RU2488820C1 - Устройство для определения содержания углеводородов в грунтах - Google Patents

Устройство для определения содержания углеводородов в грунтах Download PDF

Info

Publication number
RU2488820C1
RU2488820C1 RU2012112800/15A RU2012112800A RU2488820C1 RU 2488820 C1 RU2488820 C1 RU 2488820C1 RU 2012112800/15 A RU2012112800/15 A RU 2012112800/15A RU 2012112800 A RU2012112800 A RU 2012112800A RU 2488820 C1 RU2488820 C1 RU 2488820C1
Authority
RU
Russia
Prior art keywords
inlet
detector
tube furnace
inert gas
gas flow
Prior art date
Application number
RU2012112800/15A
Other languages
English (en)
Inventor
Владимир Авангардович Лапин
Дмитрий Владимирович Ивойлов
Вячеслав Алексеевич Овчинников
Original Assignee
Общество с ограниченной ответственностью "Научно-производственная фирма "Мета-хром"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственная фирма "Мета-хром" filed Critical Общество с ограниченной ответственностью "Научно-производственная фирма "Мета-хром"
Priority to RU2012112800/15A priority Critical patent/RU2488820C1/ru
Application granted granted Critical
Publication of RU2488820C1 publication Critical patent/RU2488820C1/ru

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

Изобретение относится к области качественного и количественного анализа состава грунтов при определении территорий предполагаемых месторождений нефти, а также при бурении скважин в местах предполагаемых месторождений нефти. В устройстве, содержащем снабженную нагревателем и терморегулятором-программатором температуры, расположенную вертикально трубчатую печь с коаксиально расположенным в ней цилиндрическим контейнером с образцом грунта, вход которой соединен с трубопроводом с побудителем расхода инертного газа, а выход через легкоразъемное соединение соединен с датчиком углеводородов, в качестве которого использован пламенно-ионизационный детектор, на входе которого установлен кварцевый капилляр, а контейнер для грунта выполнен в виде тонкостенного стакана из нержавеющей стали с пористым дном, обращенным к входу трубчатой печи. Достигается повышение точности и информативности анализа. 2 з.п. ф-лы, 1 ил.

Description

Область техники, к которой относится изобретение
Изобретение относится к области аналитического приборостроения и может быть использовано для качественного и количественного анализа грунтов на наличие и фракционный состав углеводородов в грунтах при определении территорий предполагаемых месторождений нефти.
Уровень техники
Известно устройство для определения содержания органических веществ в грунтах RU 59836 U1. Известно также устройство RU 84566 U1, работающее по принципу определения химического потребления кислорода при сжигании органических веществ в пробе.
Недостатками данных устройств являются невозможность определения фракционного состава углеводородов в грунтах, а также низкая точность измерения, обусловленная окислением компонентов, не относящихся к искомым компонентам, что приводит к дополнительному расходу кислорода.
Раскрытие изобретения
Целью изобретения является определение качественного и количественного состава углеводородов, содержащихся в грунтах на месте предполагаемых месторождений нефти. Указанная цель достигается тем, что в устройстве, содержащем снабженную нагревателем и регулятором-программатором температуры, расположенную вертикально трубчатую печь с коаксиально расположенным в ней цилиндрическим контейнером с образцом грунта, вход которой соединен трубопроводом с побудителем расхода инертного газа, а выход через легкоразъемное соединение соединен с датчиком углеводородов, в качестве датчика углеводородов использован пламенно-ионизационный детектор, на входе которого установлен кварцевый капилляр, а контейнер для грунта выполнен в виде тонкостенного стакана из нержавеющей стали с пористым дном, обращенным к входу печи, при этом трубопровод, связывающий побудитель расхода инертного газа с входом трубчатой печи, снабжен теплообменником, расположенным на входе трубчатой печи. В состав устройства могут быть включены детектор по теплопроводности, вход сравнительной ячейки которого соединен с побудителем расхода инертного газа, а выход сравнительной ячейки через трубопровод - с входом трубчатой печи, который также связан через пневмосопротивление с побудителем расхода кислорода, при этом вход измерительной ячейки детектора по теплопроводности через распределительный кран соединяется со вторым побудителем расхода инертного газа или с выходом трубчатой печи, а выход измерительной ячейки детектора по теплопроводности соединен с атмосферой.
Описание чертежей
На Фиг.1 представлена общая схема предлагаемого устройства.
Осуществление изобретения
Устройство состоит из снабженной нагревателем 1 и регулятором-программатором температуры 2, расположенной вертикально трубчатой печи 3 с коаксиально расположенным в ней цилиндрическим металлическим стаканом 4, имеющим пористое дно 5, в который помещен образец исследуемого грунта 6. Внутренний объем стакана 4 через кварцевый капилляр 7 соединен с входом пламенно-ионизационного детектора 8, на выходе которого формируется сигнал в виде электрического тока, величина которого пропорциональна количеству молекул углеводородов, находящихся в данный момент времени в ионизационной камере детектора 8. Выходной сигнал детектора 8 через электрометрический усилитель 9 подается на вход регистратора 10 сигнала детектора 8, в качестве которого может быть использован самописец или персональный компьютер, на входе которого имеется аналого-цифровой преобразователь. Внутренний объем стакана 4 соединен также через трубопровод 11 с распределительным краном 12, два других порта которого соединены соответственно с побудителем расхода 13 гелия и входом измерительной ячейки 14 детектора по теплопроводности 15, сравнительная ячейка которого связана своим входом со вторым побудителем расхода 17, а выходом - с трубопроводом 18, через который поток гелия поступает сначала в теплообменник 19, а затем через пористое дно 5 стакана 4 и образец грунта 6 вместе десорбировавшими с грунта 6 углеводородами во внутренний объем стакана 4. Вход теплообменника 19 связан также через пневмосопротивление 20 с побудителем расхода кислорода 21.
Устройство работает следующим образом. Потоки гелия из формирователей потоков 17 и 13 поступают в сравнительную 16 и измерительную 14 ячейки детектора по теплопроводности 15, на выходе измерительного моста которого формируется сигнал в виде базовой линии. С выхода сравнительной ячейки 16 детектора по теплопроводности 15 поток гелия через трубопровод 18 поступает в теплообменник 19, имеющий температуру, равную температуре трубчатой печи 3, величина которой поддерживается постоянной регулятором-программатором температуры 2, связанным с нагревателем 1 трубчатой печи 3, выполняющим также функцию датчика температуры. Нагретый до температуры трубчатой печи 3 гелий через пористое дно 5 стакана 4 поступает во внутренний объем стакана 4, заполненного исследуемым грунтом 6, который предварительно обезвожен, а также размолот и отсеян для целей получения однородности фракций грунта, подвергающихся исследованию. Пройдя через грунт 6, гелий вместе с десорбировавшими при данной температуре газообразными углеводородами поступает через кварцевый капилляр 7 в горелку пламенно-ионизационного детектора 8, где при сгорании углеводородов образуются ионы, формирующие ток детектора 8, который прямо пропорционален количеству молекул углеводородов, проходящих через горелку детектора 8 в единицу времени. Сигнал детектора 8 усиливается электрометрическим усилителем 9 и регистрируется самопишущим потенциометром 10 или персональным компьютером, снабженным аналого-цифровым преобразователем и соответствующей программой. Начальная температура трубчатой печи 3 устанавливается обычно в диапазоне 25÷30°C, т.е. выбирается температура, при которой не наблюдается активной десорбции углеводородов. После включения и стабилизации системы включается режим линейного программирования температуры трубчатой печи 3.
По мере роста температуры трубчатой печи 3 и соответственно температуры исследуемого образца грунта 6 из него будут десорбироваться, переходя в газообразное состояние, углеводороды, температура кипения которых соответствует текущим значениям температуры печи 3. Пары углеводородов, вытесняемые гелием из внутреннего объема стакана 4, через кварцевый капилляр 7 поступают в горелку пламенно-ионизационного детектора 8, на выходе которого формируется сигнал, пропорциональный количеству молекул углеводородов, проходящих через горелку в единицу времени. Сигнал регистрируется регистратором 10 в виде кривой, отклонение которой от базовой линии соответствует количеству углеводородов, десорбировавших из грунта 6 при текущей температуре печи 3. Площадь, заключенная между кривой, полученной в результате полного цикла программирования температуры трубчатой печи 3, и базовой линией пламенно-ионизационного детектора, соответствует количеству углеводородов, десорбировавших из грунта 6. Фракционный состав углеводородов, десорбировавших из грунта 6, определяется путем измерения площадей участков под кривой, заключенных между значениями температуры по оси абсцисс, соответствующих температурам десорбции соответствующих компонентов. После окончания цикла программирования температуры, верхнее значение температуры которого составляет 400÷450°С, в грунте 6 еще остаются молекулярно связанные с грунтом 6 молекулы углеводородов. Для определения их количества в грунте 6 в стакан 4 через пневмосопротивление 19 подается кислород, поток которого формируется формирователем потока кислорода 20, а также формируется вторая программа подъема температуры печи 3 от 400 до 850°С, в процессе реализации которой происходит пиролиз оставшихся углеводородов, т.е. превращение в CO2, количество которого соответствует количеству углеводородов. В связи с тем, что пламенно-ионизационный детектор 8 не регистрирует CO2, измерение его количества осуществляется с помощью детектора по теплопроводности 15. Для этого перед началом второго этапа программирования температуры трубчатой печи 3 распределительный кран 12 переводится в положение, при котором внутренний объем стакана 4 через трубопровод 11 и кран 12 соединяется со входом измерительной ячейки 14 детектора по теплопроводности 15, при этом поток гелия из стакана 4 вместо пламенно-ионизационного детектора 8 поступает в измерительную ячейку 14 детектора 15, т.к. пневматическое сопротивление кварцевого капилляра 7 более чем в десять раз больше, чем пневматическое сопротивление трубопровода 11 и ячейки 14 детектора 15. Кварцевый капилляр 7 на входе пламенно-ионизационного детектора 8 необходим также для исключения утечки водорода из горелки пламенно-ионизационного детектора 8 во время разгерметизации системы, необходимой для замены стакана 4 на новый с очередным образцом грунта 6. Соединение входа измерительной ячейки 14 детектора 15 с внутренним объемом стакана 4 не приводит к разбалансу измерительного моста детектора 15, т.к. его балансировка производится именно в этом режиме работы, а величина расхода потока гелия, формируемого формирователем 13, подбирается таким образом, что при переключении крана 12 в исходное состояние баланс измерительного моста детектора 15 не нарушается. После перевода крана 12 в положение, при котором производится определение количества CO2, в стакан 4 подается кислород и включается режим программирования температуры с 400 до 850°C с максимальной скоростью, при этом продукты, получаемые в результате пиролиза, поступают в измерительную ячейку 14 детектора 15, где производится измерение их количества и регистрация регистратором 10 результатов измерения. Количество кислорода, поступающего в стакан 4, не превышает 0,5 мл/мин.

Claims (3)

1. Устройство для определения содержания углеводородов в грунтах, содержащее снабженную нагревателем и регулятором-программатором температуры, расположенную вертикально трубчатую печь с коаксиально расположенным в ней цилиндрическим контейнером с образцом грунта, вход которой соединен трубопроводом с побудителем расхода инертного газа, а выход через легкоразъемное соединение соединен с датчиком углеводородов, отличающееся тем, что в качестве датчика углеводородов использован пламенно-ионизационный детектор, на входе которого установлен кварцевый капилляр, а контейнер для грунта выполнен в виде тонкостенного стакана из нержавеющей стали с пористым дном, обращенным к входу трубчатой печи.
2. Устройство по п.1, отличающееся тем, что трубопровод, связывающий побудитель расхода инертного газа с входом трубчатой печи, снабжен теплообменником, расположенным на входе трубчатой печи.
3. Устройство по п.1, отличающееся тем, что в состав устройства включен детектор по теплопроводности, вход сравнительной ячейки которого соединен с побудителем расхода инертного газа, а выход сравнительной ячейки через трубопровод с входом трубчатой печи, который также связан через пневмосопротивление с побудителем расхода кислорода, при этом вход измерительной ячейки детектора по теплопроводности через распределительный кран соединяется со вторым побудителем расхода инертного газа или с выходом трубчатой печи, а выход измерительной ячейки детектора по теплопроводности соединен с атмосферой.
RU2012112800/15A 2012-04-02 2012-04-02 Устройство для определения содержания углеводородов в грунтах RU2488820C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012112800/15A RU2488820C1 (ru) 2012-04-02 2012-04-02 Устройство для определения содержания углеводородов в грунтах

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012112800/15A RU2488820C1 (ru) 2012-04-02 2012-04-02 Устройство для определения содержания углеводородов в грунтах

Publications (1)

Publication Number Publication Date
RU2488820C1 true RU2488820C1 (ru) 2013-07-27

Family

ID=49155724

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012112800/15A RU2488820C1 (ru) 2012-04-02 2012-04-02 Устройство для определения содержания углеводородов в грунтах

Country Status (1)

Country Link
RU (1) RU2488820C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU198068U1 (ru) * 2020-01-29 2020-06-17 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Устройство для оценки глубины проникновения нефтепродуктов в почву

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2074667A1 (en) * 1991-11-27 1993-05-28 Yongchun Tang Method and apparatus for analysis of macromolecular materials by pyrolysis
KR20000034404A (ko) * 1998-11-30 2000-06-26 신현준 토양중에 함유되어 있는 휘발성 유기 오염물인 티올란 [테트라하이드로티오펜] 정량방법
RU59836U1 (ru) * 2006-09-21 2006-12-27 Борис Константинович Зуев Устройство для определения содержания органических веществ в грунтах и донных отложениях
RU81336U1 (ru) * 2008-07-17 2009-03-10 Борис Константинович Зуев Устройство для определения содержания органических веществ в жидких и твердых образцах
RU84566U1 (ru) * 2009-03-12 2009-07-10 Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИРАН) Устройство для определения содержания органических веществ в жидких и твердых образцах

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2074667A1 (en) * 1991-11-27 1993-05-28 Yongchun Tang Method and apparatus for analysis of macromolecular materials by pyrolysis
KR20000034404A (ko) * 1998-11-30 2000-06-26 신현준 토양중에 함유되어 있는 휘발성 유기 오염물인 티올란 [테트라하이드로티오펜] 정량방법
RU59836U1 (ru) * 2006-09-21 2006-12-27 Борис Константинович Зуев Устройство для определения содержания органических веществ в грунтах и донных отложениях
RU81336U1 (ru) * 2008-07-17 2009-03-10 Борис Константинович Зуев Устройство для определения содержания органических веществ в жидких и твердых образцах
RU84566U1 (ru) * 2009-03-12 2009-07-10 Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИРАН) Устройство для определения содержания органических веществ в жидких и твердых образцах

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU198068U1 (ru) * 2020-01-29 2020-06-17 Федеральное автономное учреждение "25 Государственный научно-исследовательский институт химмотологии Министерства обороны Российской Федерации" Устройство для оценки глубины проникновения нефтепродуктов в почву

Similar Documents

Publication Publication Date Title
CN104990827B (zh) 低挥发性有机气体在吸附材料上吸附量的测定方法及设备
CN203870077U (zh) 一种用于检测痕量磷化氢的二次冷阱富集与gc-fid联用装置
Zhang et al. Continuous underway measurements of dimethyl sulfide in seawater by purge and trap gas chromatography coupled with pulsed flame photometric detection
Clark et al. An improved multiple flame photometric detector for gas chromatography
CN104007196A (zh) 一种用于检测痕量磷化氢的二次冷阱富集与gc-fid联用装置和方法
US3661527A (en) Method and apparatus for volatility and vapor pressures measurement and for distillation analysis
RU2488820C1 (ru) Устройство для определения содержания углеводородов в грунтах
Kim et al. The evaluation of recovery rate associated with the use of thermal desorption systems for the analysis of atmospheric reduced sulfur compounds (RSC) using the GC/PFPD method
Eggertsen et al. Volatility of high-boiling organic materials by a flame ionization detection method
CN208350726U (zh) 用于voc在线分析的气相色谱分析仪
CN204833816U (zh) 一种教学用色谱仪
CN101261257B (zh) 炼厂干气关键组分含量测定方法
Sun et al. Novel application of gas chromatography in measurement of gas flow rate
RU196305U1 (ru) Термохимический газоанализатор
CN207300703U (zh) 一种具有温度测量功能的热裂解器及一种汞分析仪
Rose Gas chromatography and its analytical applications. A review
RU2302630C1 (ru) Капиллярный газовый хроматограф для анализа органических и неорганических веществ
Ettre Application of gas chromatographic methods for air pollution studies
RU2571454C1 (ru) Термохимический детектор для газовой хроматографии
CN110286171A (zh) 一种软体家具中VOCs现场采样系统及快速检测方法
RU197139U1 (ru) Термохимический детектор газов
Gough et al. Techniques in gas chromatography. Part III. Choice of detectors. A review
Lantheaume Analysis of Corrosive Halogen Compounds by Gas Chromatography.
CN221594881U (zh) 一种复杂样品痕量组分定量富集系统
Ried et al. Thermo Analytic Investigation of Hydrogen Effusion Behavior–Sensor Evaluation and Calibration

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140403