the action of disinfectants in multispecies biofilms
Cristescu et al. Ethylene production by Botrytis cinerea in vitro and in tomatoes
de Avila et al. Effect of titanium and zirconia dental implant abutments on a cultivable polymicrobial saliva community
Davies et al. Germination testing: procedures and evaluation
JP6504834B2 (ja) 検査装置
Li et al. Characterization, factors, and UV reduction of airborne bacteria in a rural wastewater treatment station
Chai et al. Mitigating airborne bacteria generations from cage-free layer litter by spraying acidic electrolysed water
Junka et al. Use of the real time xCelligence system for purposes of medical microbiology
Smither et al. An alternative method of measuring aerosol survival using spiders’ webs and its use for the filoviruses
Nasrabadi et al. Investigation of live and dead status of airborne bacteria using UVAPS with LIVE/DEAD® BacLight Kit
CN107505311A (zh) 快速确定灭菌效果的方法和生物指示剂
Kim et al. In situ lysis droplet supply to efficiently extract ATP from dust particles for near-real-time bioaerosol monitoring
RU2491349C2 (ru) Способ экспресс-прогноза общей микробной обсемененности воздушной среды
Pogner et al. A novel laminar-flow-based bioaerosol test system to determine biological sampling efficiencies of bioaerosol samplers
CN108676779A (zh) 一种检测空气净化产品净化空气中噬菌体能力的方法
JP6545848B2 (ja) 室内環境における空中微生物汚染の潜在的可能性を予測する湿熱応答装置及びその製造方法
Sautour et al. A prospective survey of air and surface fungal contamination in a medical mycology laboratory at a tertiary care university hospital
Puchianu et al. Researches regarding the active and passive monitoring of aeromicroflora in milling and bread manufacturing
CN114910520A (zh) 一种用于斜面白腐真菌对于硅橡胶染污程度的表征方法
Puchianu et al. Research on active and passive monitoring aeromicroflora in the milk units processing
Fowotade et al. Internal and external quality control in the medical microbiology laboratory
Umana et al. Microbiological quality of indoor and outdoor air within biological sciences Laboratories in Akwa Ibom State University, Nigeria
RU2493258C1 (ru) Способ определения численности микроорганизмов в воздухе
Hasnam et al. A study of microbe air levels in selected rooms of a hospital cultivated on two culture medias