RU2488933C2 - Способ электропитания космического аппарата - Google Patents

Способ электропитания космического аппарата Download PDF

Info

Publication number
RU2488933C2
RU2488933C2 RU2011141688/07A RU2011141688A RU2488933C2 RU 2488933 C2 RU2488933 C2 RU 2488933C2 RU 2011141688/07 A RU2011141688/07 A RU 2011141688/07A RU 2011141688 A RU2011141688 A RU 2011141688A RU 2488933 C2 RU2488933 C2 RU 2488933C2
Authority
RU
Russia
Prior art keywords
voltage
electric power
solar battery
primary
electricity
Prior art date
Application number
RU2011141688/07A
Other languages
English (en)
Other versions
RU2011141688A (ru
Inventor
Дмитрий Сергеевич Карплюк
Виктор Владимирович Коротких
Михаил Владленович Нестеришин
Сергей Иванович Опенько
Original Assignee
Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева" filed Critical Открытое акционерное общество "Информационные спутниковые системы" имени академика М.Ф. Решетнева"
Priority to RU2011141688/07A priority Critical patent/RU2488933C2/ru
Publication of RU2011141688A publication Critical patent/RU2011141688A/ru
Application granted granted Critical
Publication of RU2488933C2 publication Critical patent/RU2488933C2/ru

Links

Landscapes

  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

Заявляемое изобретение относится к области космической энергетики, конкретнее к бортовым системам электропитания (СЭП) космических аппаратов (КА). Техническим результатом является повышение удельных энергетических характеристик системы электропитания КА. Предлагается способ электропитания космического аппарата от первичного источника ограниченной мощности, солнечной батареи и вторичных источников электроэнергии, аккумуляторных батарей, заключающийся в стабилизации напряжения на нагрузке с несколькими номиналами напряжения и согласовании работы первичного и вторичных источников электроэнергии, причем напряжение первичного и вторичных источников электроэнергии преобразуют в переменное и трансформируют в требующиеся номиналы выходного напряжения, а заряд вторичных источников электроэнергии проводят также от выходного трансформируемого напряжения. 1 ил.

Description

Заявляемое изобретение относится к области космической энергетики, конкретнее к бортовым системам электропитания (СЭП) космических аппаратов (КА).
Для космической техники важнейшей тактико-технической характеристикой СЭП является удельная мощность, т.е. отношение мощности, вырабатываемой системой электропитания, к ее массе, которая зависит, прежде всего, от удельно-массовых характеристик используемых источников тока, но и в значительной мере от принятой структурной схемы СЭП, формируемой комплексом электронного оборудования СЭП, который определяет режимы эксплуатации источников и эффективность использования их потенциальных возможностей.
Известны способы электропитания КА, которые обеспечивают стабилизацию постоянного напряжения на нагрузке (с точностью до 0,5-1,0% от номинального значения), стабилизацию напряжения на солнечной батарее, при котором обеспечивается съем мощности с нее вблизи оптимальной рабочей точки вольт-амперной характеристики (ВАХ), а также реализуются оптимальные алгоритмы управления режимами эксплуатации аккумуляторных батарей, позволяющие обеспечить максимально возможные емкостные параметры в процессе длительного цитирования батарей на орбите. В качестве примера таких систем электропитания приведен проект СЭП для геостационарного связного КА, описанный в статье «A POWER, FOR A TELECOMMUNICATION SATELLITE», L.Croci, P.Galantini, C.Marana (Proceedings of the European Space Power Conference held in Graz, Austria, 23-27 August 1993 (ESAWPP-054, August 1993).
В структурной схеме СЭП предусмотрено разбиение солнечной батареи на шестнадцать секций, каждая из которых регулируется собственным шунтовым стабилизатором напряжения, а выходы секций через развязывающие диоды подключены к общей стабилизированной шине, на которой поддерживается 42 В±1%. Шунтовые стабилизаторы поддерживают на секциях солнечной батареи напряжение 42 В, а проектирование солнечной батареи ведется таким образом, чтобы в конце пятнадцатилетнего срока эксплуатации оптимальная рабочая точка ВАХ соответствовала этому напряжению.
Недостатком СЭП современных КА является отсутствие универсальности (многофункциональности), что ограничивает область их использования.
Известно, что для питания различной аппаратуры конкретного КА требуются несколько номиналов питающего напряжения, от единиц до десятков и сотен вольт, в то время как в реализованных СЭП формируется единая шина питания постоянного напряжения с одним или двумя номиналами напряжения, например 27 В, или 27 В и 40 В, или 27 В и 100 В.
При переходе с одного номинала напряжения питания аппаратуры на другой требуется разработка новой системы электропитания с кардинальной переработкой источников тока - солнечной и аккумуляторной батарей и с соответствующими временными и финансовыми издержками.
Другим недостатком систем является низкая помехозащищенность потребителей электроэнергии на борту космического аппарата. Это объясняется наличием гальванической связи между шинами питания аппаратуры и источниками тока.
Поэтому при резких колебаниях нагрузки, например, в моменты включения или отключения отдельных потребителей, возникают колебания напряжения на общей выходной шине системы электропитания, т.н. переходные процессы, вызванные всплесками напряжения на внутреннем сопротивлении источников тока.
Наиболее близким техническим решением является способ электропитания космического аппарата, реализованный системой электропитания КА (патент РФ 2396666), состоящей из солнечной батареи, подключенной своими плюсовой и минусовой шинами к стабилизатору напряжения, аккумуляторной батареи, подключенной своими плюсовой и минусовой шинами к входу разрядного и выходу зарядного устройств, экстремального регулятора мощности солнечной батареи, соединенного своими входами с датчиком тока, установленным в одной из шин между солнечной батареей и стабилизатором напряжения, разрядным и зарядным устройствами аккумуляторной батареи, а выходом - со стабилизатором напряжения солнечной батареи, отличающаяся тем, что стабилизатор напряжения солнечной батареи и разрядное устройство аккумуляторной батареи выполнены в виде мостовых инверторов с общим трансформатором, при этом вход зарядного устройства соединен с выходной обмоткой трансформатора, к другим же выходным обмоткам трансформатора подключены устройства питания нагрузок со своими номиналами выходного напряжения переменного или постоянного тока, причем одно из устройств питания нагрузки соединено со стабилизатором солнечной батареи и разрядным устройством аккумуляторной батареи.
Известные способ и система электропитания КА выбраны в качестве прототипа заявляемому изобретению.
Недостатком известного способа электропитания КА является избыточность однотипных функциональных узлов, что снижает удельные энергетические (мощностные) характеристики системы электропитания.
Задачей заявляемого изобретения является повышение удельных энергетических характеристик системы электропитания КА.
Поставленная задача решается способом электропитания космического аппарата от первичного источника ограниченной мощности, солнечной батареи и вторичных источников электроэнергии, аккумуляторных батарей, заключающимся в стабилизации напряжения на нагрузке с несколькими номиналами напряжения и согласовании работы первичного и вторичных источников электроэнергии, причем напряжение первичного и вторичных источников электроэнергии преобразуют в переменное и трансформируют в требующиеся номиналы выходного напряжения, а заряд вторичных источников электроэнергии проводят также от выходного трансформируемого напряжения, аккумуляторные батареи подключают параллельно солнечной батарее через сериесные преобразователи в направлении протекания разрядного тока, причем разряд аккумуляторных батарей проводят в два этапа: вначале стабилизируют напряжение на выходе сериесных преобразователей, равное напряжению в рабочей точке солнечной батареи в конце ресурса, а затем это напряжение преобразуют в переменное и трансформируют в требующиеся номиналы выходного напряжения, при этом аккумуляторные батареи выбирают с минимальным разрядным напряжением не менее напряжения в рабочей точке солнечной батареи, а напряжение первичного и вторичных источников электроэнергии преобразуют в переменное через общий стабилизированный преобразователь напряжения.
Действительно, такой способ электропитания не требует, в отличие от прототипа, включения-отключения стабилизированных преобразователей напряжения и наличия индивидуального стабилизированного преобразователя напряжения в разрядной цепи аккумуляторной батареи, что позволяет повысить удельные энергетические характеристики системы электропитания КА.
Суть заявляемого изобретения поясняется чертежом, где на фиг.1 представлена функциональная схема электропитания КА с одной аккумуляторной батареей.
Система электропитания космического аппарата состоит из солнечной батареи 1, стабилизированного преобразователя напряжения 2, аккумуляторной батареи 3, подключенной параллельно солнечной батарее 1 в одноименной полярности через сериесный преобразователь 3-1 в направлении протекания разрядного тока, зарядного устройства аккумуляторной батареи 4, трансформатора 5, локальных модулей питания нагрузок 6-1, 6-2 и потребителей электроэнергии 7.
Стабилизированный преобразователь напряжения 2 выполнен в виде мостового инвертора. Описания мостовых инверторов приведены, например, в статьях: «Высокочастотные преобразователи напряжения с резонансным переключением», автор А.В.Лукин (ЭЛЕКТРОПИТАНИЕ, научно-технический сборник выпуск 1, под редакцией Ю.И.Конева. Ассоциация «Электропитание», М., 1993), «The Series Connected Buck Boost Regulator For High Efficiency DC Voltage Regulation», автор Arthur G. Birchenough (NASA Technical Memorandum 2003-212514, NASA Lewis Research Center, Cleveland, ОН), а также в статье «Структурная схема и схемотехнические решения комплексов автоматики и стабилизации негерметичного геостационарного КА с гальванической развязкой бортовой аппаратуры от солнечных и аккумуляторных батарей» авторов: Поляков С.А., Чернышев А.И., Эльман В.О., Кудряшов B.C., см. «Электронные и электромеханические системы и устройства: сборник научных трудов НПЦ «Полюс». - Томск: МГП «РАСКО» при издательстве «Радио и связь», 2001.
Выход стабилизированного преобразователя напряжения соединен с первичной обмоткой 5-1 трансформатора 5. Солнечная батарея 1 соединена со стабилизированным преобразователем напряжения 2 плюсовой и минусовой шинами.
Зарядное устройство 4 своим входом соединено с вторичной обмоткой 5-5 трансформатора 5, а выходом - с плюсовой и минусовой шинами аккумуляторной батареи 2.
Сериесный преобразователь 3-1 состоит из силового транзисторного ключа 3-2, управляемого схемой управления 3-3, представляющей собой широтно-импульсный модулятор.
К вторичным обмоткам 5-2, 5-3 трансформатора 5 подключены локальные модули питания нагрузок 6-1, 6-2 со своими номиналами выходного напряжения постоянного тока, выходом подключенные к потребителям электроэнергии 7 (в данном случае - к 7-1 и 7-2 соответственно).
Вторичная обмотка 5-4 трансформатора 5 подключена непосредственно к потребителям электроэнергии 7 (7-3) переменного тока.
Один из локальных модулей питания нагрузок выбран в качестве основного и по нему осуществляют стабилизацию напряжения. С этой целью устройство 6-1 соединено обратной связью со стабилизированным преобразователем напряжения 2.
Формирование переменного напряжения на выходе стабилизированного преобразователя напряжения 2 обеспечивается его схемой управления 2-1, которая по определенному закону открывает попарно транзисторы 2-2, 2-5 и 2-3, 2-4 соответственно.
Система электропитания работает в следующих основных режимах.
1. Питание нагрузок от солнечной батареи.
При наличии мощности солнечной батареи, превышающей суммарную мощность, потребляемой нагрузками, стабилизированный преобразователь напряжения 2, связанный обратной связью с локальным модулем 6-1, поддерживает стабильное напряжение на нагрузке (потребителе электроэнергии) 7-1. При этом на потребителях электроэнергии 7-2 и 7-3 автоматически поддерживается стабильное постоянное и переменное напряжение с учетом коэффициентов трансформации обмоток. При необходимости заряда аккумуляторной батареи величина ее зарядного тока ограничивается в пределах разницы между текущей мощностью солнечной батареи и суммарной мощностью нагрузок.
2. Питание нагрузки от аккумуляторной батареи.
Режим формируется при недостатке или отсутствии мощности солнечной батареи для питания всех подключенных потребителей, например при включении пиковых нагрузок, при маневрах КА для коррекции орбиты, при входах и выходах КА из теневых участков орбиты или при нахождении КА на теневом участке орбиты.
В этом режиме напряжение на входе стабилизированного преобразователя напряжения 2 снижается до уровня рабочей точки солнечной батареи в конце ресурса, и недостающая для питания нагрузок мощность от солнечной батареи добавляется за счет разряда аккумуляторной батареи 3.
Система электропитания работает полностью в автоматическом режиме.
Таким образом, предлагаемые способ и система электропитания КА позволяют повысить удельные энергетические характеристики системы электропитания КА, что в свою очередь позволяет повысить энерговооруженность и функциональные возможности КА.

Claims (1)

  1. Способ электропитания космического аппарата от первичного источника ограниченной мощности, солнечной батареи, и вторичных источников электроэнергии, аккумуляторных батарей, заключающийся в стабилизации напряжения на нагрузке с несколькими номиналами напряжения и согласовании работы первичного и вторичных источников электроэнергии, причем напряжение первичного и вторичных источников электроэнергии преобразуют в переменное и трансформируют в требующиеся номиналы выходного напряжения, а заряд вторичных источников электроэнергии проводят также от выходного трансформируемого напряжения, отличающийся тем, что аккумуляторные батареи подключают параллельно солнечной батарее через сериесные преобразователи в направлении протекания разрядного тока, причем разряд аккумуляторных батарей проводят в два этапа: вначале стабилизируют напряжение на выходе сериесных преобразователей, равное напряжению в рабочей точке солнечной батареи в конце ресурса, а затем это напряжение преобразуют в переменное и трансформируют в требующиеся номиналы выходного напряжения, при этом аккумуляторные батареи выбирают с минимальным разрядным напряжением не менее напряжения в рабочей точке солнечной батареи, а напряжение первичного и вторичных источников электроэнергии преобразуют в переменное через общий стабилизированный преобразователь напряжения.
RU2011141688/07A 2011-10-13 2011-10-13 Способ электропитания космического аппарата RU2488933C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011141688/07A RU2488933C2 (ru) 2011-10-13 2011-10-13 Способ электропитания космического аппарата

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011141688/07A RU2488933C2 (ru) 2011-10-13 2011-10-13 Способ электропитания космического аппарата

Publications (2)

Publication Number Publication Date
RU2011141688A RU2011141688A (ru) 2013-04-20
RU2488933C2 true RU2488933C2 (ru) 2013-07-27

Family

ID=49151905

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011141688/07A RU2488933C2 (ru) 2011-10-13 2011-10-13 Способ электропитания космического аппарата

Country Status (1)

Country Link
RU (1) RU2488933C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2689401C1 (ru) * 2018-06-22 2019-05-28 Акционерное общество "Научно-исследовательский институт электромеханики" Способ обеспечения автономного электропитания

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629601A (en) * 1994-04-18 1997-05-13 Feldstein; Robert S. Compound battery charging system
JP2004319366A (ja) * 2003-04-18 2004-11-11 Toyota Motor Corp ニッケル水素電池の再生方法
RU90589U1 (ru) * 2008-09-10 2010-01-10 Томский Государственный Университет Систем Управления И Радиоэлектроники (Тусур) Автоматизированный комплекс наземного контроля и испытаний систем электроснабжения космических аппаратов
RU2399122C1 (ru) * 2009-05-12 2010-09-10 Федеральное Государственное Унитарное Предприятие "Государственный научно-производственный ракетно-космический центр "ЦСКБ-Прогресс" (ФГУП "ГНПРКЦ "ЦСКБ-Прогресс") Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5629601A (en) * 1994-04-18 1997-05-13 Feldstein; Robert S. Compound battery charging system
JP2004319366A (ja) * 2003-04-18 2004-11-11 Toyota Motor Corp ニッケル水素電池の再生方法
RU90589U1 (ru) * 2008-09-10 2010-01-10 Томский Государственный Университет Систем Управления И Радиоэлектроники (Тусур) Автоматизированный комплекс наземного контроля и испытаний систем электроснабжения космических аппаратов
RU2399122C1 (ru) * 2009-05-12 2010-09-10 Федеральное Государственное Унитарное Предприятие "Государственный научно-производственный ракетно-космический центр "ЦСКБ-Прогресс" (ФГУП "ГНПРКЦ "ЦСКБ-Прогресс") Способ эксплуатации никель-водородных аккумуляторных батарей системы электропитания космического аппарата

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2689401C1 (ru) * 2018-06-22 2019-05-28 Акционерное общество "Научно-исследовательский институт электромеханики" Способ обеспечения автономного электропитания

Also Published As

Publication number Publication date
RU2011141688A (ru) 2013-04-20

Similar Documents

Publication Publication Date Title
Kwon et al. Control scheme for autonomous and smooth mode switching of bidirectional DC–DC converters in a DC microgrid
RU2396666C1 (ru) Система электропитания космического аппарата
US11043831B2 (en) Charging device and on board power supply device
NZ732362A (en) Electric vehicle power distribution system
Xiao et al. Power-capacity-based bus-voltage region partition and online droop coefficient tuning for real-time operation of DC microgrids
JP2004508689A (ja) 高効率燃料電池電力調整器(powerconditioner)
US9698596B2 (en) Power converter module, photovoltaic system having a power converter module, and method for operating a photovoltaic system
US11025056B2 (en) Power conversion apparatus, power conversion system, and method for controlling power conversion apparatus
US8427097B2 (en) Hybrid electrical power source
RU2560720C1 (ru) Система электропитания космического аппарата с экстремальным регулированием мощности солнечной батареи
US9537391B2 (en) Voltage regulation of a DC/DC converter
Schwertner et al. Supervisory control for stand-alone photovoltaic systems
RU2488933C2 (ru) Способ электропитания космического аппарата
RU2633616C1 (ru) Способ электропитания космического аппарата
RU2392718C1 (ru) Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли
RU2548664C2 (ru) Способ питания нагрузки постоянным током в автономной системе электропитания искусственного спутника земли
Rao et al. A comparative study of Bidirectional DC-DC converter & its interfacing with two battery storage system
US20230318435A1 (en) Power Grid
Ahmadi et al. Hierarchical control scheme for three-port multidirectional DC-DC converters in bipolar DC microgrids
RU2395148C1 (ru) Автономная система электропитания космического аппарата
Khodabakhsh et al. Uncertainty reduction for data centers in energy internet by a compact AC-DC energy router and coordinated energy management strategy
RU2699084C1 (ru) Система электропитания космического аппарата
RU2535662C2 (ru) Способ питания нагрузки постоянным током в автономный системе электропитания искусственного спутника земли
RU2650100C1 (ru) Высоковольтная система электропитания космического аппарата
RU2574911C2 (ru) Способ электропитания космического аппарата

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20181014