RU2488596C2 - Композиции рекомбинантных антител против рецептора эпидермального фактора роста - Google Patents
Композиции рекомбинантных антител против рецептора эпидермального фактора роста Download PDFInfo
- Publication number
- RU2488596C2 RU2488596C2 RU2009136340/10A RU2009136340A RU2488596C2 RU 2488596 C2 RU2488596 C2 RU 2488596C2 RU 2009136340/10 A RU2009136340/10 A RU 2009136340/10A RU 2009136340 A RU2009136340 A RU 2009136340A RU 2488596 C2 RU2488596 C2 RU 2488596C2
- Authority
- RU
- Russia
- Prior art keywords
- antibody
- egfr
- antibodies
- cells
- binding
- Prior art date
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 348
- 102000009465 Growth Factor Receptors Human genes 0.000 title description 2
- 108010009202 Growth Factor Receptors Proteins 0.000 title description 2
- 229940116977 epidermal growth factor Drugs 0.000 title 1
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 161
- 201000011510 cancer Diseases 0.000 claims abstract description 86
- 101000851181 Homo sapiens Epidermal growth factor receptor Proteins 0.000 claims abstract description 53
- 102000045108 human EGFR Human genes 0.000 claims abstract description 53
- 239000012634 fragment Substances 0.000 claims abstract description 38
- 239000003814 drug Substances 0.000 claims abstract description 16
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 13
- 210000004027 cell Anatomy 0.000 claims description 428
- 230000027455 binding Effects 0.000 claims description 213
- 238000011282 treatment Methods 0.000 claims description 50
- 102000005962 receptors Human genes 0.000 claims description 45
- 108020003175 receptors Proteins 0.000 claims description 45
- 150000001413 amino acids Chemical class 0.000 claims description 34
- 238000001727 in vivo Methods 0.000 claims description 31
- 230000014509 gene expression Effects 0.000 claims description 30
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 claims description 27
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 claims description 27
- 102000052116 epidermal growth factor receptor activity proteins Human genes 0.000 claims description 23
- 230000002401 inhibitory effect Effects 0.000 claims description 23
- 210000004881 tumor cell Anatomy 0.000 claims description 23
- 230000011712 cell development Effects 0.000 claims description 21
- 230000001965 increasing effect Effects 0.000 claims description 18
- 230000001939 inductive effect Effects 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 17
- 230000006907 apoptotic process Effects 0.000 claims description 16
- 230000035755 proliferation Effects 0.000 claims description 15
- 241000124008 Mammalia Species 0.000 claims description 12
- 102000007236 involucrin Human genes 0.000 claims description 12
- 108010033564 involucrin Proteins 0.000 claims description 12
- 230000004069 differentiation Effects 0.000 claims description 11
- 201000010099 disease Diseases 0.000 claims description 10
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 10
- 230000008054 signal transmission Effects 0.000 claims description 6
- 230000024245 cell differentiation Effects 0.000 claims description 5
- 230000002147 killing effect Effects 0.000 claims description 5
- 208000024891 symptom Diseases 0.000 claims description 5
- 230000006806 disease prevention Effects 0.000 claims description 3
- 230000002018 overexpression Effects 0.000 claims description 3
- 238000011321 prophylaxis Methods 0.000 claims description 2
- 108700015053 epidermal growth factor receptor activity proteins Proteins 0.000 claims 18
- YOHYSYJDKVYCJI-UHFFFAOYSA-N n-[3-[[6-[3-(trifluoromethyl)anilino]pyrimidin-4-yl]amino]phenyl]cyclopropanecarboxamide Chemical compound FC(F)(F)C1=CC=CC(NC=2N=CN=C(NC=3C=C(NC(=O)C4CC4)C=CC=3)C=2)=C1 YOHYSYJDKVYCJI-UHFFFAOYSA-N 0.000 claims 18
- 230000003213 activating effect Effects 0.000 claims 1
- 230000002265 prevention Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 54
- 230000002195 synergetic effect Effects 0.000 abstract description 10
- 229940079593 drug Drugs 0.000 abstract description 8
- 101150039808 Egfr gene Proteins 0.000 abstract description 6
- 239000000126 substance Substances 0.000 abstract description 2
- 102000001301 EGF receptor Human genes 0.000 description 377
- 108060006698 EGF receptor Proteins 0.000 description 377
- 108090000623 proteins and genes Proteins 0.000 description 97
- 238000000034 method Methods 0.000 description 96
- 108091007433 antigens Proteins 0.000 description 91
- 102000036639 antigens Human genes 0.000 description 91
- 229910052720 vanadium Inorganic materials 0.000 description 91
- 229940082789 erbitux Drugs 0.000 description 90
- 239000000427 antigen Substances 0.000 description 89
- 229910052739 hydrogen Inorganic materials 0.000 description 89
- 238000002965 ELISA Methods 0.000 description 66
- 241000282414 Homo sapiens Species 0.000 description 62
- 102000004169 proteins and genes Human genes 0.000 description 58
- 230000005764 inhibitory process Effects 0.000 description 54
- 235000018102 proteins Nutrition 0.000 description 54
- 102000009024 Epidermal Growth Factor Human genes 0.000 description 53
- 239000003446 ligand Substances 0.000 description 47
- 229960001972 panitumumab Drugs 0.000 description 46
- 241000699666 Mus <mouse, genus> Species 0.000 description 45
- 238000004458 analytical method Methods 0.000 description 43
- 238000012216 screening Methods 0.000 description 43
- 241000699670 Mus sp. Species 0.000 description 39
- 238000002474 experimental method Methods 0.000 description 35
- 239000013604 expression vector Substances 0.000 description 34
- 241001465754 Metazoa Species 0.000 description 33
- 239000013598 vector Substances 0.000 description 33
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 32
- 235000001014 amino acid Nutrition 0.000 description 32
- 229940024606 amino acid Drugs 0.000 description 31
- 239000000872 buffer Substances 0.000 description 29
- 239000002609 medium Substances 0.000 description 28
- 239000003153 chemical reaction reagent Substances 0.000 description 27
- 108090000765 processed proteins & peptides Proteins 0.000 description 27
- 238000006243 chemical reaction Methods 0.000 description 26
- 238000011534 incubation Methods 0.000 description 26
- 102000004196 processed proteins & peptides Human genes 0.000 description 26
- 230000035772 mutation Effects 0.000 description 25
- 238000002347 injection Methods 0.000 description 24
- 239000007924 injection Substances 0.000 description 24
- 230000000903 blocking effect Effects 0.000 description 23
- 238000001943 fluorescence-activated cell sorting Methods 0.000 description 23
- 239000006228 supernatant Substances 0.000 description 23
- 230000002860 competitive effect Effects 0.000 description 22
- 230000012010 growth Effects 0.000 description 22
- 239000000047 product Substances 0.000 description 22
- 102000004190 Enzymes Human genes 0.000 description 20
- 108090000790 Enzymes Proteins 0.000 description 20
- 238000003556 assay Methods 0.000 description 20
- 229940088598 enzyme Drugs 0.000 description 20
- 239000000243 solution Substances 0.000 description 20
- 238000012360 testing method Methods 0.000 description 20
- 108020004414 DNA Proteins 0.000 description 19
- 238000010790 dilution Methods 0.000 description 19
- 239000012895 dilution Substances 0.000 description 19
- 230000001225 therapeutic effect Effects 0.000 description 19
- 102100024952 Protein CBFA2T1 Human genes 0.000 description 18
- 230000003053 immunization Effects 0.000 description 18
- 238000002649 immunization Methods 0.000 description 18
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 17
- 239000012894 fetal calf serum Substances 0.000 description 17
- 150000007523 nucleic acids Chemical class 0.000 description 17
- 229920001184 polypeptide Polymers 0.000 description 17
- 101100112922 Candida albicans CDR3 gene Proteins 0.000 description 16
- 230000000875 corresponding effect Effects 0.000 description 16
- 239000013642 negative control Substances 0.000 description 16
- 108091026890 Coding region Proteins 0.000 description 15
- 108060003951 Immunoglobulin Proteins 0.000 description 15
- 102000018358 immunoglobulin Human genes 0.000 description 15
- 238000007920 subcutaneous administration Methods 0.000 description 15
- 241000283707 Capra Species 0.000 description 14
- 239000013612 plasmid Substances 0.000 description 14
- 230000009257 reactivity Effects 0.000 description 14
- 241000282693 Cercopithecidae Species 0.000 description 13
- 241000282567 Macaca fascicularis Species 0.000 description 13
- 239000000463 material Substances 0.000 description 13
- 108020004707 nucleic acids Proteins 0.000 description 13
- 102000039446 nucleic acids Human genes 0.000 description 13
- 239000011049 pearl Substances 0.000 description 13
- 230000026731 phosphorylation Effects 0.000 description 13
- 238000006366 phosphorylation reaction Methods 0.000 description 13
- 238000001890 transfection Methods 0.000 description 13
- 241001529936 Murinae Species 0.000 description 12
- 102000018120 Recombinases Human genes 0.000 description 12
- 108010091086 Recombinases Proteins 0.000 description 12
- 125000003275 alpha amino acid group Chemical group 0.000 description 12
- 230000003321 amplification Effects 0.000 description 12
- 230000010261 cell growth Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 12
- 230000003834 intracellular effect Effects 0.000 description 12
- 238000003199 nucleic acid amplification method Methods 0.000 description 12
- 239000000523 sample Substances 0.000 description 12
- 238000012286 ELISA Assay Methods 0.000 description 11
- 238000013459 approach Methods 0.000 description 11
- 230000001419 dependent effect Effects 0.000 description 11
- 238000005259 measurement Methods 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 238000002198 surface plasmon resonance spectroscopy Methods 0.000 description 11
- 229940036185 synagis Drugs 0.000 description 11
- 239000003826 tablet Substances 0.000 description 11
- 238000005406 washing Methods 0.000 description 11
- UAIUNKRWKOVEES-UHFFFAOYSA-N 3,3',5,5'-tetramethylbenzidine Chemical compound CC1=C(N)C(C)=CC(C=2C=C(C)C(N)=C(C)C=2)=C1 UAIUNKRWKOVEES-UHFFFAOYSA-N 0.000 description 10
- 238000002835 absorbance Methods 0.000 description 10
- 230000000890 antigenic effect Effects 0.000 description 10
- 239000002246 antineoplastic agent Substances 0.000 description 10
- 230000009260 cross reactivity Effects 0.000 description 10
- 108010087914 epidermal growth factor receptor VIII Proteins 0.000 description 10
- 230000010354 integration Effects 0.000 description 10
- 230000001404 mediated effect Effects 0.000 description 10
- 238000000746 purification Methods 0.000 description 10
- JUJBNYBVVQSIOU-UHFFFAOYSA-M sodium;4-[2-(4-iodophenyl)-3-(4-nitrophenyl)tetrazol-2-ium-5-yl]benzene-1,3-disulfonate Chemical compound [Na+].C1=CC([N+](=O)[O-])=CC=C1N1[N+](C=2C=CC(I)=CC=2)=NC(C=2C(=CC(=CC=2)S([O-])(=O)=O)S([O-])(=O)=O)=N1 JUJBNYBVVQSIOU-UHFFFAOYSA-M 0.000 description 10
- 230000004083 survival effect Effects 0.000 description 10
- 238000012546 transfer Methods 0.000 description 10
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 9
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 9
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 9
- 238000010367 cloning Methods 0.000 description 9
- 238000011161 development Methods 0.000 description 9
- 230000018109 developmental process Effects 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 238000004448 titration Methods 0.000 description 9
- 229910052727 yttrium Inorganic materials 0.000 description 9
- AOJJSUZBOXZQNB-TZSSRYMLSA-N Doxorubicin Chemical compound O([C@H]1C[C@@](O)(CC=2C(O)=C3C(=O)C=4C=CC=C(C=4C(=O)C3=C(O)C=21)OC)C(=O)CO)[C@H]1C[C@H](N)[C@H](O)[C@H](C)O1 AOJJSUZBOXZQNB-TZSSRYMLSA-N 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 8
- 229910052731 fluorine Inorganic materials 0.000 description 8
- 238000002156 mixing Methods 0.000 description 8
- 238000007857 nested PCR Methods 0.000 description 8
- 238000003757 reverse transcription PCR Methods 0.000 description 8
- 231100000041 toxicology testing Toxicity 0.000 description 8
- 241000588724 Escherichia coli Species 0.000 description 7
- 241000700159 Rattus Species 0.000 description 7
- 230000001413 cellular effect Effects 0.000 description 7
- 230000000973 chemotherapeutic effect Effects 0.000 description 7
- 239000002299 complementary DNA Substances 0.000 description 7
- 238000004590 computer program Methods 0.000 description 7
- 230000006378 damage Effects 0.000 description 7
- 239000013024 dilution buffer Substances 0.000 description 7
- 230000013595 glycosylation Effects 0.000 description 7
- 238000006206 glycosylation reaction Methods 0.000 description 7
- 210000004698 lymphocyte Anatomy 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 239000011159 matrix material Substances 0.000 description 7
- 230000002503 metabolic effect Effects 0.000 description 7
- 239000013641 positive control Substances 0.000 description 7
- 206010063836 Atrioventricular septal defect Diseases 0.000 description 6
- 208000026310 Breast neoplasm Diseases 0.000 description 6
- 201000009030 Carcinoma Diseases 0.000 description 6
- 108010047041 Complementarity Determining Regions Proteins 0.000 description 6
- 241000282412 Homo Species 0.000 description 6
- 108091028043 Nucleic acid sequence Proteins 0.000 description 6
- 229920001213 Polysorbate 20 Polymers 0.000 description 6
- 108010076504 Protein Sorting Signals Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 6
- 238000004364 calculation method Methods 0.000 description 6
- 229960005395 cetuximab Drugs 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000001990 intravenous administration Methods 0.000 description 6
- 238000002955 isolation Methods 0.000 description 6
- 238000012933 kinetic analysis Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000010534 mechanism of action Effects 0.000 description 6
- 230000004899 motility Effects 0.000 description 6
- 238000002823 phage display Methods 0.000 description 6
- 210000004180 plasmocyte Anatomy 0.000 description 6
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 6
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 6
- 230000033300 receptor internalization Effects 0.000 description 6
- 238000010561 standard procedure Methods 0.000 description 6
- 238000002560 therapeutic procedure Methods 0.000 description 6
- 230000004614 tumor growth Effects 0.000 description 6
- 229910052721 tungsten Inorganic materials 0.000 description 6
- 239000011534 wash buffer Substances 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 5
- 101000840257 Homo sapiens Immunoglobulin kappa constant Proteins 0.000 description 5
- 101000841411 Homo sapiens Protein ecdysoneless homolog Proteins 0.000 description 5
- 102100029572 Immunoglobulin kappa constant Human genes 0.000 description 5
- 241000283973 Oryctolagus cuniculus Species 0.000 description 5
- 241000700605 Viruses Species 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- 238000011319 anticancer therapy Methods 0.000 description 5
- 230000014102 antigen processing and presentation of exogenous peptide antigen via MHC class I Effects 0.000 description 5
- 230000008901 benefit Effects 0.000 description 5
- 230000037396 body weight Effects 0.000 description 5
- 238000004113 cell culture Methods 0.000 description 5
- 238000001516 cell proliferation assay Methods 0.000 description 5
- 239000006285 cell suspension Substances 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 239000006196 drop Substances 0.000 description 5
- 238000001211 electron capture detection Methods 0.000 description 5
- 239000000839 emulsion Substances 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 210000002615 epidermis Anatomy 0.000 description 5
- 230000001747 exhibiting effect Effects 0.000 description 5
- -1 for example Substances 0.000 description 5
- 230000006870 function Effects 0.000 description 5
- 102000047791 human ECD Human genes 0.000 description 5
- 230000028993 immune response Effects 0.000 description 5
- 230000003993 interaction Effects 0.000 description 5
- 238000004255 ion exchange chromatography Methods 0.000 description 5
- 239000000825 pharmaceutical preparation Substances 0.000 description 5
- 229940127557 pharmaceutical product Drugs 0.000 description 5
- 238000000079 presaturation Methods 0.000 description 5
- 238000012545 processing Methods 0.000 description 5
- 239000011535 reaction buffer Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000013207 serial dilution Methods 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 230000008685 targeting Effects 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 229940121358 tyrosine kinase inhibitor Drugs 0.000 description 5
- 230000003442 weekly effect Effects 0.000 description 5
- 238000001262 western blot Methods 0.000 description 5
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 4
- 206010006187 Breast cancer Diseases 0.000 description 4
- 238000008157 ELISA kit Methods 0.000 description 4
- 238000012413 Fluorescence activated cell sorting analysis Methods 0.000 description 4
- 206010058467 Lung neoplasm malignant Diseases 0.000 description 4
- 206010060862 Prostate cancer Diseases 0.000 description 4
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 4
- 238000000246 agarose gel electrophoresis Methods 0.000 description 4
- SHGAZHPCJJPHSC-YCNIQYBTSA-N all-trans-retinoic acid Chemical compound OC(=O)\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C SHGAZHPCJJPHSC-YCNIQYBTSA-N 0.000 description 4
- 125000000539 amino acid group Chemical group 0.000 description 4
- 230000001028 anti-proliverative effect Effects 0.000 description 4
- 230000010056 antibody-dependent cellular cytotoxicity Effects 0.000 description 4
- 210000003719 b-lymphocyte Anatomy 0.000 description 4
- 210000004369 blood Anatomy 0.000 description 4
- 239000008280 blood Substances 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 238000005119 centrifugation Methods 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 238000006471 dimerization reaction Methods 0.000 description 4
- 238000010494 dissociation reaction Methods 0.000 description 4
- 230000005593 dissociations Effects 0.000 description 4
- 210000003527 eukaryotic cell Anatomy 0.000 description 4
- 208000014829 head and neck neoplasm Diseases 0.000 description 4
- 230000028996 humoral immune response Effects 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 230000007774 longterm Effects 0.000 description 4
- 201000005202 lung cancer Diseases 0.000 description 4
- 208000020816 lung neoplasm Diseases 0.000 description 4
- 239000006166 lysate Substances 0.000 description 4
- 238000012423 maintenance Methods 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- XJMOSONTPMZWPB-UHFFFAOYSA-M propidium iodide Chemical compound [I-].[I-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CCC[N+](C)(CC)CC)=C1C1=CC=CC=C1 XJMOSONTPMZWPB-UHFFFAOYSA-M 0.000 description 4
- 238000001959 radiotherapy Methods 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 229930002330 retinoic acid Natural products 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 229920006395 saturated elastomer Polymers 0.000 description 4
- 206010041823 squamous cell carcinoma Diseases 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- 229960005322 streptomycin Drugs 0.000 description 4
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 4
- 230000001988 toxicity Effects 0.000 description 4
- 231100000419 toxicity Toxicity 0.000 description 4
- 238000002054 transplantation Methods 0.000 description 4
- 229960001727 tretinoin Drugs 0.000 description 4
- IVLXQGJVBGMLRR-UHFFFAOYSA-N 2-aminoacetic acid;hydron;chloride Chemical compound Cl.NCC(O)=O IVLXQGJVBGMLRR-UHFFFAOYSA-N 0.000 description 3
- OBKXEAXTFZPCHS-UHFFFAOYSA-N 4-phenylbutyric acid Chemical compound OC(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-N 0.000 description 3
- 102000007299 Amphiregulin Human genes 0.000 description 3
- 108010033760 Amphiregulin Proteins 0.000 description 3
- 102100035360 Cerebellar degeneration-related antigen 1 Human genes 0.000 description 3
- 230000004544 DNA amplification Effects 0.000 description 3
- 208000010201 Exanthema Diseases 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 108010033040 Histones Proteins 0.000 description 3
- 101000608935 Homo sapiens Leukosialin Proteins 0.000 description 3
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 3
- 102100039564 Leukosialin Human genes 0.000 description 3
- 206010027476 Metastases Diseases 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000699660 Mus musculus Species 0.000 description 3
- 241000288906 Primates Species 0.000 description 3
- 108091008874 T cell receptors Proteins 0.000 description 3
- 102000016266 T-Cell Antigen Receptors Human genes 0.000 description 3
- 108010022394 Threonine synthase Proteins 0.000 description 3
- 102000004142 Trypsin Human genes 0.000 description 3
- 108090000631 Trypsin Proteins 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 238000011360 adjunctive therapy Methods 0.000 description 3
- 230000030741 antigen processing and presentation Effects 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 230000009087 cell motility Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 3
- 238000012937 correction Methods 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000012228 culture supernatant Substances 0.000 description 3
- 229960002433 cysteine Drugs 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000029087 digestion Effects 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 230000008020 evaporation Effects 0.000 description 3
- 201000005884 exanthem Diseases 0.000 description 3
- 235000012631 food intake Nutrition 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- XGALLCVXEZPNRQ-UHFFFAOYSA-N gefitinib Chemical compound C=12C=C(OCCCN3CCOCC3)C(OC)=CC2=NC=NC=1NC1=CC=C(F)C(Cl)=C1 XGALLCVXEZPNRQ-UHFFFAOYSA-N 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 102000005396 glutamine synthetase Human genes 0.000 description 3
- 108020002326 glutamine synthetase Proteins 0.000 description 3
- 230000009036 growth inhibition Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 201000010536 head and neck cancer Diseases 0.000 description 3
- 230000002163 immunogen Effects 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 230000016784 immunoglobulin production Effects 0.000 description 3
- 238000001802 infusion Methods 0.000 description 3
- BCFGMOOMADDAQU-UHFFFAOYSA-N lapatinib Chemical compound O1C(CNCCS(=O)(=O)C)=CC=C1C1=CC=C(N=CN=C2NC=3C=C(Cl)C(OCC=4C=C(F)C=CC=4)=CC=3)C2=C1 BCFGMOOMADDAQU-UHFFFAOYSA-N 0.000 description 3
- 238000011068 loading method Methods 0.000 description 3
- 230000003211 malignant effect Effects 0.000 description 3
- 206010061289 metastatic neoplasm Diseases 0.000 description 3
- 238000011580 nude mouse model Methods 0.000 description 3
- 235000015097 nutrients Nutrition 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 210000001672 ovary Anatomy 0.000 description 3
- 230000001575 pathological effect Effects 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229940121896 radiopharmaceutical Drugs 0.000 description 3
- 239000012217 radiopharmaceutical Substances 0.000 description 3
- 230000002799 radiopharmaceutical effect Effects 0.000 description 3
- 206010037844 rash Diseases 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 230000004044 response Effects 0.000 description 3
- 230000002441 reversible effect Effects 0.000 description 3
- 230000007017 scission Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 238000009097 single-agent therapy Methods 0.000 description 3
- 231100000046 skin rash Toxicity 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 210000000952 spleen Anatomy 0.000 description 3
- 239000007929 subcutaneous injection Substances 0.000 description 3
- 238000010254 subcutaneous injection Methods 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000012588 trypsin Substances 0.000 description 3
- 239000005483 tyrosine kinase inhibitor Substances 0.000 description 3
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 2
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 2
- WAVYAFBQOXCGSZ-UHFFFAOYSA-N 2-fluoropyrimidine Chemical compound FC1=NC=CC=N1 WAVYAFBQOXCGSZ-UHFFFAOYSA-N 0.000 description 2
- 206010003571 Astrocytoma Diseases 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- FERIUCNNQQJTOY-UHFFFAOYSA-N Butyric acid Chemical compound CCCC(O)=O FERIUCNNQQJTOY-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 206010052358 Colorectal cancer metastatic Diseases 0.000 description 2
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 206010018338 Glioma Diseases 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 239000007995 HEPES buffer Substances 0.000 description 2
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- 101001024703 Homo sapiens Nck-associated protein 5 Proteins 0.000 description 2
- 108010000521 Human Growth Hormone Proteins 0.000 description 2
- 102000002265 Human Growth Hormone Human genes 0.000 description 2
- 239000000854 Human Growth Hormone Substances 0.000 description 2
- 239000005411 L01XE02 - Gefitinib Substances 0.000 description 2
- 239000002136 L01XE07 - Lapatinib Substances 0.000 description 2
- 241000282553 Macaca Species 0.000 description 2
- 241000282560 Macaca mulatta Species 0.000 description 2
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 2
- 102100036946 Nck-associated protein 5 Human genes 0.000 description 2
- 229930193140 Neomycin Natural products 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 206010033128 Ovarian cancer Diseases 0.000 description 2
- 206010061535 Ovarian neoplasm Diseases 0.000 description 2
- 229930012538 Paclitaxel Natural products 0.000 description 2
- 241000282577 Pan troglodytes Species 0.000 description 2
- 206010061902 Pancreatic neoplasm Diseases 0.000 description 2
- 108090000526 Papain Proteins 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 229930182555 Penicillin Natural products 0.000 description 2
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 2
- 206010057249 Phagocytosis Diseases 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 206010035226 Plasma cell myeloma Diseases 0.000 description 2
- 239000004365 Protease Substances 0.000 description 2
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 2
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 208000015634 Rectal Neoplasms Diseases 0.000 description 2
- 102100023085 Serine/threonine-protein kinase mTOR Human genes 0.000 description 2
- 208000000102 Squamous Cell Carcinoma of Head and Neck Diseases 0.000 description 2
- 208000005718 Stomach Neoplasms Diseases 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 108010065917 TOR Serine-Threonine Kinases Proteins 0.000 description 2
- 208000007097 Urinary Bladder Neoplasms Diseases 0.000 description 2
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 2
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 2
- 229930003316 Vitamin D Natural products 0.000 description 2
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000008351 acetate buffer Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229940009456 adriamycin Drugs 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 239000000443 aerosol Substances 0.000 description 2
- 238000001042 affinity chromatography Methods 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 230000001668 ameliorated effect Effects 0.000 description 2
- 239000003708 ampul Substances 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 238000010171 animal model Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 230000001093 anti-cancer Effects 0.000 description 2
- 230000000259 anti-tumor effect Effects 0.000 description 2
- 230000001640 apoptogenic effect Effects 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000003305 autocrine Effects 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 230000005779 cell damage Effects 0.000 description 2
- 208000037887 cell injury Diseases 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000002512 chemotherapy Methods 0.000 description 2
- 235000013330 chicken meat Nutrition 0.000 description 2
- DQLATGHUWYMOKM-UHFFFAOYSA-L cisplatin Chemical compound N[Pt](N)(Cl)Cl DQLATGHUWYMOKM-UHFFFAOYSA-L 0.000 description 2
- 229960004316 cisplatin Drugs 0.000 description 2
- 238000007621 cluster analysis Methods 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 235000018417 cysteine Nutrition 0.000 description 2
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 2
- 230000034994 death Effects 0.000 description 2
- 231100000517 death Toxicity 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 102000004419 dihydrofolate reductase Human genes 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 229960004679 doxorubicin Drugs 0.000 description 2
- 239000012636 effector Substances 0.000 description 2
- 229940121647 egfr inhibitor Drugs 0.000 description 2
- 108010030074 endodeoxyribonuclease MluI Proteins 0.000 description 2
- 239000003623 enhancer Substances 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000001976 enzyme digestion Methods 0.000 description 2
- AAKJLRGGTJKAMG-UHFFFAOYSA-N erlotinib Chemical compound C=12C=C(OCCOC)C(OCCOC)=CC2=NC=NC=1NC1=CC=CC(C#C)=C1 AAKJLRGGTJKAMG-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 238000002825 functional assay Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 206010017758 gastric cancer Diseases 0.000 description 2
- 229960002584 gefitinib Drugs 0.000 description 2
- 230000002068 genetic effect Effects 0.000 description 2
- 208000005017 glioblastoma Diseases 0.000 description 2
- 201000000459 head and neck squamous cell carcinoma Diseases 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000002489 hematologic effect Effects 0.000 description 2
- 238000007417 hierarchical cluster analysis Methods 0.000 description 2
- 210000005260 human cell Anatomy 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 210000000987 immune system Anatomy 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 229940072221 immunoglobulins Drugs 0.000 description 2
- 238000010324 immunological assay Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 229960004768 irinotecan Drugs 0.000 description 2
- UWKQSNNFCGGAFS-XIFFEERXSA-N irinotecan Chemical compound C1=C2C(CC)=C3CN(C(C4=C([C@@](C(=O)OC4)(O)CC)C=4)=O)C=4C3=NC2=CC=C1OC(=O)N(CC1)CCC1N1CCCCC1 UWKQSNNFCGGAFS-XIFFEERXSA-N 0.000 description 2
- 108020001756 ligand binding domains Proteins 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000007102 metabolic function Effects 0.000 description 2
- 230000001394 metastastic effect Effects 0.000 description 2
- 230000002438 mitochondrial effect Effects 0.000 description 2
- 201000000050 myeloid neoplasm Diseases 0.000 description 2
- 229960004927 neomycin Drugs 0.000 description 2
- 208000002154 non-small cell lung carcinoma Diseases 0.000 description 2
- 239000002773 nucleotide Substances 0.000 description 2
- 125000003729 nucleotide group Chemical group 0.000 description 2
- 229960001756 oxaliplatin Drugs 0.000 description 2
- DWAFYCQODLXJNR-BNTLRKBRSA-L oxaliplatin Chemical compound O1C(=O)C(=O)O[Pt]11N[C@@H]2CCCC[C@H]2N1 DWAFYCQODLXJNR-BNTLRKBRSA-L 0.000 description 2
- 229960001592 paclitaxel Drugs 0.000 description 2
- 229960000402 palivizumab Drugs 0.000 description 2
- 210000000496 pancreas Anatomy 0.000 description 2
- 229940055729 papain Drugs 0.000 description 2
- 235000019834 papain Nutrition 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 230000036961 partial effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229940049954 penicillin Drugs 0.000 description 2
- 230000010412 perfusion Effects 0.000 description 2
- 230000008782 phagocytosis Effects 0.000 description 2
- 229950009215 phenylbutanoic acid Drugs 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 210000003720 plasmablast Anatomy 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002338 polyhydroxyethylmethacrylate Polymers 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 239000002243 precursor Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 201000001514 prostate carcinoma Diseases 0.000 description 2
- 238000000159 protein binding assay Methods 0.000 description 2
- 238000002818 protein evolution Methods 0.000 description 2
- 238000011002 quantification Methods 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 102000027426 receptor tyrosine kinases Human genes 0.000 description 2
- 108091008598 receptor tyrosine kinases Proteins 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 2
- 238000011519 second-line treatment Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000012679 serum free medium Substances 0.000 description 2
- 238000002741 site-directed mutagenesis Methods 0.000 description 2
- DAEPDZWVDSPTHF-UHFFFAOYSA-M sodium pyruvate Chemical compound [Na+].CC(=O)C([O-])=O DAEPDZWVDSPTHF-UHFFFAOYSA-M 0.000 description 2
- 210000004988 splenocyte Anatomy 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- 201000011549 stomach cancer Diseases 0.000 description 2
- 239000000829 suppository Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- RCINICONZNJXQF-MZXODVADSA-N taxol Chemical compound O([C@@H]1[C@@]2(C[C@@H](C(C)=C(C2(C)C)[C@H](C([C@]2(C)[C@@H](O)C[C@H]3OC[C@]3([C@H]21)OC(C)=O)=O)OC(=O)C)OC(=O)[C@H](O)[C@@H](NC(=O)C=1C=CC=CC=1)C=1C=CC=CC=1)O)C(=O)C1=CC=CC=C1 RCINICONZNJXQF-MZXODVADSA-N 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 230000002110 toxicologic effect Effects 0.000 description 2
- 231100000027 toxicology Toxicity 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 239000012096 transfection reagent Substances 0.000 description 2
- 230000009261 transgenic effect Effects 0.000 description 2
- 208000029729 tumor suppressor gene on chromosome 11 Diseases 0.000 description 2
- 230000002477 vacuolizing effect Effects 0.000 description 2
- 235000019166 vitamin D Nutrition 0.000 description 2
- 239000011710 vitamin D Substances 0.000 description 2
- 150000003710 vitamin D derivatives Chemical class 0.000 description 2
- 229940046008 vitamin d Drugs 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BQIMPGFMMOZASS-CLZZGJSISA-N (6r,7r)-7-amino-3-(hydroxymethyl)-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-ene-2-carboxylic acid Chemical compound S1CC(CO)=C(C(O)=O)N2C(=O)[C@@H](N)[C@H]21 BQIMPGFMMOZASS-CLZZGJSISA-N 0.000 description 1
- FXEDIXLHKQINFP-UHFFFAOYSA-N 12-O-tetradecanoylphorbol-13-acetate Natural products CCCCCCCCCCCCCC(=O)OC1CC2(O)C(C=C(CO)CC3(O)C2C=C(C)C3=O)C4C(C)(C)C14OC(=O)C FXEDIXLHKQINFP-UHFFFAOYSA-N 0.000 description 1
- SYYMNUFXRFAELA-BTQNPOSSSA-N 4-[4-[[(1r)-1-phenylethyl]amino]-7h-pyrrolo[2,3-d]pyrimidin-6-yl]phenol;hydrobromide Chemical compound Br.N([C@H](C)C=1C=CC=CC=1)C(C=1C=2)=NC=NC=1NC=2C1=CC=C(O)C=C1 SYYMNUFXRFAELA-BTQNPOSSSA-N 0.000 description 1
- OBKXEAXTFZPCHS-UHFFFAOYSA-M 4-phenylbutyrate Chemical compound [O-]C(=O)CCCC1=CC=CC=C1 OBKXEAXTFZPCHS-UHFFFAOYSA-M 0.000 description 1
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 1
- 108010082126 Alanine transaminase Proteins 0.000 description 1
- 244000303258 Annona diversifolia Species 0.000 description 1
- 235000002198 Annona diversifolia Nutrition 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- 108091008875 B cell receptors Proteins 0.000 description 1
- MLDQJTXFUGDVEO-UHFFFAOYSA-N BAY-43-9006 Chemical compound C1=NC(C(=O)NC)=CC(OC=2C=CC(NC(=O)NC=3C=C(C(Cl)=CC=3)C(F)(F)F)=CC=2)=C1 MLDQJTXFUGDVEO-UHFFFAOYSA-N 0.000 description 1
- 238000000035 BCA protein assay Methods 0.000 description 1
- 206010005003 Bladder cancer Diseases 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 206010008342 Cervix carcinoma Diseases 0.000 description 1
- 208000006332 Choriocarcinoma Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 108091035707 Consensus sequence Proteins 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 1
- 102000007260 Deoxyribonuclease I Human genes 0.000 description 1
- 108010008532 Deoxyribonuclease I Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 238000009007 Diagnostic Kit Methods 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 208000001976 Endocrine Gland Neoplasms Diseases 0.000 description 1
- 102400001329 Epiregulin Human genes 0.000 description 1
- 101800000155 Epiregulin Proteins 0.000 description 1
- 208000000461 Esophageal Neoplasms Diseases 0.000 description 1
- HKVAMNSJSFKALM-GKUWKFKPSA-N Everolimus Chemical compound C1C[C@@H](OCCO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 HKVAMNSJSFKALM-GKUWKFKPSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 201000010915 Glioblastoma multiforme Diseases 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 241000989913 Gunnera petaloidea Species 0.000 description 1
- 206010018910 Haemolysis Diseases 0.000 description 1
- 102100021519 Hemoglobin subunit beta Human genes 0.000 description 1
- 108091005904 Hemoglobin subunit beta Proteins 0.000 description 1
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 description 1
- 101000961156 Homo sapiens Immunoglobulin heavy constant gamma 1 Proteins 0.000 description 1
- 101000998953 Homo sapiens Immunoglobulin heavy variable 1-2 Proteins 0.000 description 1
- 101000998947 Homo sapiens Immunoglobulin heavy variable 1-46 Proteins 0.000 description 1
- 101001138123 Homo sapiens Immunoglobulin kappa variable 1-27 Proteins 0.000 description 1
- 101001047627 Homo sapiens Immunoglobulin kappa variable 2-28 Proteins 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 101000851007 Homo sapiens Vascular endothelial growth factor receptor 2 Proteins 0.000 description 1
- 206010020751 Hypersensitivity Diseases 0.000 description 1
- 101150107391 IGKC gene Proteins 0.000 description 1
- 102000018071 Immunoglobulin Fc Fragments Human genes 0.000 description 1
- 108010091135 Immunoglobulin Fc Fragments Proteins 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 108010067060 Immunoglobulin Variable Region Proteins 0.000 description 1
- 102000017727 Immunoglobulin Variable Region Human genes 0.000 description 1
- 102100039345 Immunoglobulin heavy constant gamma 1 Human genes 0.000 description 1
- 102100036887 Immunoglobulin heavy variable 1-2 Human genes 0.000 description 1
- 102100036888 Immunoglobulin heavy variable 1-46 Human genes 0.000 description 1
- 102100020902 Immunoglobulin kappa variable 1-27 Human genes 0.000 description 1
- 102100022950 Immunoglobulin kappa variable 2-28 Human genes 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108010061833 Integrases Proteins 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- 102000000588 Interleukin-2 Human genes 0.000 description 1
- 102000010789 Interleukin-2 Receptors Human genes 0.000 description 1
- 108010038453 Interleukin-2 Receptors Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- 108010076876 Keratins Proteins 0.000 description 1
- 102000011782 Keratins Human genes 0.000 description 1
- 208000008839 Kidney Neoplasms Diseases 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 239000005551 L01XE03 - Erlotinib Substances 0.000 description 1
- 239000002147 L01XE04 - Sunitinib Substances 0.000 description 1
- 239000005511 L01XE05 - Sorafenib Substances 0.000 description 1
- 206010067125 Liver injury Diseases 0.000 description 1
- 239000012515 MabSelect SuRe Substances 0.000 description 1
- 101710141452 Major surface glycoprotein G Proteins 0.000 description 1
- BNQSTAOJRULKNX-UHFFFAOYSA-N N-(6-acetamidohexyl)acetamide Chemical compound CC(=O)NCCCCCCNC(C)=O BNQSTAOJRULKNX-UHFFFAOYSA-N 0.000 description 1
- 230000004988 N-glycosylation Effects 0.000 description 1
- 108091007491 NSP3 Papain-like protease domains Proteins 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000015336 Nerve Growth Factor Human genes 0.000 description 1
- 102400000058 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 208000005890 Neuroma Diseases 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 206010067482 No adverse event Diseases 0.000 description 1
- 206010030155 Oesophageal carcinoma Diseases 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 101710160107 Outer membrane protein A Proteins 0.000 description 1
- 108010029485 Protein Isoforms Proteins 0.000 description 1
- 102000001708 Protein Isoforms Human genes 0.000 description 1
- 201000004681 Psoriasis Diseases 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 241000219492 Quercus Species 0.000 description 1
- 239000012083 RIPA buffer Substances 0.000 description 1
- 239000012979 RPMI medium Substances 0.000 description 1
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 1
- 206010038389 Renal cancer Diseases 0.000 description 1
- 208000006265 Renal cell carcinoma Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 201000010208 Seminoma Diseases 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 238000012300 Sequence Analysis Methods 0.000 description 1
- 208000000453 Skin Neoplasms Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 108700005078 Synthetic Genes Proteins 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 108010076818 TEV protease Proteins 0.000 description 1
- CBPNZQVSJQDFBE-FUXHJELOSA-N Temsirolimus Chemical compound C1C[C@@H](OC(=O)C(C)(CO)CO)[C@H](OC)C[C@@H]1C[C@@H](C)[C@H]1OC(=O)[C@@H]2CCCCN2C(=O)C(=O)[C@](O)(O2)[C@H](C)CC[C@H]2C[C@H](OC)/C(C)=C/C=C/C=C/[C@@H](C)C[C@@H](C)C(=O)[C@H](OC)[C@H](O)/C(C)=C/[C@@H](C)C(=O)C1 CBPNZQVSJQDFBE-FUXHJELOSA-N 0.000 description 1
- 206010043276 Teratoma Diseases 0.000 description 1
- 241000906446 Theraps Species 0.000 description 1
- 108090000340 Transaminases Proteins 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- 208000006105 Uterine Cervical Neoplasms Diseases 0.000 description 1
- 208000002495 Uterine Neoplasms Diseases 0.000 description 1
- 101150117115 V gene Proteins 0.000 description 1
- 102100033177 Vascular endothelial growth factor receptor 2 Human genes 0.000 description 1
- VWQVUPCCIRVNHF-OUBTZVSYSA-N Yttrium-90 Chemical compound [90Y] VWQVUPCCIRVNHF-OUBTZVSYSA-N 0.000 description 1
- 210000000683 abdominal cavity Anatomy 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009824 affinity maturation Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 208000010029 ameloblastoma Diseases 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000005875 antibody response Effects 0.000 description 1
- 210000000628 antibody-producing cell Anatomy 0.000 description 1
- 230000001363 autoimmune Effects 0.000 description 1
- 229940120638 avastin Drugs 0.000 description 1
- 238000002819 bacterial display Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 230000002457 bidirectional effect Effects 0.000 description 1
- 210000000013 bile duct Anatomy 0.000 description 1
- 239000012148 binding buffer Substances 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- OWMVSZAMULFTJU-UHFFFAOYSA-N bis-tris Chemical compound OCCN(CCO)C(CO)(CO)CO OWMVSZAMULFTJU-UHFFFAOYSA-N 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- 230000005907 cancer growth Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000006143 cell culture medium Substances 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 239000013553 cell monolayer Substances 0.000 description 1
- 230000010001 cellular homeostasis Effects 0.000 description 1
- 230000007248 cellular mechanism Effects 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 201000010881 cervical cancer Diseases 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229940044683 chemotherapy drug Drugs 0.000 description 1
- VYVRIXWNTVOIRD-LRHBOZQDSA-N ciguatoxin CTX1B Chemical compound C([C@@]12[C@@H](C)[C@@H]([C@@H]3[C@H]([C@H]([C@H](C)[C@H]4O[C@H]5C[C@@H](C)C[C@H]6O[C@@]7(C)[C@H](O)C[C@H]8O[C@H]9C=C[C@H]%10O[C@H]%11C[C@@H]%12[C@H]([C@@H]([C@H]%13O[C@H](C=CC[C@@H]%13O%12)\C=C\[C@H](O)CO)O)O[C@@H]%11C=C[C@@H]%10O[C@@H]9C\C=C/C[C@@H]8O[C@@H]7C[C@@H]6O[C@@H]5C[C@@H]4O3)O)O2)C)[C@H](O)CO1 VYVRIXWNTVOIRD-LRHBOZQDSA-N 0.000 description 1
- 238000013377 clone selection method Methods 0.000 description 1
- 208000029742 colonic neoplasm Diseases 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 238000011284 combination treatment Methods 0.000 description 1
- 235000009508 confectionery Nutrition 0.000 description 1
- 238000004624 confocal microscopy Methods 0.000 description 1
- 230000002079 cooperative effect Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000012364 cultivation method Methods 0.000 description 1
- 229940095074 cyclic amp Drugs 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 206010052015 cytokine release syndrome Diseases 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 229940127089 cytotoxic agent Drugs 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010612 desalination reaction Methods 0.000 description 1
- 230000001066 destructive effect Effects 0.000 description 1
- 229940127043 diagnostic radiopharmaceutical Drugs 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- 239000003085 diluting agent Substances 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000001083 documented effect Effects 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000003828 downregulation Effects 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 239000013583 drug formulation Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 201000011523 endocrine gland cancer Diseases 0.000 description 1
- 108010068047 endodeoxyribonuclease AscI Proteins 0.000 description 1
- 108010015866 endodeoxyribonuclease NheI Proteins 0.000 description 1
- 210000002472 endoplasmic reticulum Anatomy 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 238000003114 enzyme-linked immunosorbent spot assay Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 229960001433 erlotinib Drugs 0.000 description 1
- 201000004101 esophageal cancer Diseases 0.000 description 1
- 229960005167 everolimus Drugs 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000020937 fasting conditions Nutrition 0.000 description 1
- 239000004222 ferrous gluconate Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000003325 follicular Effects 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 210000004051 gastric juice Anatomy 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 210000004602 germ cell Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 239000003102 growth factor Substances 0.000 description 1
- 239000003966 growth inhibitor Substances 0.000 description 1
- 230000008588 hemolysis Effects 0.000 description 1
- 229960002897 heparin Drugs 0.000 description 1
- 229920000669 heparin Polymers 0.000 description 1
- 231100000234 hepatic damage Toxicity 0.000 description 1
- 210000003494 hepatocyte Anatomy 0.000 description 1
- 229940022353 herceptin Drugs 0.000 description 1
- 238000010562 histological examination Methods 0.000 description 1
- 230000003284 homeostatic effect Effects 0.000 description 1
- 230000008348 humoral response Effects 0.000 description 1
- 210000004408 hybridoma Anatomy 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000009851 immunogenic response Effects 0.000 description 1
- 239000003547 immunosorbent Substances 0.000 description 1
- 230000003308 immunostimulating effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 238000000126 in silico method Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 238000013101 initial test Methods 0.000 description 1
- 239000007972 injectable composition Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 230000031146 intracellular signal transduction Effects 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 239000007928 intraperitoneal injection Substances 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 229940084651 iressa Drugs 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000003780 keratinization Effects 0.000 description 1
- 201000010982 kidney cancer Diseases 0.000 description 1
- 229960004891 lapatinib Drugs 0.000 description 1
- 238000004900 laundering Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 210000004185 liver Anatomy 0.000 description 1
- 230000008818 liver damage Effects 0.000 description 1
- 230000003908 liver function Effects 0.000 description 1
- 230000033001 locomotion Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 201000005243 lung squamous cell carcinoma Diseases 0.000 description 1
- 208000037841 lung tumor Diseases 0.000 description 1
- 230000000527 lymphocytic effect Effects 0.000 description 1
- 238000012792 lyophilization process Methods 0.000 description 1
- 238000007403 mPCR Methods 0.000 description 1
- 239000001755 magnesium gluconate Substances 0.000 description 1
- 239000006249 magnetic particle Substances 0.000 description 1
- 208000015486 malignant pancreatic neoplasm Diseases 0.000 description 1
- 230000000873 masking effect Effects 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 230000009401 metastasis Effects 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 239000002480 mineral oil Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 239000003147 molecular marker Substances 0.000 description 1
- 239000003068 molecular probe Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 239000007923 nasal drop Substances 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 229940053128 nerve growth factor Drugs 0.000 description 1
- 201000011519 neuroendocrine tumor Diseases 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000013392 nude mouse xenograft model Methods 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 201000002528 pancreatic cancer Diseases 0.000 description 1
- 208000008443 pancreatic carcinoma Diseases 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 102000014187 peptide receptors Human genes 0.000 description 1
- 108010011903 peptide receptors Proteins 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 210000002824 peroxisome Anatomy 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000009520 phase I clinical trial Methods 0.000 description 1
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 238000013492 plasmid preparation Methods 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 238000010837 poor prognosis Methods 0.000 description 1
- 235000015277 pork Nutrition 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011533 pre-incubation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 231100001271 preclinical toxicology Toxicity 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000037452 priming Effects 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000002062 proliferating effect Effects 0.000 description 1
- 210000002307 prostate Anatomy 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 239000003531 protein hydrolysate Substances 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 150000003246 quinazolines Chemical class 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 206010038038 rectal cancer Diseases 0.000 description 1
- 210000000664 rectum Anatomy 0.000 description 1
- 201000001275 rectum cancer Diseases 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 208000015347 renal cell adenocarcinoma Diseases 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 150000004508 retinoic acid derivatives Chemical class 0.000 description 1
- 238000010839 reverse transcription Methods 0.000 description 1
- 210000003705 ribosome Anatomy 0.000 description 1
- 229960004641 rituximab Drugs 0.000 description 1
- 238000010079 rubber tapping Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000013391 scatchard analysis Methods 0.000 description 1
- 238000013390 scatchard method Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000001542 size-exclusion chromatography Methods 0.000 description 1
- 201000000849 skin cancer Diseases 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229940054269 sodium pyruvate Drugs 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 230000000392 somatic effect Effects 0.000 description 1
- 229960003787 sorafenib Drugs 0.000 description 1
- 208000017572 squamous cell neoplasm Diseases 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003153 stable transfection Methods 0.000 description 1
- 238000011301 standard therapy Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 210000002784 stomach Anatomy 0.000 description 1
- 238000000547 structure data Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229960001796 sunitinib Drugs 0.000 description 1
- WINHZLLDWRZWRT-ATVHPVEESA-N sunitinib Chemical compound CCN(CC)CCNC(=O)C1=C(C)NC(\C=C/2C3=CC(F)=CC=C3NC\2=O)=C1C WINHZLLDWRZWRT-ATVHPVEESA-N 0.000 description 1
- 230000008093 supporting effect Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 230000008866 synergistic binding Effects 0.000 description 1
- 229940120982 tarceva Drugs 0.000 description 1
- 229960000235 temsirolimus Drugs 0.000 description 1
- QFJCIRLUMZQUOT-UHFFFAOYSA-N temsirolimus Natural products C1CC(O)C(OC)CC1CC(C)C1OC(=O)C2CCCCN2C(=O)C(=O)C(O)(O2)C(C)CCC2CC(OC)C(C)=CC=CC=CC(C)CC(C)C(=O)C(OC)C(O)C(C)=CC(C)C(=O)C1 QFJCIRLUMZQUOT-UHFFFAOYSA-N 0.000 description 1
- 230000002381 testicular Effects 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 229940126622 therapeutic monoclonal antibody Drugs 0.000 description 1
- 230000004797 therapeutic response Effects 0.000 description 1
- 229960000303 topotecan Drugs 0.000 description 1
- UCFGDBYHRUNTLO-QHCPKHFHSA-N topotecan Chemical compound C1=C(O)C(CN(C)C)=C2C=C(CN3C4=CC5=C(C3=O)COC(=O)[C@]5(O)CC)C4=NC2=C1 UCFGDBYHRUNTLO-QHCPKHFHSA-N 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 102000014898 transaminase activity proteins Human genes 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 230000005909 tumor killing Effects 0.000 description 1
- 230000005751 tumor progression Effects 0.000 description 1
- 229940094060 tykerb Drugs 0.000 description 1
- 210000003932 urinary bladder Anatomy 0.000 description 1
- 201000005112 urinary bladder cancer Diseases 0.000 description 1
- 206010046766 uterine cancer Diseases 0.000 description 1
- 210000004291 uterus Anatomy 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
- 230000006711 vascular endothelial growth factor production Effects 0.000 description 1
- 210000005166 vasculature Anatomy 0.000 description 1
- 230000007998 vessel formation Effects 0.000 description 1
- 210000005253 yeast cell Anatomy 0.000 description 1
- 210000001325 yolk sac Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/18—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
- C07K16/28—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
- C07K16/2863—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Life Sciences & Earth Sciences (AREA)
- Peptides Or Proteins (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Изобретение относится к области иммунологии. Предложена композиция, содержащая по меньшей мере два антитела, которые связывают различные эпитопы EGFR (ErbB-1) человека, обеспечивая синергетический эффект, а также биспецифическая молекула, представляющая собой антитело или его фрагмент, содержащий последовательности CDR антител в составе композиции по изобретению. Рассмотрено применение композиции по изобретению для изготовления лекарственного средства и фармацевтическая композиция, содержащая композицию по изобретению. Композиция по настоящему изобретению обеспечивает синергетическое действие анти-EGFR антител, что может найти дальнейшее применение в лечении рака. 5 н. и 15 з.п. ф-лы, 42 ил., 17 табл., 21 пр.
Description
ОБЛАСТЬ ТЕХНИКИ, К КОТОРОЙ ОТНОСИТСЯ ИЗОБРЕТЕНИЕ
Изобретение относится к области рекомбинантных антител, применяемых для терапевтического лечения рака у человека.
УРОВЕНЬ ТЕХНИКИ ИЗОБРЕТЕНИЯ
Рецептор эпидермального фактора роста (EGFR) играет важную роль в клеточной пролиферации, а также в апоптозе, ангиогенезе и распространении метастазов, процессах, которые имеют ключевое значение для прогрессирования опухолей (Salomon et al., Crit. Rev. Oncology/Haematology, 19:183-232 (1995); Wu et al., J. Clin. Invest., 95:1897-1905 (1995); Karnes et al., Gastroenterology, 114:930-939 (1998); Woodburn et al., Pharmacol. Therap. 82: 241-250 (1999); Price et al., Eur. J. Cancer, 32A:1977-1982 (1996)). Действительно, исследования показали, что EGFR-опосредованный клеточные рост увеличивается при многих солидных опухолях, включая немелкоклеточный рак легкого, рак предстательной железы, рак молочной железы, рак желудка, а также опухоли головы и шеи (Salomon DS et al., Critical Reviews in Oncology/Haematology, 19:183-232 (1995)). Кроме того, сейчас известно, что избыточная активация EGFR на поверхности раковых клеток ассоциирована с поздними стадиями заболевания, развитием метастатического фенотипа и плохим прогнозом у пациентов, страдающих раком (Salomon DS et al., Critical Reviews in Oncology/Haematology 19:183-232 (1995)).
Кроме того, экспрессия EGFR часто сопровождается выработкой клетками, экспрессирующими EGFR, среди прочего, EGFR-лигандов, TGF-альфа и EGF, что позволяет думать об участии аутокринной петли в прогрессировании этих клеток (Baselga, et al. (1994) Pharmac. Therapeut. 64: 127-154; Modjtahedi, et al. (1994) Int. J. Oncology. 4:277-296). Следовательно, блокирование взаимодействия между такими EGFR-лигандами и EGFR способно ингибировать рост и выживание опухолей (Baselga, et al. (1994) Pharmac. Therapeut. 64:127-154).
EGFR представляет собой мембраносвязанный гликопротеин с молекулярным весом приблизительно 170 кДа. EGFR состоит из гликозилированного наружного лигандсвязывающего домена (621 остаток) и цитоплазматического домена (542 остатка), связанных коротким трансмембранным линкером из 23 аминокислот. Внеклеточная часть EGFR содержит 25 дисульфидных мостиков, 12 N-связанных сайтов гликозилирования и обычно считается состоящей из четырех субдоменов. Рентгеновские кристаллические структуры EGFR позволяют полагать, что рецептор может принимать как аутоингибированную связанную конформацию, которая неспособна связывать EGF (Ferguson et al., Mol Cell, 2003, vol 11:507-517), так и активную конформацию, которая может опосредовать связывание лиганда EGF и димеризацию рецептора (Garret et al., Cell 2002, vol 110:763-773; Ogiso et al., Cell, 2002, vol 110:775-787). Было выдвинуто предположение о том, что домен I и домен III, в частности, обеспечивают аддитивный вклад в образование высокоаффинного сайта связывания лиганда. Домены II и IV представляют собой богатые цистеином ламининоподобные области, которые стабилизируют укладку структуры белка и содержат возможную поверхность раздела для димеризации EGFR.
Известно, что EGFR существует на поверхности клетки во множестве различных конформаций, причем наиболее частой из них является связанная или закрытая конформация. Связанная конформация неспособна к димеризации и, следовательно, неактивна. Известно, что терапевтическое антитело Erbitux стабилизирует связанную конформацию за счет связывания с доменом III и создания такой пространственной конфигурации рецептора, которая не позволяет ему достичь несвязанного состояния. Однако некоторые рецепторы могут все еще сохранять способность принять несвязанную конформацию, связать лиганд и димеризироваться. Моноклональное антитело (mAb) в типичном случае способно эффективно связываться только с одной из конформаций, следовательно, не может эффективно нацеливаться на раковые клетки, проявляющие другие конформации, или раковые клетки, проявляющие несколько конформаций.
Моноклональные антитела (mAb), направленные на лигандсвязывающий домен EGFR, могут блокировать взаимодействие с лигандами EGFR и, сопутствующим образом, возникающий в результате этого взаимодействия внутриклеточный сигнальный путь.
Erbitux™ (эрбитукс, цетуксимаб) представляет собой рекомбинантное химерное (человек/мышь) моноклональное антитело, которое специфически связывается с внеклеточным доменом EGFR человека. Эрбитукс состоит из Fv-областей мышиного антитела против EGFR с константными областями тяжелой и каппа-легкой цепи IgG1 человека, имея приблизительный молекулярный вес 152 кДа. Эрбитукс вырабатывается в культуре клеток млекопитающих (мышиная миелома). Эрбитукс официально разрешен для лечения пациентов с метастатическим колоректальным раком, опухоли которых экспрессируют EGFR. В дополнение к этому, эрбитукс применяют в комбинации с лучевой терапией для лечения пациентов с плоскоклеточным раком головы и шеи при невозможности хирургического удаления опухоли или в виде лечения второй очереди, если плоскоклеточный рак головы и шеи не поддается стандартной терапии на основе препаратов платины.
Vectibix™ (вектибикс, панитумумаб) представляет собой рекомбинантное каппа моноклональное антитело IgG2 человека, которое специфически связывается с EGFR человека. Вектибикс имеет приблизительный молекулярный вес 147 кДа. Панитумумаб вырабатывается в генноинженерных клетках млекопитающих (из яичника китайского хомячка). Вектибикс официально разрешен для лечения пациентов с метастатическим колоректальным раком, опухоли которых экспрессируют EGFR, при прогрессировании болезни или после химиотерапии по схемам, содержащим фторпиримидин, оксалиплатин и иринотекан.
На опухолевых клетках человека было идентифицировано множество мутантных рецепторов EGF. Они способны воспроизводить рецепторную активность независимо от связывания лиганда (EGFRvIII), приводя к повышенной онкогенности. Можно генерировать моноклональные антитела против мутантов EGFR, но такие моноклональные антитела не всегда будут эффективными против немутантного EGFR.
У людей, больных раком, были идентифицированы такие мутации EGFR, которые влияют на ответную реакцию на химиотерапию, направленную на EGFR. Документ WO 2006/110478 (Novartis) раскрывает 43 мутации, а также 18 вариантов SNP (однонуклеотидного полиморфизма) в открытой рамке считывания EGFR. В двух или более типах опухолей идентифицированы некоторые бессмысленные мутации. Документ WO 2006/091899 (Amgen) раскрывает еще восемь мутаций, идентифицированных в различных раковых клетках. Одна или несколько таких мутаций могут локализоваться в эпитопе или изменять структуру эпитопа, связываемого с одним из разрешенных терапевтических моноклональных антител. Пациенты, несущие такую мутацию (мутации), будут невосприимчивы к лечению моноклональным антителом.
Кроме того, в литературе имеются сообщения, в которых отмечена гетерогенность по гликозилированию, по меньшей мере, одного из сайтов гликозилирования (Whitson et al., 2005 Biochemistry 44:14920-31; Zhen et al. 2003 Biochemistry 42; 5478-92). Такая гетерогенность может прямым или опосредованным образом приводить к разной экспозиции эпитопов, варьирующих в различных опухолевых клетках.
Антителозависимая клеточноопосредованная цитотоксичность (ADCC) представляет собой альтернативный механизм, посредством которого антитела опосредуют уничтожение опухолевых клеток. Уровень ADCC зависит от нескольких факторов, включая подтип IgG (IgM>IgG1 >IgG2), плотность антител на целевых клетках, характер гликозилирования антитела, а также свойства мишени, как таковой.
Friedmann et al (PNAS 2005, 102:1915-20) показали, что два мышиных моноклональных антитела, отобранных по их способности ингибировать связывание EGF с EGFR за счет связывания различных эпитопов EGFR, проявляют способность к синергическому подавлению экспрессии рецептора в клетках KB и СНО, кратковременно экспрессирующих EGFR. Перекрестно конкурирующие антитела, ингибирующие EGF, не проявляют никакой синергии.
Modjtahedi et al (Cell Biophysics vol 22, 1993, 129-146) протестировали комбинации нескольких крысиных антител против EGFR с неперекрывающимися эпитопами. Антитела принадлежали к разным изотипам. Во всех случаях эффект от применения двух антител был промежуточным между эффектами, наблюдаемыми при применении двух моноклональных антител по отдельности в том же количестве. Это наблюдение было подтверждено как in vivo, так и in vitro.
Документ WO 2004/032960 (патент Merck) раскрывает, что комбинированное применение двух моноклональных антител, Mab 425 и Mab 225 (цетуксимаб), приводит к повышению количества связанных антител на поверхности раковых клеток, экспрессирующих EGFR, по сравнению с применением каждого из моноклональных антител по отдельности в том же количестве. Эта публикация также раскрывает усиление подавления EGFR при использовании комбинации антител по сравнению с двумя моноклональными антителами.
Perera et al (Clin Cancer Res 2005; 11(17):6390-99) раскрыли синергический эффект при лечении мышей, несущих ксенотрансплантаты U8 7MG.de2-7, комбинацией двух мышиных моноклональных антител. Одно из антител (mAb 528) связывает все подтипы EGFR примерно с такой же специфичностью, что и цетуксимаб. Другое антитело (mAB 806) связывает только EGFR подтипа de2-7. Клеточная линия U87MG.de2-7 представляет собой трансфицированную клеточную линию de2-7EGFR. Клеточная линия U87MG.DK экспрессирует вариант EGFR подтипа de2-7 с неактивной киназой. Если для лечения мышей, несущих ксенотрансплантаты U87MG.DK, применяли два антитела, то никаких синергических эффектов не наблюдалось. В модели ксенотрансплантата с клеточной линией A431, экспрессирующей EGFR дикого типа, авторы не нашли никаких подтверждений синергии. EGFR de2-7 представлен только в небольшом числе типов рака, в частности, в глиомах, в некоторой степени в опухолях молочной железы и в опухолях легких.
Хотя эти исследования показали, что в некоторых случаях между двумя мышиными моноклональными антителами может существовать синергия, они также показали, что во многих случаях никакой синергии не наблюдается. Эти исследования также не выявили какой-либо композиции антител против EGFR, которая была бы эффективной против широкого ряда клинически важных линий раковых клеток.
В связи с этим существует потребность в улучшенных терапевтических антителах против EGFR, которые были бы эффективны для лечения и/или профилактики заболеваний, связанных со сверхэкспрессией EGFR, при введении в низких дозах. Также существует потребность в широко применимых терапевтических антителах против рака, которые можно было бы применять, даже не обладая глубокими знаниями о структуре EGFR, экспрессируемого представляющими интерес раковыми клетками.
СУЩНОСТЬ ИЗОБРЕТЕНИЯ
В одном из аспектов изобретение относится к композиции рекомбинантных антител, содержащей, по меньшей мере, 3 различные молекулы антител против EGFR, где антитела связывают различные первый, второй и третий эпитопы EGFR.
В дополнительном аспекте изобретение относится к композиции рекомбинантных антител, содержащей, по меньшей мере, две различные молекулы антител против EGFR, где одна индивидуальная молекула антитела против EGFR может быть выбрана из группы, состоящей из антител: 992, 1024, 1030, 1042, 1208, 1229, 1254, 1257, 1260, 1261, 1277, 1284, 1308, 1320, 1344 и 1347, или антител, имеющих области CDR указанных антител.
Предпочтительно, чтобы, по меньшей мере, одна индивидуальная молекула антитела против EGFR была выбрана из группы, состоящий из антител 992, 1030, 1024, 1347, 1277, 1254, 1320, 1260, 1261 и 1284, или антител, имеющих области CDR указанных антител. В особенно предпочтительном варианте осуществления изобретения композиция антител содержит антитела 992 и 1024 или два антитела, основанные на их последовательностях CDR3 или на их последовательностях VL и VH, либо содержит два антитела, обладающих, по существу, такой же специфичностью связывания.
Иллюстративные композиции антител по изобретению обладают доказанной эффективностью в ингибировании пролиферации типичных линий раковых клеток, что свидетельствует о пригодности их применения для лечения рака in vivo. Эти результаты были подтверждены в анализах со сфероидами раковых клеток, которые, по-видимому, в большей степени соответствуют ситуации in vivo, когда раковые клетки формируют опухоли. Кроме того, композиция антител по изобретением явно снижает подвижность клеток из раковых сфероидов, то есть уменьшает предрасположенность к метастазированию. Была также продемонстрирована эффективность иллюстративной композиции антител в модели ксенотрансплантата in vivo. Эти результаты были подтверждены при использовании особо предпочтительной композиции антител, состоящей из антител 992 и 1024.
В модели ксенотрансплантата рака человека у мышей иллюстративная композиция антител, предложенная изобретением, приводила к значительно более высокой степени терминальной дифференциации опухолевых клеток по сравнению с имеющимися в продаже антителами вектибикс и эрбитукс. Оказалось, что предпочтительная композиция антител по изобретению реализует свой эффект через другой механизм действия по сравнению с моноклональными антителами, поскольку после прекращения лечения указанной композицией антител возобновления роста опухоли не наблюдалось. Возобновление роста опухоли наблюдается после прекращения лечения моноклональными антителами.
В исследованиях по связыванию авторы настоящего изобретения продемонстрировали, что некоторые из антител, описанных в этой заявке, очевидно, облегчают связывание других антител, благодаря чему увеличивается общее количество антител, связанных с рецептором. Они также продемонстрировали, что связывание трех антител домена III облегчает последующее связывание других антител. Эти наблюдения несомненно поддерживают концепцию применения композиции, содержащей, по меньшей мере, 3 различные молекулы антител против EGFR, где антитела связывают различные первый, второй и третий эпитопы EGFR. Может также наблюдаться эффект при использовании специфической комбинации двух антител по изобретению, за счет выбора антител, обладающих этим специфическим эффектом. Такие антитела являются предпочтительными кандидатами для смешивания с другими антителами.
Композиции по изобретению могут обеспечивать некоторые дополнительные преимущества. Раковые клетки экспрессируют ряд EGFR. Наблюдается вариабельность в их конформации, гликозилировании и первичной структуре (мутации и SNP). Одно моноклональное антитело может быть нацелено на несколько таких вариантов EGFR, но не на все сразу. Мутанты EGFR могут быть невидимыми мутантами для моноклональных антител. Композиция антител, содержащая два антитела по изобретению или три и более различных антител, связывающих разные эпитопы EGFR, менее уязвима для мутантов, SNP, делеционных мутантов и вариаций в гликозилировании. Это доказывается широкой эффективностью смесей антител по настоящему изобретению против целой панели линий раковых клеток, представляющих разнообразные конформации и вариации EGFR.
Введение одного моноклонального антитела может также неполностью выключить киназную активность EGFR. При комбинировании антител можно достичь более эффективного ингибирования передачи сигналов.
Таким образом, может оказаться полезным включение антител, связывающих разные конформации EGFR (например, незакрытые конформации и димеры рецептора) в указанную смесь антител. Такая смесь антител может более эффективно ингибировать активность EGFR, чем моноклональное антитело, связывающее только одну из конформации.
Кроме того, применение подхода с тремя или более антителами против EGFR в композиции создает возможность для увеличения плотности антител на поверхности опухолевой клетки, благодаря чему увеличивается уничтожающее действие ADCC по сравнению с моноклональными антителами.
В дальнейшем аспекте изобретение относится к способу получения композиции антител, включающему
а) трансфицирование первой популяции эукариотических клеток первой экспрессирующей конструкцией, кодирующей первое антитело, содержащее первую когнатную пару цепей VH и VL, способных связывать первый индивидуальный эпитоп EGFR,
b) трансфицирование второй популяции эукариотических клеток второй экспрессирующей конструкцией, кодирующей второе антитело, содержащее вторую когнатную пару цепей VH и VL, способных связывать второй индивидуальный эпитоп EGFR,
c) необязательное повторение стадии b) для третьей или последующих клеточных популяций, экспрессирующих конструкций, когнатных пар и эпитопов EGFR,
d) отбор трансфицированных первой, второй и (необязательно) последующих клеточных популяций,
e) объединение трансфицированных популяций в одном сосуде для получения банка клеток,
f) культивирование клеток из банка клеток в условиях, обеспечивающих экспрессию антител, и
g) восстановление композиции антител из супернатанта и ее очистка.
Для простоты получения, единой технологии производства и выделения целевого продукта, а также для определения параметров все антитела содержат одну и ту же константную область тяжелой цепи.
В дальнейшем аспекте изобретение относится к банку клеток, содержащему, по меньшей мере, две субпопуляции эукариотических клеток, причем каждая субпопуляция трансфицирована или трансдуцирована одной экспрессирующей конструкцией, кодирующей антитело, содержащее когнатную пару цепей VH и VL, способных связывать индивидуальный эпитоп EGFR. Предпочтительно, чтобы клетки были трансфицированы с применением сайт-специфической интеграции.
Кроме того, изобретение относится к способу уменьшения передачи сигнала EGFR, включающему введение в композицию клеток, экспрессирующих EGFR, композиции антител по изобретению, что приводит к уменьшению передачи сигнала EGFR.
Изобретение также относится к способу уничтожения клеток, экспрессирующих EGFR, включающему введение в композицию клеток, экспрессирующих EGFR, композиции антител по изобретению, что приводит к уничтожению клеток, экспрессирующих EGFR.
Также предлагается способ индукции апоптоза в клетках, экспрессирующих EGFR, включающий введение в композицию клеток, экспрессирующих EGFR, композиции антител по изобретению, посредством чего индуцируется апоптоз.
Дальнейший аспект относится к способу ингибирования пролиферации клеток, экспрессирующих EGFR, включающему введение в композицию клеток, экспрессирующих EGFR, композиции антител по изобретению, посредством чего ингибируется пролиферация.
Изобретение относится к способу индуцирования дифференциации опухолевых клеток in vivo, включающему введение индивиду, страдающему раковым заболеванием, композиции антител, по изобретению, посредством чего индуцируется дифференциация опухолевых клеток. Этот аспект основан на наблюдаемых in vivo эффектах терминальной дифференциации раковых клеток при контакте с композицией антител по изобретению.
В дальнейшем аспекте изобретение относится к фармацевтическим изделиям, содержащим композицию антител по изобретению, а также, по меньшей мере, одно соединение, способное индуцировать дифференциацию раковых клеток, в виде комбинации для одновременного, раздельного или последовательного введения по схеме противораковой терапии. Комбинируя композиции антител по изобретению со средствами, о которых известно, что они индуцируют терминальную дифференциацию раковых клеток, можно добиться дополнительного улучшения лечебного эффекта.
Еще в одном аспекте изобретение относится к фармацевтическим изделиям, содержащим композицию антител по изобретению, а также, по меньшей мере, одно химиотерапевтическое или противоопухолевое соединение в виде комбинации для одновременного, раздельного или последовательного введения по схеме противораковой терапии. Вполне вероятно, что композицию антител по изобретению можно использовать для лечения второй очереди, то есть после лечения традиционными химиотерапевтическими или противоопухолевыми средствами или одновременно с таким лечением, после лучевой терапии или одновременно с ней, после хирургической операции или параллельно с ней.
В отдельном аспекте изобретение предлагает полинуклеотид, выбранный из группы, состоящей из нуклеиновой кислоты, имеющей последовательность нуклеиновой кислоты, показанную на фиг.23 (SEQ ID NO 100), нуклеиновой кислоты, кодирующей полипептид, имеющий аминокислотную последовательность, показанную на фиг.23 (SEQ ID NO 101), нуклеиновой кислоты, имеющей последовательность нуклеиновой кислоты, показанную на фиг.34A (SEQ ID NO 102), и нуклеиновой кислоты, кодирующей полипептид, имеющий аминокислотную последовательность, показанную на фиг.34B (SEQ ID NO 103). Кроме того, предлагается полипептид, содержащий аминокислотную последовательность, показанную на фиг.23 (SEQ ID NO 101), и полипептид, содержащий аминокислотную последовательность, показанную на фиг.34B (SEQ ID NO 103), векторы экспрессии, содержащие указанную нуклеиновую кислоту, как определено выше, функционально связанные с промоторной последовательностью, способной управлять экспрессией указанной нуклеиновой кислоты, и клетка, трансфицированная или трансдуцированная указанным вектором экспрессии.
Эти последовательности составляют полинуклеотидные и полипептидные последовательности EGFR у обезьян Cynomolgous, например, у Macaca fascicularis. Указанный вид обезьян широко используется в токсикологических исследованиях на животных. Для того чтобы определенный животный вид имел какую-либо ценность в токсикологических исследованиях с антителами против аутоантигенов человека, необходимо, чтобы антитела также связывали целевой белок у животного, подвергнутого токсическому воздействию, предпочтительно, приблизительно с такой же аффинностью. Благодаря вкладу авторов настоящего изобретения теперь стали доступны тестирующие антитела для связывания с EGFR обезьян cynomolgous. EGFR обезьян cynomolgus и человека являются высоко гомологичными белками, но было обнаружено на удивление много антител с весьма разной аффинностью к EGFR человека и обезьян cynomolgus. Это подчеркивает важность строгого применения для скрининга того белка EGFR Cynomolgus, который был предложен авторами настоящего изобретения.
Кроме того, предлагается способ скрининга антител по связыванию с EGFR cynomolgous, включающий следующие стадии:
- получение, по меньшей мере, одного испытуемого антитела,
- проведение анализа для определения связывания антитела с внеклеточным доменом EGFR cynomolgous (фиг.23, SEQ ID NO 101)) или с полноразмерным EGFR cynomolgous (фиг.34B, SEQ ID NO 103)), либо с поверхностью клетки, экспрессирующей внеклеточный домен EGFR cynomolgous или экспрессирующей полноразмерный EGFR cynomolgous,
- выбор, по меньшей мере, одного антитела, которое связывается с внеклеточным доменом EGFR cynomolgous.
Способ может дополнительно включать скрининг по связыванию с EGFR человека или по связыванию с клетками, экспрессирующими EGFR человека.
В дальнейшем аспекте изобретение относится к способу идентификации антител против EGFR, способных усиливать одновременное связывание другого антитела против EGFR с EGFR, где указанный способ включает:
a. В первом анализе определение максимальной способности связывания первого антитела с фиксированным количеством антигена EGFR,
b. Во втором анализе насыщение фиксированного количества антигена EGFR вторым антителом против EGFR,
c. Контактирование комплекса EGFR-антитело с указанным первым антителом и определение максимальной способности связывания, и
d. Сравнение способностей связывания для определения того, превышает ли максимальная способность связывания на стадии c. максимальную способность связывания на стадии a.
Этот анализ можно использовать для идентификации дополнительных комбинаций антител, обладающих сходными свойствами с антителами 992 и 1024.
Определения
Термин "антитело" описывает функциональный компонент сыворотки и часто относится или к совокупности молекул (антител или иммуноглобулина), или к одной молекуле (антитела или иммуноглобулина). Молекула антитела способна связываться или взаимодействовать со специфическим антигенным детерминантом (антигеном или антигенным эпитопом), который, в свою очередь, может привести к индукции иммунологических эффекторных механизмов. Индивидуальная молекула антитела обычно рассматривается как моноспецифическая, а композиция молекул антитела может быть моноклональной (то есть состоящей из идентичных молекул антитела) или поликлональной (то есть состоящей из двух или более различных молекул антитела, взаимодействующих с одним и тем же или различными эпитопами на одном антигене или даже на отдельных, различных антигенах). Каждая молекула антитела имеет уникальную структуру, которая позволяет ей специфически связываться с соответствующим антигеном, а все природные молекулы антитела имеют одну и ту же общую базовую структуру, состоящую из двух идентичных легких цепей и двух идентичных тяжелых цепей. Антитела в собирательном значении также известны как иммуноглобулины. Термин антитело или антитела при использовании здесь дополнительно включает химерные и одноцепочечные антитела, а также такие связывающие фрагменты антител как Fab, фрагменты Fv или фрагменты scFv, а также такие мультимерные формы, как димерные молекулы IgA или пентавалентные IgM. Антитело может быть человеческим, мышиным, химерным, гуманизированным или реконструированным.
Терминологическое определение "когнатная кодирующая пара VH и VL" описывает кодирующие последовательности исходной пары VH и VL, содержащиеся в одной и той же клетке, продуцирующей антитело, или извлеченные из этой клетки. Таким образом, когнатная пара VH и VL представляет собой пару VH и VL, исходно представленную у донора, от которого получена такая клетка. Терминологическое определение "антитело, экспрессируемое из кодирующей пары VH и VL", указывает, что антитело или фрагмент антитела выработан из вектора, плазмиды или т.п. конструкций, содержащих кодирующую последовательность VH и VL. Когда когнатная кодирующая пара VH и VL экспрессирует либо полное антитело, либо его стабильный фрагмент, эти продукты сохраняют аффинность связывания и специфичность антитела, изначально экспрессируемого из той клетки, откуда они были извлечены. Библиотеку когнатных пар также терминологически обозначают как репертуар или совокупность когнатных пар, которые могут быть представлены по отдельности или в виде общего пула.
Термин "CDR" - определяющая комплементарная область (или гипервариабельный участок) соответствует определению, данному в ссылке Lefranc et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp Immunol 27, 55-77.
Термин "отдельный член рекомбинантного поликлонального белка" обозначает одну молекулу белка из белковой композиции, содержащей разные, но гомологичные молекулы белка, в которой каждая молекула белка гомологична другим молекулам композиции, но также содержит один или несколько фрагментов вариабельной полипептидной последовательности, который (которые) характеризуется различиями в аминокислотной последовательности между отдельными членами поликлонального белка.
Терминологическое определение "промоторы головка к головке" относится к паре промоторов, расположенных очень близко друг к другу, в результате чего транскрипция двух фрагментов гена, управляемая этими промоторами, идет в противоположных направлениях. Промотор головка к головке можно также сконструировать при помощи фрагмента-вставки, кодирующего посторонние аминокислоты и находящегося между двумя промоторами. Такой вставочный фрагмент вполне может содержать более 500 нуклеотидов. Промоторы головка к головке также могут упоминаться под названием двунаправленные промоторы.
Термин "иммуноглобулин" обычно употребляют как собирательное обозначение смеси антител, обнаруживаемых в крови или сыворотке, но его также используют для обозначения смеси антител, полученной из других источников.
Термин "молекула иммуноглобулина" означает индивидуальную молекулу антитела, например, представляющую собой часть иммуноглобулина или часть любой композиции поликлональных или моноклональных антител.
Терминологическое определение "библиотека вариантных молекул представляющей интерес нуклеиновой кислоты" используется для описания совокупности молекул нуклеиновой кислоты, которые вместе кодируют "представляющий интерес рекомбинантный поликлональный белок". При использовании для трансфекции библиотека вариантных молекул представляющей интерес нуклеиновой кислоты содержится в библиотеке векторов экспрессии. Такая библиотека в типичном случае имеет, по меньшей мере, 2, 3, 5, 10, 20, 50, 1000, 104, 105 или 106 отдельных членов.
Термин "перенос массы" используют для описания переноса последовательностей представляющей интерес нуклеиновой кислоты из одной совокупности векторов в другую совокупность векторов, который осуществляется для каждой ДНК одновременно, не прибегая к выделению представляющей интерес индивидуальной ДНК. Такие совокупности векторов могут представлять собой библиотеки, содержащие, например, те вариабельные области, промоторы, лидерные или энхансерные элементы, которые представляют интерес. Затем эти последовательности можно перемещать без предварительного выделения, например, из фагового вектора в вектор экспрессии млекопитающих. Особенно применительно к библиотекам антител эта методика позволяет, чтобы разнообразие в сцеплении между VH и VL не утрачивалось при перемещении библиотек, например, из вектора отбора (например, вектора фагового дисплея) в вектор экспрессии млекопитающих. Таким образом, сохраняется первоначальное спаривание VH и VL.
При использовании здесь термин "функционально связанный" относится к сегменту, сцепленному с другим сегментом, при том условии, что он попадает в функциональную взаимосвязь с другим сегментом. Например, ДНК, кодирующая сигнальную последовательность, функционально связана с ДНК, кодирующей полипептид, если она экспрессируется как лидер, принимающий участие в переносе полипептида в эндоплазматическую сеть. Таким же образом, промотор или энхансер функционально связан с кодирующей последовательностью, если он стимулирует транскрипцию этой последовательности.
Термин "поликлональное антитело" описывает композицию различных молекул антитела, которая способна связываться или взаимодействовать с несколькими различными специфическими антигенными детерминантами на одном и том же или на различных антигенах. Обычно принято считать, что вариабельность поликлонального антитела локализована в так называемых вариабельных областях поликлонального антитела. Однако в контексте настоящего изобретения термин поликлональность можно также понимать как описание различий между индивидуальными молекулами антитела, локализованных в так называемых константных областях, например, как в случае смесей антител, содержащих два или более изотипов антитела, таких как изотипы человека IgG1, IgG2, IgG3, IgG4, IgA1 и IgA2 или мышиные изотипы IgG1, IgG2a, IgG2b, IgG3 и IgA. В целях настоящего изобретения такое поликлональное антитело также можно называть "композицией антител".
Термин "эпитоп" обычно используют для описания доли более крупной молекулы или части более крупной молекулы (например, антигена или антигенного сайта), проявляющей антигенную или иммуногенную активность у животного, предпочтительно, млекопитающего и, наиболее предпочтительно, человека. Эпитоп, обладающий иммуногенной активностью, представляет собой часть более крупной молекулы, которая вызывает у млекопитающего ответную реакцию антител. Эпитоп, обладающий антигенной активностью, представляет собой часть более крупной молекулы, с которой иммуноспецифически связывается антитело, как это можно определить любым способом, хорошо известным в данной области техники, например, описанными здесь иммунологическими анализами. Антигенные эпитопы необязательно должны быть иммуногенными. Антигены представляют собой вещества, например, токсины, вирусы, бактерии, белки или ДНК, с которыми иммуноспецифически связывается антитело или фрагмент антитела. Антигены или антигенные сайты, за исключением очень маленьких, часто имеют более одного эпитопа и часто способны стимулировать иммунный ответ. Эпитопы могут быть линейными или конформационными. Линейный эпитоп состоит приблизительно из 6-10 прилегающих аминокислот в белковой молекуле и распознается антителом. В отличие от этого конформационный эпитоп состоит из аминокислот, которые не упорядочены последовательно. В данном случае антитело распознает только 3-мерную структуру. Когда белковая молекула сворачивается в трехмерную структуру, аминокислоты, образующие эпитоп, сопоставляются, позволяя антителу распознать последовательность. В денатурированном белке может быть распознан только линейный эпитоп. Конформационный эпитоп по определению должен располагаться на наружной поверхности свернутого белка. Антитело, которое распознает конформационный эпитоп, может связываться с ним только в условиях мягких, не денатурирующих процедур. Антитела, связывающиеся с различными эпитопами на одном и том же антигене, могут разным образом влиять на активность антигена, с которым они связываются, в зависимости от локализации эпитопа. Антитело, связывающееся с эпитопом в активном сайте антигена, может полностью заблокировать функцию антигена, тогда как другое антитело, связывающееся с другим эпитопом, может незначительно влиять или совсем не влиять на активность одиночного антигена. Однако такие антитела все еще способны активировать комплемент, благодаря чему происходит элиминация антигена, кроме того, возможны синергические эффекты при комбинировании одного или нескольких антител, связывающихся с различными эпитопами на одном и том же антигене. В настоящем изобретении эпитоп, предпочтительно, является частью внеклеточного домена EGFR. Антигены, рассматриваемые настоящим изобретением, предпочтительно, являются внеклеточными доменами белков, полипептидов EGFR или их фрагментов, с которыми иммуноспецифически связываются антитела или фрагменты антител. EGFR-ассоциированный антиген также может представлять собой аналог или производное внеклеточного домена полипептида EGFR или его фрагмента, с которым иммуноспецифически связывается антитело или фрагмент антитела.
Антитела, способные конкурировать друг с другом за связывание с одним и тем же антигеном, могут связываться с одними и теми же или с перекрывающимися эпитопами либо могут иметь сайты связывания, расположенные в близком соседстве друг с другом, благодаря чему конкуренция обусловлена, главным образом, стерическим препятствием. Способы определения конкуренции между антителами описаны в примерах.
При использовании здесь термины "поликлональный белок" или "поликлональность" относятся к белковой композиции, содержащей разные, но гомологичные молекулы белка, предпочтительно, выбранные из суперсемейства иммуноглобулинов. Таким образом, каждая молекула белка гомологична другим молекулам композиции, но также содержит один или несколько участков вариабельной последовательности полипептида, которые характеризуются различиями в аминокислотной последовательности между индивидуальными элементами поликлонального белка. Известные примеры таких поликлональных белков включают молекулы антитела или иммуноглобулина, рецепторы T-клеток и рецепторы B-клеток. Поликлональный белок может состоять из определенной подгруппы молекул белка, которые были охарактеризованы таким общим признаком как совпадающая активность связывания с желаемой мишенью, например, в случае поликлонального антитела, направленного против желаемого антигена-мишени.
Под "белком" или "полипептидом" подразумевается любая цепочка аминокислот независимо от ее длины или посттрансляционной модификации. Белки могут существовать в виде мономеров или мультимеров, содержащих две или более собранные полипептидные цепочки, фрагментов белка, полипептидов, олигопептидов или пептидов.
Термин "RFLP" относится к "полиморфизму длины рестрикционных фрагментов", то есть к способу, посредством которого анализируют характер миграции фрагментов нуклеиновой кислоты в геле после ее расщепления рестрикционными ферментами.
Термин "скремблирование" описывает ситуацию, когда два или более различных элемента поликлонального белка, состоящие из двух различных полипептидных цепочек, например, из суперсемейства иммуноглобулинов, экспрессируются из отдельной клетки. Эта ситуация может возникнуть, когда отдельная клетка интегрировала в пределах генома более одной пары сегментов гена, причем каждая пара сегментов гена кодирует отдельный элемент поликлонального белка. В такой ситуации можно получить непреднамеренные комбинации полипептидных цепочек, экспрессируемых из сегментов гена. Такие непреднамеренные комбинации полипептидных цепочек, возможно, не будут давать никакого терапевтического эффекта.
Примером определенного выше скремблирования является термин "скремблирование цепочек VH-VL". В этом примере сегменты гена, кодирующие VH и VL, составляют пару сегментов гена. Скремблирование встречается тогда, когда непреднамеренные комбинации полипептидов VH и VL вырабатываются клеткой, в которую интегрированы две различные пары сегментов гена, кодирующих VH и VL. Такая скремблированная молекула антитела, вероятно, не будет сохранять первоначальную специфичность, то есть, может не проявлять никакого терапевтического эффекта.
Термин "трансфекция" при использовании здесь употребляется в широком смысле, обозначая введение в клетку инородной ДНК. Этот термин также охватывает другие функционально равноценные способы введения инородной ДНК в клетку, например, такие как трансформация, инфекция, трансдукция или слияние донорской клетки с акцепторной клеткой.
Термины "вариабельная последовательность полипептида" и "вариабельная область" могут употребляться взаимозаменяемо.
Термин "отдельные эпитопы" означает, что, когда два различных антитела связывают такие эпитопы, конкуренция за связывание с антигеном составляет менее 100%, предпочтительно, конкуренция за связывание с антигеном составляет менее 50% и, более предпочтительно, пор существу нет конкуренции за связывание с антигеном. Анализ пар антител на "отдельные эпитопы" в типичных случаях проводят посредством экспериментов со связыванием в условиях насыщения антителом либо по методике FACS на клетках, экспрессирующих EGFR, и антителах с индивидуальной флуоресцентной меткой или по методике поверхностного плазмонного резонанса с применением антигена EGFR, захваченного или конъюгированного с поверхностью проточной кюветы, как это описано в примерах.
Терминологическое определение способности "ингибировать связывание EGF" применительно к одной молекуле антитела означает, что молекула антитела демонстрирует значение 1С 50 в отношении связывания EGF с EGFR менее 10 нМ, предпочтительно, менее 8 нМ, более предпочтительно, менее 7 нМ, более предпочтительно, менее 5 нМ, более предпочтительно, менее 4 нМ, более предпочтительно, менее 3 нМ, более предпочтительно, менее 2 нМ, более предпочтительно, менее 1 нМ.
Термины "рецептор эпидермального фактора роста", "EGFR" и "антиген EGFR" употребляются здесь взаимозаменяемо и включают варианты, изоформы и специфические гомологи EGFR человека. В предпочтительном варианте осуществления изобретения связывание антитела по изобретению с антигеном EGFR ингибирует рост клеток, экспрессирующих EGFR (например, опухолевых клеток) за счет ингибирования или блокирования связи лиганда EGFR с EGFR. Термин "лиганд EGFR" охватывает все (например, физиологические) лиганды для EGFR, включая, но не ограничиваясь ими, EGF, альфа-TGF, гепаринсвязывающий EGF (HB-EGF), амфирегулин (AR), херегулин, бета-целлюлин и эпирегулин (EPI). В другом предпочтительном варианте осуществления изобретения связывание антитела по изобретению с антигеном EGFR опосредует фагоцитоз эффекторных клеток и/или уничтожение клеток, экспрессирующих EGFR.
Структура домена EGFR: Внеклеточная часть зрелого EGFR (SwissProt асе. #Р00533) состоит из 621 аминокислоты и четырех рецепторных доменов: домен I охватывает остатки 1-165, домен II остатки 166-312, домен III - остатки 313-481 и домен IV - остатки 482-621 (Cochran et al. 2004 J immunol. Methods 287, 147-158). Было высказано предположение о том, что домены I и III дают вклад в образование высокоаффинных сайтов связывания для лигандов. Домены II и IV представляют собой богатые цистеином ламининоподобные области, которые стабилизируют укладку структуры белка и содержат возможную поверхность раздела для димеризации EGFR.
При использовании здесь термин "ингибирует рост" (например, применительно к клеткам) включает любое поддающееся измерению уменьшение пролиферации (увеличения количества клеток) или клеточного метаболизма при контакте с антителом против EGFR по сравнению с ростом таких же клеток, не контактировавших с антителом против EGFR, например, ингибирование роста клеточной культуры, по меньшей мере, приблизительно на 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 99% или 100%.
При использовании здесь термины "ингибирует связывание" и "блокирует связывание" (например, применительно к ингибированию/блокированию связывания лиганда EGFR с EGFR) употребляются взаимозаменяемо и охватывают как частичное, так и полное ингибирование/блокирование. Ингибирование/блокирование связи лиганда EGFR с EGFR, предпочтительно, снижает или изменяет нормальный уровень или тип клеточных сигналов, который имеет место, когда лиганд EGFR связывается с EGFR без ингибирования или блокирования. Ингибирование или блокирование также включают любое поддающееся измерению снижение аффинности связывания лиганда EGFR с EGFR при наличии контакта с антителом против EGFR по сравнению с той ситуацией, когда лиганд не контактирует с антителом против EGFR, например, блокирование связи лиганда EGFR с EGFR, по меньшей мере, приблизительно на 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 99% или 100%.
Термин "рекомбинантное антитело" употребляется для описания молекулы или нескольких молекул антитела, которые экспрессируются из клетки или клеточной линии, трансфицированной вектором экспрессии, содержащим кодирующую последовательность антитела, которая в естественных условиях не ассоциирована с клеткой.
ОПИСАНИЕ ЧЕРТЕЖЕЙ
Фиг.1. Сортировка спленоцитов (подробности см. в примере 1). Сделаны следующие каналы (отображены):
• Канал 1: Живые клетки (график FSC/ иодид пропидия) (нижняя левая панель)
• Канал 2: Клетки плазмы пропущены как позиция CD43/позиция CD138 (нижняя правая панель)
• Канал 3: распознавание дублета (верхняя правая панель)
Фиг.2. Мышиная модель - mSymplex™ PCR. Расширение мультиплексного перекрывания RT-PCR для амплификации и когнатного сцепления генов тяжелой и легкой цепи антитела из единичной клетки. Подробности см. в примере 1.
Фиг.3. Клонирование мышиного репертуара. Пул продуктов mSymplex™ PCR, кодирующих пары генов VH/VL из единичных плазматических клеток, был сплайсирован до гена, кодирующего константную легкую каппа-цепь человека, посредством сплайсинга через расширение перекрывания. Пул генов, кодирующих полноразмерные химерные антитела человека-мыши, был вставлен в вектор экспрессии с последующей вставкой двунаправленной промоторной кассеты (2×CMV).
Фиг.4. Схематическое представление вектора экспрессии 00-VP-002 полноразмерного антитела млекопитающих. Amp и Amp pro - ген устойчивости к ампициллину и его промотор, pUC origin - начало репликации pUC, CMV - промотор млекопитающих, управляющий экспрессией легкой цепи и тяжелой цепи, IGHV Leader - геномный лидер тяжелой цепи человека, H stuffer - вставка, которая заменена на кодирующую последовательность вариабельной области тяжелой цепи, IGHG1 - последовательность, кодирующая константную область тяжелой цепи изотипа G1 геномного иммуноглобулина (последовательность показана в приложении 2), Rabbit B-globin A - полиА последовательность бета-глобина кролика, IGKV Leader - мышиный каппа-лидер, L Stuffer - вставка, которая заменена на кодирующую последовательность легкой цепи, SV40 term - терминаторная последовательность вакуолизирующего обезьяньего вируса 40, FRT - целевой сайт распознавания Flp, Neo - ген устойчивости к неомицину, SV40 poly A - полиА сигнальная последовательность вакуолизирующего обезьяньего вируса 40.
Фиг.5. Кластерный анализ различий в поглощении на уровне 450-620 нм. Супернатанты сгруппированы по реактивности, на что указывают цифры (от 1 до 4) после номера клона. Темно-серый цвет указывает на уменьшение количества метаболически активных клеток, тогда как светло-серый цвет указывает на увеличение количества метаболически активных клеток. Черный цвет указывает на супернатанты, не оказывающие влияния на количество метаболически активных клеток.
Фиг.6. Степень ингибирования антител против EGFR перечисленными эталонными антителами, направленными против специфических доменов EGFR, по результатам конкурентного анализа ELISA. А) Расчет ингибирования. В) Расчет ингибирования следующим образом: 25-49%: Умеренная конкуренция (+), 50-74%: сильная конкуренция (++), 75-100%: очень сильная конкуренция (+++). Ячейки, отображающие значительное ингибирование (50-100%) затенены серым цветом. Эрбитукс и вектибикс показаны по два раза (четыре независимых эксперимента), чтобы проиллюстрировать воспроизводимость анализа. Ab2 (225) - мышиный предшественник, который ведет к эрбитуксу.
Фиг.7. Иллюстрация одного цикла картирования эпитопа, проведенного аппаратом Biacore 3000 SPR, когда образец mAb конкурирует за связывание внеклеточного домена EGFR с четырьмя разными эталонными антителами.
Фиг.8. Степень ингибирования антител против EGFR перечисленными эталонными антителами, направленными против специфических доменов EGFR, по результатам конкурентного анализа с применением технологии SPR. А) Расчет ингибирования. В) Расчет ингибирования следующим образом: 25-49%: Умеренная конкуренция (+), 50-74%: сильная конкуренция (++), 75-100%: очень сильная конкуренция (+++). Клетки, отображающие значительное ингибирование (50-100%) затенены серым цветом. Клон 1229, маркированный символом *, не проявлял связывания в анализе Biacore.
Фиг.9. Определение кластеров эпитопа в пределах репертуара антител против EGFR посредством конкурентного анализа пар антитела против EGFR методом SPR. Антитела сгруппированы в соответствии с предполагаемым распознаванием домена EGFR. Клетки, в которых комбинации антител, связанные с перекрывающимися эпитопами, приводили к ингибированию более чем на 50%, затенены серым цветом. Клетки, в которых определения не были получены, закрашены черным цветом. A) Расчет ингибирования. B) Расчет ингибирования следующим образом: 25-49%: Умеренная конкуренция (+), 50-74%: сильная конкуренция (++), 75-100%: очень сильная конкуренция (+++).
Фиг.10. Эпитопные карты эталонных антител и антител против EGFR, направленных против внеклеточного домена EGFR, по результатам анализа Biacore. A) Эпитопная карта антител, направленных против домена I или домена I/II внеклеточного домена (ECD) EGFR. B) Эпитопная карта антител, направленных против домена III ECD EGFR.
Фиг.11. Исследование одновременного связывания олигоклональной смеси антител, направленных против неперекрывающихся эпитопов на EGFR. A) Последовательное добавление антител против домена III, домена I или неизвестной специфичности. Величины ингибирования единственного образца mAb, протестированного по отношению к смесям различных mAb или единственному mAb, показаны в затененных ячейках. Также показаны величины Ru max, использованные для расчета ингибирования. B) Анализ конкуренции шести различных образцов mAb, направленных против неперекрывающихся эпитопов на EGFR, и смеси антител, содержащей шесть протестированных антител. В качестве положительного контроля были использованы смеси антител, куда не были включены протестированные образцы антител. Величины ингибирования единственного образца mAb, протестированного по отношению к смесям различных mAb, показаны в затененных ячейках. Также показаны величины Ru max, использованные для расчета ингибирования. C) Соответствующие сенсограммы по результатам анализа в пункте B, иллюстрирующие блокаду связывания антителами, а в некоторых случаях усиление связывания антителами. D) Испытание дополнительных антител, направленных против домена I, I/II и неизвестной специфичности, по отношению к смеси шести антител mAb.
Фиг.12. Определение опосредованной антителами блокады лиганда EGF титрованием антител на полноразмерном EGFR и выявление связывания биотинилированного лиганда EGF с реактивом стрептавидин-HRP. Эрбитукс, вектибикс и Synagis IgG (паливизумаб) использовали как положительный и отрицательный контроль, соответственно. После блокады распознанного эпитопа антитела испытуемыми антителами визуализировали степень конкуренции лиганда EGF, добавляя 0,1 мкг/мл биотинилированного лиганда EGF и вторичный конъюгат стрептавидин-HRP.
Фиг.13. Влияние предварительной обработки индикаторными антителами на индуцированное EGF (50 нг/мл) фосфорилирование EGFR в клетках HN5. Антитела (10 мкг/мл), указанные на графике, были инкубированы с клетками в течение 30 минут перед добавлением EGF на 7,5 минут. Наборы данных, маркированные символом *, статистически значимо отличались от набора контрольных данных ((-)ctrl) (p<0,05). A. Антитело 1208 проявляло выраженный защитный эффект в отношении фосфорилирования EGFR. B. Антитела 1277 и 1320 статистически значимо защищали от фосфорилирования, индуцированного EGF. Отрезки, изображающие величину ошибки, представляют стандартные отклонения по результатам трех независимых экспериментов.
Фиг.14. Внутриклеточный вестерн-анализ фосфорилированного EGFR (pEGFR) и EGFR в клетках HN5. Образец mix обозначает эквимолярную смесь антител 992, 1030 и 1042 до конечной концентрации 10 мкг/мл, другие антитела были использованы в концентрации 10 мкг/мл каждое. Для того чтобы стимулировать фосфорилированием EGFR, перед фиксацией 7,5 минут добавляли EGF из расчета 50 мкг/мл). Отрезки, изображающие величину ошибки, представляют стандартные отклонения 6 отдельных (ctlr-) или 3 отдельных точек данных (992, 1030, 1042, mix или эрбитукс). Образцы 992, 1030, mix и эрбитукс проявляли статистически значимый (*=p<0,05) защитный эффект в отношении фосфорилирования.
Фиг.15. Влияние инкубации антител на интернализацию EGFR. Данные показаны в виде процентных величин, отражающих удаление рецепторов с клеточной поверхности по сравнению с начальным окрашиванием. Отрезки, изображающие величину ошибки, соответствуют SEM (стандартной ошибке среднего).
Фиг.16. Кривые роста клеток A431-NS в присутствии переменных концентраций антител 992, 1030, 1042 и их смесей, рассчитанные по процентным показателям метаболически активных клеток по сравнению с необработанным контролем. Образец 1001 представлял собой нефункциональное антитело со сходным изотипом, которое было использовано в качестве отрицательного контроля.
Фиг.17. Кривые роста клеток A431-NS в присутствии 10 мкг/мл антител 992, 1030, 1042 и их смесей, а также переменных концентраций EGFR-лиганда EGF, рассчитанные по поглощению на длине волны 450 нм. Образец 1001 представлял собой нефункциональное антитело со сходным изотипом, которое было использовано в качестве отрицательного контроля.
Фиг.18. Кривые роста клеток A431-NS в присутствии переменных концентраций антитела 992 и смесей 992 с антителами, имеющими неперекрывающиеся эпитопы, представленные в домене I, II или III. Образец 1001 представлял собой нефункциональное антитело со сходным изотипом, которое было использовано в качестве отрицательного контроля.
Фиг.19. Апоптоз в клетках A431NS. Образцы смеси EGFR, отдельных моноклональных антител, препаратов эрбитукс и вектибикс были протестированы в 10-кратных разведениях. Комплекс гистон-ДНК из апоптотических клеток измеряли с применением набора ELISA производства компании Roche.
Фиг.20. В четырех группах мышей nude Balb/C Nu/Nu численностью по 10 особей были инокулированы клетки A431NS в количестве 1×106 на животное. После того как опухоли достигали размера приблизительно 100 мм3, начиналось лечение животных. Животным в группах проводили инъекции 1 мг/мл антител пять раз по ходу эксперимента, как это указано стрелками. Диаметр опухолей измеряли нутромерами с цифровой индикацией. Результаты представлены в виде среднего объема опухоли (+/- SEM).
Фиг.21. После того как в эксперименте, показанном на фиг.20, отдельных животных умерщвляли, производили иссечение и взвешивание опухолей. Показаны средние величины +/- SEM. Звездочки указывают статистическую значимость на уровне P<0,05.
Фиг.22. Рост сфероидов A431-NS в присутствии 10 мкг/мл антител 1001, эрбитукса, вектибикса и смеси трех антител с неперекрывающимися эпитопами 992+1030+1042. 1001 представляет собой нефункциональное антитело со сходным изотипом, которое было использовано в качестве отрицательного контроля.
Фиг.23. ДНК (SEQ ID No. 100) и белковая последовательность (SEQ ID NO. 101) внеклеточного домена EGFR Cynomolgus клонированы из кДНК, полученной из эпидермиса обезьяны Cynomolgus.
Фиг.24. Выверка полученной белковой последовательности ECD EGFR Cynomolgus (SEQ ID NO. 101) с ECD EGFR человека (SEQ ID NO 108), полученной из GENBANK (инвентарный номер X00588). Также показана консенсусная последовательность (SEQ ID NO 109).
Фиг.25. Пример аналитического разделения методом ELISA между перекрестно реактивными и видоспецифическими антителами, связывающими ECD EGFR человека, cynomolgus или оба типа доменов.
Фиг.26. Микрофотографии репрезентативных срезов опухолей в каждой из четырех экспериментальных групп мышей с ксенотрансплантатами. При увеличении 200× стрелки указывают на очаги терминальной дифференциации клеток A431 in vivo. Следует обратить внимание на заметно более крупные и более многочисленные очаги терминальной дифференциации в опухолях при лечении смесью трех клонов антител против EGFR (992+1030+1042), две верхние панели.
Фиг.27. A) Изображения сфероидов HN5 при увеличении 40× через 24 часа после добавления 10 мкг/мл контрольного антитела (ритуксимаб, anti CD-20) или смеси антител против EGFR 992 и 1024. B) Количественное определение площади, покрытой клетками, при использовании компьютерной программы Image J (* p<0,01).
Фиг.28. Диаграмма, показывающая уровень инволюкрина в четырех группах лечения в виде процентного показателя в контрольной группе, не получавшей лечения (*#¤p<0,005 по сравнению с эрбитуксом, вектибиксом и группой отрицательного контроля, соответственно).
Фиг.29. A) Изображения клеток HN5 и A431NS, инкубированных с 10 мкг/мл эрбитукса, меченного Alexa-488, или смеси антител 992+1024 в течение 2 часов (при увеличении 60×). B) Изображения с мелким точечным проколом клеток A431NS, инкубированных с 10 мкг/мл эрбитукса, меченного Alexa-488, или смеси антител 992+1024 в течение 2 часов (при увеличении 60×).
Фиг.30. Изображения клеток HN5, инкубированных с 10 мкг/мл эрбитукса, меченного Alexa-488, или смеси антител 992+1024 в течение указанных промежутков времени (при увеличении 60×).
Фиг.31. Определение специфичности представления антигена антителами Fab 992, 1024 и 1030 при серийном титровании антител на клетках A431-NS и очищенном полноразмерном EGFR методом ELISA. Связанные антитела Fab были визуализированы вторичным специфическим конъюгатом HRP с козьим антителом Fab против человека. A) Антитела Fab, протестированные против очищенного полноразмерного EGFR из клеток A431. B) Антитела Fab, протестированные против EGFR, экспрессированного на поверхности клеток A431-NS.
Фиг.32. Определение функциональной аффинности IgG и фрагментов Fab антител 992, 1024, 1030, эрбитукса и вектибикса серийным титрованием на клетках A431-NS, фиксированных параформальдегидом, в анализе по методу ELISA. Связанные антитела Fab и IgG были визуализированы вторичным специфическим конъюгатом HRP с козьим антителом Fab против человека. В качестве отрицательного контрольного антитела было использовано белковое антитело против RSV F Synagis, которое не показало никакого связывания в проведенном анализе ELISA. A) Функциональное связывание антител IgG с клетками A431-NS. B) Функциональное связывание антител Fab с клетками A431-NS.
Фиг.33. Определение усиления связывания IgG с EGFR на клетках A431-NS при предварительном насыщении рецептора фрагментами Fab, связывающими неперекрывающиеся эпитопы. Указанным фрагментам Fab давали возможность насытить распознанный эпитоп EGFR на клетках A431-NS в течение 30 минут, после чего указанные антитела IgG были подвергнуты серийному титрованию, а связанные IgG с добавлением или без добавления Fab визуализированы вторичным конъюгатом HRP с мышиным Fc против человека. A) Характеристики связывания IgG 992 с клетками A431-NS при предварительном насыщении рецептора указанными фрагментами Fab или без такого насыщения. B) Характеристики связывания IgG 1024 с клетками A431-NS при предварительном насыщении рецептора указанными фрагментами Fab или без такого насыщения. С) Характеристики связывания IgG 1030 с клетками A431-NS при предварительном насыщении рецептора указанными фрагментами Fab или без такого насыщения.
Фиг.34. кДНК полноразмерного EGFR cynomolgus (фиг.34A, SEQ ID NO 102) и кодируемый белок (фиг.34В, SEQ ID NO 103).
Фиг.35. Апоптоз, полученный в клетках A431NS при воздействии 1 мкг/мл указанных антител/комбинаций. Комплексы гистон-ДНК определяли с применением набора ELISA производства компании Roche. Уровень апоптоза определяли по отношению к положительному контролю (максимальный апоптоз).
Фиг.36. Мышам Balb/C nu/nu инъецировали 1×106 клеток A431NS. После того как опухоли достигали среднего размера приблизительно 100 мм3, начиналось лечение животных. Мыши получали 17 инъекций антител. Первое лечение начинали в 8-й день, а последнее в 34-й день. Антитела/композиции инъецировали в количестве 0,5 мг на дозу или 0,17 мг на дозу. Показаны средние величины объема опухолей +/- SEM.
Фиг.37. Ингибирование пролиферации клеток A431NS. На оси X показаны разные репрезентативные комбинации 3-х антител по изобретению. На оси Y показана метаболическая активность в виде процентной величины по сравнению с необработанным контролем. Отрезки, изображающие величину ошибки, представляют +/- SEM. Дополнительные подробности см. в примере 6.
Фиг.38. Эффект ингибирования роста при воздействии двух разных доз смеси 992+1024 по сравнению с препаратом эрбитукс в ксенотрансплантатах опухолевых клеток человека A431NS. Мышам Balb/C nu/nu инокулировали 106 клеток A431NS. После того как опухоли достигали среднего размера 100 мм3 (8-й день), мышей рандомизировали на группы численностью по 9 особей, и начинали лечение. Указанные антитела инъецировали в количестве 0,5 мг на дозу или 1 мг на дозу два раза в неделю (в общей сложности 9 инъекций). Светло-серая область на графике показывает период лечения. Начало пунктирной линии обозначает точку времени, в которой первая мышь из данной группы была умерщвлена из-за избыточного размера опухоли. Статистически значимые различия между группами, получавшими смесь 992+1024 (2 мг в неделю) и эрбитукс (2 мг в неделю), а также смесь 992+1024 (1 мг в неделю) и эрбитукс (2 мг в неделю), были получены на 60-й день, когда лечение во всех группах кроме 992+1024 (2 мг в неделю) было прекращено. Размер опухоли у животных, исключенных до 60-го дня, был определен вплоть до конца эксперимента, таким образом график показывает накопленный объем опухоли у всех мышей в данной группе. Показаны средние величины +/- SEM.
Фиг.39. График Каплана-Мейера по данным о выживании мышей, получавших лечение смесью антител 992+1024, препаратом эрбитукс или контрольным антителом (тот же эксперимент, который показан на фиг.38). Результаты представлены в виде процентных показателей выживания мышей, получавших то или иное лечение. При сравнении групп, получавших смесь антител 992+1024 и эрбитукс, наблюдались статистически значимые различия по процентному показателю выживания мышей при высоких дозах (2 мг в неделю, P=0,0008) и низких дозах (1 мг в неделю, P=0,0004). Кроме того, низкая доза смеси 992+1024 давала статистически значимо лучший результат по сравнению с высокой дозой препарата эрбитукс (P = 0,0087). Статистическую значимость различий вычисляли с применением логарифмического рангового критерия (Мантела-Кокса).
Фиг.40. Анализ перекрестной реактивности антител IgG 992, 1024 и 1320 против клеток CHO, трансфицированных полноразмерным EGFR человека и cynomolgus, по методике FACS. Связанные антитела выявляли при помощи козьего F(ab')2 IgG FC против человека. Дискриминацию проводили по однородным клеткам (со свойствами SCC/FCS), экспрессирующим EGFR. Связывание выражено в виде % от максимального связывания антитела в концентрации 1 нМ.
Фиг.41. Выверка аминокислотных последовательностей вариабельных областей мышиных (chi) и гуманизированных (hu) вариабельных областей-кандидатов как в тяжелых, так и в легких цепях антител 992 (A) и 1024 (B) на основе компьютерной программы Clustalw2. Области CDR, определенные по IMGT, подчеркнуты, гэпы представлены символом (-), идентичные аминокислоты символом (*), консервативные мутации символом (:), полуконсервативные мутации символом (.). Выделенные жирным шрифтом аминокислоты указывают те положения, в которых будут проведены обратные мутации к первоначально идентифицированному мышиному остатку, если варианты полностью человеческого каркаса проявят сниженную аффинность связывания. Идентификационные номера последовательностей даны следующим образом: Гуманизированная VH 992 (SEQ ID NO 104). Гуманизированная VL 992 (SEQ ID NO 105). Гуманизированная VH 1024 (SEQ ID NO 106). Гуманизированная VL 1024 (SEQ ID NO 107). Химерная VH 992 (a.к. 3-124 из SEQ ID NO 40). Химерная VL 992 (a.к. 3-109 из SEQ ID NO 72). Химерная VH 1024 (a.к. 3-120 из SEQ ID NO 41). Химерная VL 1024 (a.к. 3-114 из SEQ ID NO 73).
Фиг.42A: Схематическое представление генов, кодирующих двойной вариабельный домен 992L1024. Последовательность IGHV 992L1024 (751 bp) представлена от 5'-сайта рестрикции AscI, сопровождается IGHV 992, линкером ASTKGP, IGHV 1024 и заканчивается на 3'-сайте рестрикции XhoI. Последовательность IGKV 992L1024 (1071 п.о.) представлена от 5'-сайта рестрикции NheI, сопровождается IGKV 992, линкером TVAAP, IGKV 1024, IGKC и заканчивается на 3'-сайте рестрикции NotI.
Фиг.42B: Схематическое представление генов, кодирующих двойной вариабельный домен 1024L992. Последовательность IGHV 1024L992 (751 п.о.) представлена от 5'-сайта рестрикции AscI, сопровождается IGHV 1024, линкером ASTKGP, IGHV 992 и заканчивается на 3'-сайте рестрикции XhoI. Последовательность IGKV 1024L992 (1071 п.о.) представлена от 5'-сайта рестрикции NheI, сопровождается IGKV 1024, линкером TVAAP, IGKV 992, IGKC и заканчивается на 3'-сайте рестрикции NotI.
ПОДРОБНОЕ ОПИСАНИЕ ИЗОБРЕТЕНИЯ
Смеси антител
В одном из вариантов осуществления изобретение относится к композиции антител, содержащих молекулы антитела, способные связываться, по меньшей мере, с тремя различными эпитопами EGFR, предпочтительно с тремя неперекрывающимися эпитопами EGFR. Неперекрывающуюся природу антител, предпочтительно, определяют, применяя по-разному меченые антитела, в анализе FACS с клетками, экспрессирующими EGFR или, применяя поверхностный плазмонный резонанс с антигеном EGFR, захваченным или конъюгированным на поверхности проточной кюветы. Можно также использовать способы анализа на основе ELISA, как это описано в примерах. Композицию, связывающую три неперекрывающихся эпитопа EGFR, можно использовать против более широкого круга EGFR-зависимых раковых заболеваний, поскольку такая композиция в меньшей степени чувствительна к различиям в конформации EGFR и в меньшей степени зависима от мутаций по сравнению с композицией моноклональных антител, нацеленной на один или два эпитопа. Кроме того, композиция антител, связывающая три неперекрывающихся эпитопа EGFR, может обеспечить лучшую эффективность по сравнению с композицией, нацеленной на меньшее число эпитопов. В особенности, указанная композиция антител может обеспечить лучшую эффективность в отношении терминальной дифференциации раковых клеток in vivo. Фиг.37 приводит многочисленные примеры эффективных композиций антител, связывающих три различных эпитопа EGFR человека, которые иллюстрируют общую приемлемость концепции настоящего изобретения.
При терапии моноклональными антителами против EGFR некоторая часть пациентов не будет адекватно реагировать на проводимое лечение, которое окажется неэффективным. У некоторых пациентов это обусловлено тем, что происходит быстрое выведение антител, или тем, что антитело вызывает у больного иммунную реакцию на себя. У некоторой части пациентов отсутствие лечебной реакции может быть связано с тем, что при той конкретной форме EGFR-зависимого ракового заболевания, которым страдает больной, EGFR экспрессируется в такой конформации, что моноклональной антитело не может связать его эпитоп. Причиной этого могут служить различия в гликозилировании, делеция домена, мутации и/или SNP.
К тому же при некоторых раковых заболеваниях большое значение имеет аутокринная стимуляция EGFR, обусловленная выработкой лиганда раковыми клетками, хотя в других случаях EGFR, экспрессируемый раковыми клетками, не нуждается в стимуляции лигандом. При раковых заболеваниях последнего типа антитело, способное ингибировать связывание лиганда, будет неэффективным.
Композиция антител, в которой антитела способны связывать, по меньшей мере, три различных эпитопа на EGFR, должна найти более широкое применение, поскольку вероятность того, что все три эпитопа изменены по сравнению с эпитопом (эпитопами), распознаваемыми антителами, уменьшается. К тому же, вероятность того, что все антитела будут выведены из организма больного, становится намного меньше. Наконец, примеры показывают, что в функциональных анализах смесь, содержащая три антитела, которые связывают разные эпитопы, превосходит моноклональное антитело и смесь, содержащую два антитела. Превосходство наиболее четко было продемонстрировано в плане индукции терминальной дифференциации раковых клеток при использовании трех антител к домену III с неперекрывающимися эпитопами. Такая эффективная терминальная дифференциация раковых клеток, индуцированная антителами, не была описана ранее и представляет собой значительный шаг вперед в разработке эффективной противораковой терапии на основе антител. Более поздние результаты показали, что похожие или даже лучшие результаты можно получить, применяя особую комбинацию двух антител.
Для того чтобы повысить клиническую эффективность и расширить полезное применение при большем числе EGFR-зависимых типов рака, можно увеличить число антител в композиции. Так, например, композиция может содержать антитела, способные связываться с четырьмя неперекрывающимися эпитопами. Композиция может содержать антитела, способные связываться с пятью неперекрывающимися эпитопами. Композиция может содержать антитела, способные связываться с шестью неперекрывающимися эпитопами. Примеры, приведенные в настоящей заявке, показывают, что одновременно связываться с EGFR могут, по меньшей мере, шесть различных антител (пример 3). Это не исключает возможности и даже предпочтительного варианта, связанного с разработкой композиции, содержащей антитела, способные связываться более чем с шестью, например, с семью или восемью неперекрывающимися эпитопами, путем тщательного подбора антител.
Еще в одном варианте осуществления изобретения композиция содержит более одной молекулы антитела, например, два антитела, связывающие разные, но перекрывающиеся эпитопы. Может оказаться выгодным включать в композицию антитела с перекрывающимися эпитопами, поскольку это увеличивает вероятность связывания эпитопа. Одно логическое обоснование такого подхода заключается в том, что у некоторых пациентов и/или в некоторых раковых клетках эпитоп может измениться вследствие конформационных изменений, мутаций или SNP. Хотя это может повлиять на связывание одного антитела, связывающая способность другого антитела, взаимодействующего с перекрывающимся эпитопом, затронута не будет. Кроме того, существует риск, что одно из антител будет выводиться из организма больного, поскольку оно будет распознано как антиген. Включая в композицию два антитела, связывающие разные, но перекрывающиеся эпитопы, можно уменьшить последствия элиминации одного из двух антител и последствия мутации в эпитопе.
Так, в одном из вариантов осуществления изобретения композиция содержит два антитела, связывающие разные, но перекрывающиеся эпитопы. Еще в одном варианте осуществления изобретения композиция содержит две различные молекулы антитела, связывающие один и тот же эпитоп. Антитела, связывающие один и тот же эпитоп или перекрывающиеся эпитопы, могут иметь одинаковый изотип или разные изотипы.
Таким образом, композиция, содержащая антитела, направленные против трех неперекрывающихся эпитопов, может включать четыре, пять или шесть различных молекул антител, причем два антитела связывают два перекрывающихся эпитопа или один и тот же первый эпитоп, два других антитела связывают два других перекрывающихся эпитопа или один и тот же второй эпитоп, а еще два антитела связывают два других перекрывающихся эпитопа или один и тот же третий эпитоп. Разумеется, композиция может включать более двух, например, три или четыре молекулы антител, способные связывать перекрывающиеся эпитопы или способные связывать один и тот же эпитоп. Таким образом, общее число антител, включенных в композицию, может превышать 6, причем для каждого эпитопа имеется более одного антитела, или имеется несколько антител с перекрывающимися эпитопами. При сохранении постоянной общей дозы антител включение в композицию каждого дополнительного антитела подразумевает снижение концентрации каждого антитела. Следовательно, ожидается, что существует предел по числу антител, которые можно включать в композицию, не снижая ее приемлемой эффективности. Основываясь на наблюдениях, полученных в исследованиях связывания с поверхностным плазмонным резонансом и анализах пролиферации, а также принимая во внимание проблемы производства, следует ожидать, что увеличение числа антител в композиции с 6 до 7, 8, 9, 10 или более принесет совсем небольшие дополнительные преимущества (если вообще принесет их). Разумеется, это не исключает того, что композиция может включать более 10 антител, например, 11, 12, 13, 14, 15, 16, 17, 18, 19 или 20 антител и более, например, 25 антител или более, например, 30 антител или более, например, 40 антител или более, например, 50 антител или более.
Хотя предпочтительно включать в композицию антител по изобретению, антитела, способные связывать, по меньшей мере, три неперекрывающихся эпитопа EGFR, превосходные результаты также были получены при использовании специфических комбинаций антител, способных связывать два неперекрывающихся эпитопа EGFR. Такие предпочтительные композиции "двух антител" более подробно описаны ниже, наряду с руководящими указаниями по составлению композиций антител в соответствии с настоящим изобретением. Оказалось, что по сравнению с композицией из трех антител, включающей антитела 992, 1030 и 1042, примерно такую же или даже большую эффективность можно получить при использовании композиции, состоящей только из двух антител: 992 и 1024. Поскольку антитела 1024 и 1042 относятся к одной и той же группе и, следовательно, имеют одинаковую специфичность связывания, по сути дела, результаты, наблюдаемые при использовании композиции из трех антител, включая эффект терминальной дифференциации, можно приписать только двум специфичностям связывания в композиции (992 и 1024/1042).
В одном из вариантов осуществления изобретения, по меньшей мере, одно антитело в композиции связывает эпитоп домена III, более предпочтительно, чтобы композиция включала, по меньшей мере, два антитела, связывающие эпитопы домена III, а также композиция может включать три антитела, связывающие эпитопы домена III.
Предпочтительно, чтобы композиция включала, по меньшей мере, одно антитело, связывающее эпитоп домена I, или, по меньшей мере, два антитела, связывающие эпитопы домена I.
Предпочтительно, чтобы композиция включала, по меньшей мере, одно антитело, связывающее эпитоп домена II, или антитела, связывающие два эпитопа домена II.
Композиция также может включать антитело, связывающее эпитоп домена I/II, как это определено здесь.
Композиция может включать антитело, способное связывать эпитоп домена IV.
Предпочтительно, чтобы композиция включала, по меньшей мере, одну молекулу антитела, способную ингибировать связывание EGF.
Еще в одном предпочтительном варианте осуществления изобретения композиция может включать антитело, способное предотвращать фосфорилирование EGFR.
Кроме того, композиция может включать антитело, способное усиливать интернализацию/разрушение EGFR.
В предпочтительном варианте осуществления изобретения композиция содержит, по меньшей мере, одно антитело к домену III и, по меньшей мере, одно антитело к домену I/II. Еще в одном предпочтительном варианте осуществления изобретения композиция содержит, по меньшей мере, два антитела к домену III и одно антитело к домену I.
В следующем предпочтительном варианте осуществления изобретения композиция содержит, по меньшей мере, два антитела к домену III, например, три антитела к домену III.
Антитела, входящие в состав композиции, могут представлять собой химерные антитела с вариабельными цепями происхождения, отличного от человека, и константными цепями человека. Вариабельные цепи происхождения, отличного от человека, могут быть получены от мышей, крыс, овец, свиней, кур, приматов, не являющихся людьми, или других подходящих животных. Для того чтобы получить полностью человеческие антитела, их можно генерировать в организме трансгенного животного с генами антител человека. Антитела также могут представлять собой так называемые гуманизированные антитела, в которых последовательности CDR нечеловеческого происхождения были пересажены в каркасные последовательности человека.
Предпочтительно, чтобы константная цепь человека относилась к изотипу IgG1 или IgG2. С точки зрения простоты получения более предпочтительно, чтобы все антитела в составе композиции относились к одному и тому же изотипу. Однако может быть полезным включение в композицию антител с разным изотипом.
Предпочтительно, чтобы композиции антител по изобретению включали антитела, способные связываться с EGFR, выбранным из группы, состоящей из EGFR человека, мутантного EGFR человека и делеционных вариантов EGFR человека. Предпочтительно, чтобы антитела были способны связывать как EGFR человека, так и EGFR приматов не являющихся людьми, то есть их можно было бы испытать перед клиническими экспериментами в релевантных токсикологических исследованиях. Предпочтительным приматом, не являющимся человеком, является обезьяна cynomolgous (Macaca fascicularis).
Для того чтобы поддержать описанную выше концепцию лечения EGFR-зависимого рака с применением антител, связывающих три или более различных эпитопов, настоящее изобретение создает основу для идентификации, изготовления и описания свойств серии химерных антител (мышь/человек), направленных против EGFR. Эти химерные антитела были сравнены по отдельности и в смесях с современными моноклональными антителами, примерами которых являются эрбитукс (Erbitux™) и вектибикс (Vectibix™).
В таблице 1 приведены сводные данные по отдельным химерным антителам и связанным с ними признакам. Номер антитела представляет собой регистрационный номер, используемый во всем тексте настоящей заявки. В столбце Специфичность указан домен EGFR, с которым связывается антитело, как это показано в примере 3. В столбце EGFR дельта приведены данные о способности антитела связывать мутант (EGFRvIII), как это описано в примере 1. В столбце EGFR cynomolgous указана способность антитела связывать EGFR обезьян cynomolgous (пример 10). В столбце Ингиб. EGF указана способность антитела ингибировать связывание EGF (пример 4). В столбце Пролиферация указана способность антитела ингибировать пролиферацию линий раковых клеток А431 и HN-5 (пример 6).
Таблица 1 | |||||
Антитела по изобретению | |||||
№ антитела | Специфичность | EGFR дельта | EGFR cynomolgous | Ингиб. EGF | Пролиферация |
992 | домен III | нет/слабая | да | да/слабая | да |
1030 | домен III | Да | да | да | да |
1024 | домен III | да | да | да | |
1042 | домен III | слабая | да | (да) | да |
1277 | домен III | да | да | да | HN-5 |
1254 | домен III | да | да | да | HN-5 |
1208 | домен III | да | да | да | да HN-5+/-992 |
1320 | домен III | слабая | нет | да | да |
1257 | домен I/II | нет | да | нет | да |
1261 | домен I | нет | да | нет | да |
1229 | не домен I/II | да | нет | нет | да (A431) |
1284 | домен I | нет | да | да | да |
1344 | домен I/II | нет | да | н.о. | HN5 w/992 |
1260 | домен I/II | нет | да | да | A431 |
1308 | домен I | нет | да | н.о. | HN5 w/992 |
1347 | домен I | нет | да | н.о. | HN5 w/992 |
1428 | домены I и II | нет | да | да | HN5 w/992 |
По данным, полученным при анализе химерных антител, исследованных по отдельности или в комбинации в отношении таких признаков как пролиферация, связывание, разрушение/инактивация рецептора и анализы подвижности, а также в исследованиях на животных моделях можно сделать много выводов.
Результаты, полученные с двумя линиями раковых клеток, HN-5 и A431 (пример 6) были воспроизведены на разных линиях раковых клеток (MDA-MB-468 - линия клеток рака молочной железы, DU145 - линия клеток рака предстательной железы). Из этих экспериментов с очевидностью следует, что комбинации антител, предлагаемые авторами настоящего изобретения, проявляют эффективность против очень широкого диапазона линий раковых клеток, поддерживая эффективность композиций антител против ряда конформаций EGFR.
Также было показано, что превосходство смесей антител в большей степени проявляется в анализах пролиферации при добавлении к питательной среде физиологических концентраций лиганда (EGF) по сравнению с такой же схемой анализа, но без добавления EGF (фиг.17). Согласно литературным данным (Hayashi and Sakamoto 1998, J Pharmacobiodyn 11;146-51) сыворотка содержит приблизительно 1-1,8 нг/мл или 0,2-0,3 нМ EGF, тогда как желудочный сок содержит 0,3 нг/мл (приблизительно 0,05 нМ) (Pessonen et al. 1987 Life Sci. 40; 2489-94). По-видимому, в условиях in vivo представлены EGF и другие лиганды EGFR, следовательно, важным признаком смесей антител по настоящему изобретению является их способность проявлять свою эффективность в присутствии таких лигандов EGFR.
Химерные антитела мышь/человек в соответствии с настоящим изобретением обеспечивают лучшие результаты при использовании в комбинации по сравнению с их применением по отдельности. Этот факт иллюстрируется в нескольких экспериментах (см., например, пример 6), когда антитела, тестируемые по отдельности, проявляют лишь умеренные антипролиферативные воздействия на линию раковых клеток (A431-NS), но при использовании в любой комбинации дают намного лучшие результаты. Эти результаты были подтверждены при исследовании множества комбинаций химерных антител по настоящему изобретению. Особенно превосходные результаты были получены при использовании композиции, содержащей антитела 992 и 1024.
Например, некоторые из антител были протестированы в антипролиферативном анализе с линиями клеток A431-NS и HN-5 вместе с любым из антител 992, 1208, 1254 и 1277.
Исследования по связыванию рецептора показали, что некоторые антитела могут фактически стимулировать связывание добавочных антител таким образом, что конкретное антитело связывается с рецептором в большем количестве после насыщения рецептора одним или несколькими антителами. Связывание антитела 992, направленного против домена III, очевидно, извлекает пользу из этого синергического эффекта, полученного при предварительном насыщении рецептора одним или несколькими антителами, которые связывают неперекрывающиеся эпитопы. Еще один пример такого кооперативного эффекта наблюдается, когда антитело 1396, направленное против неизвестного эпитопа, тестируется против EGFR, насыщенного антителами, которые связывают неперекрывающиеся эпитопы.
Исследования по связыванию рецептора также показали, что одновременно связываться с внеклеточным доменом EGFR могут, по меньшей мере, 6 антител. Эти 6 антител представлены 3 антителами к домену III, одним антителом к домену I, одним антителом к домену I/II и одним антителом, связывающим неизвестный эпитоп. Интересно, что связывание трех антител к домену III, по-видимому, облегчает последующее связывание добавочных антител. Это, очевидно, поддерживает концепцию создания композиций антител с несколькими антителами, связывающими разные эпитопы.
При разработке композиции антител против EGFR предпочтительны антитела с неперекрывающимися эпитопами, поскольку они обеспечивают более высокий синергический эффект.
Также предпочтительно, чтобы, по меньшей мере, одно из антител в смеси (когда оно тестируется изолированно), было способно ингибировать связывание лиганда с EGFR, например, способно ингибировать связывание EGF, и/или способно ингибировать связывание альфа-TGF, и/или способно ингибировать связывание амфирегулина. Предпочтительно, чтобы антитело, способное ингибировать связывание EGF, было выбрано из группы, состоящей из антител 992, 1030, 1024, 1042, 1208, 1254, 1277, 1284, 1320 и 1428, более предпочтительно, из группы, состоящей из антител 1208, 1260, 1277 и 1320.
Также предпочтительно, чтобы, по меньшей мере, одно антитело, входящее в состав смеси антител, было способно уменьшать фосфорилирование EGFR. Примеры антител по изобретению, которые обладают такими свойствами, включают: 992, 1030, 1042, 1208, 1277 и 1320.
Домен III EGFR важен для связывания лиганда с рецептором. Кроме того, антитело, связывающееся с доменом III, может стабилизировать EGFR в связанной мономерной конформации, которая не приводит к передаче сигналов рецептором. По этим соображениям предпочтительно, чтобы композиция антител содержала, по меньшей мере, одно антитело со специфичностью к домену III. Предпочтительные антитела к домену III включают антитела 992, 1024, 1030, 1208, 1254, 1277 и 1320. Более предпочтительно, чтобы, по меньшей мере, антитело к домену III было выбрано из группы, состоящей из антител 992, 1254, 1277, 1208 и 1320. Предпочтительная композиция антител может содержать более одного антитела к домену III, например, по меньшей мере, 3 антитела к домену III, например, по меньшей мере, 4 антитела к домену III, например, по меньшей мере, 5 антител к домену III, например, по меньшей мере, 6 антител к домену III.
Еще в одном предпочтительном варианте осуществления изобретения композиция антител содержит, по меньшей мере, одно антитело к домену I. Предпочтительно, чтобы, по меньшей мере, одно антитело к домену I было выбрано из группы, состоящей из антител 1284, 1308, 1344 и 1347. Более предпочтительно, чтобы, по меньшей мере, одно антитело к домену I было выбрано из группы, состоящей из антител 1284 и 1347.
Еще в одном предпочтительном варианте осуществления изобретения композиция антител содержит, по меньшей мере, одно антитело к домену I/II. Предпочтительно, чтобы, по меньшей мере, одно антитело к домену I/II было выбрано из группы, состоящей из антител 1257, 1260, 1261, 1428 и 1434. Более предпочтительно, чтобы, по меньшей мере, одно антитело к домену I/II было выбрано из группы, состоящей из антител 1261 и 1260.
Эффективные специфические комбинации двух антител по настоящему изобретению включают:
Антитело 1280 вместе с 1024, 1320, 1308, 1284, 1260 или 1030, предпочтительно, с 1320 или 1284.
Антитело 1254 вместе с 1024, 1030, 1260, 1284, 1308 или 1320, предпочтительно, с 1320, 1284 или 1260.
Антитело 1277 вместе с 1024, 1030, 1260, 1284, 1308 или 1320, предпочтительно, с 1320, 1284 или 1260.
Антитело 992 вместе с 1030, 1260, 1284, 1308, 1320 или 1024, предпочтительно, с 1320, 1024 или 1284.
Примеры лучших и предпочтительных смесей двух антител включают 992+1024, 992+1320, 992+1042, 1277+1320, 1208+1320. Особенно предпочтительна смесь 992+1024.
Предпочтительные смеси с тремя антителами включают: Антитела 992+1030+1042, 992+1320+1024, 992+1024+1030, 1320+1284+1261, 1320+1214+1320, 992+1284+1320, 992+1255+1024, 992+1030+1320, 992+1024+1214, 992+1261+1320, 992+1024+1284, 992+1024+1211, 992+1024+1030, 1260+1214+1254, 992+1255+1320, 992+1211+1320, 992+1030+1261, 992+1260+1030, 992+1260+1320, 992+1030+1214.
Предпочтительные смеси с четырьмя антителами включают: Антитела 992+1320+1024+1030, 992+1024+1030+1284, 1277+1320+1260+1347, 1277+1320+1261+1347, 1277+1320+1261+1284, 1254+1320+1260+1347, 1254+1320+1261+1347, 1254+1320+1261+1284, 1254+1024+1260+1347, 1254+1024+1261+1347, 1254+1024+1261+1284, 1277+1024+1260+1347, 1277+1024+1261+1347, 1277+1024+1261+1284.
Предпочтительные смеси с 5 антителами включают: 992+1030+1024+1260+1347, 992+1030+1024+1261+1347, 992+1030+1024+1261+1284, 992+1030+1320+1260+1347, 992+1030+1320+1261+1347, 992+1030+1320+1261+1284.
Одна предпочтительная смесь с 8 антителами включает: 992+1030+1024+1277+1254+1320+1260+1261+1284+1347.
Кроме того, чтобы можно было провести токсикологическое исследование приматов, не являющихся людьми, предпочтителен такой вариант, когда все антитела в композиции связываются с EGFR человека и, по меньшей мере, с одним дополнительным EGFR примата, например, EGFR шимпанзе, macaca mulatta, макака-резус и других макаков или обезьян cynomolgous. Обезьяна cynomolgous представляет собой относительно небольшое животное и очень хорошо подходит для токсикологических исследований. Таким образом, предпочтительным EGFR примата является EGFR обезьяны cynomolgous. Предпочтительно, чтобы антитела связывали EGFR человека и EGFR примата, не являющегося человеком, приблизительно с одинаковой аффинностью.
Настоящее изобретение продемонстрировало лучшие результаты в одном или более функциональных анализов при комбинировании в одной композиции 2, 3, 4, 5, 6, 7 и 8 антител. Хотя эти данные дают руководящую основу для выбора числа антител в композиции, их никоим образом не следует воспринимать как ограничительные. Композиция может содержать более 8 антител, даже несмотря на то, что экспериментальные данные демонстрируют одновременное связывание только для 6 антител. Могут иметь место другие соображения для включения в композицию более 6 антител, например, связанные с различиями в скорости выведения различных антител.
Следующим предпочтительным признаком антител в композициях является их белковая однородность, то есть возможность достаточно простой очистки антител. Применительно к отдельным членам композиции антител предпочтителен профиль ионообменной хроматографии с одним четко выраженным пиком, что облегчает определение параметров. Четкий профиль ионообменной хроматографии также предпочтителен для простоты определения параметров конечной композиции антител. Также предпочтительно комбинировать в композиции такие антитела, которые можно отличить друг от друга при помощи ионообменной хроматографии, чтобы можно было определить параметры композиции со всеми антителами при одном прогоне.
Антитела могут иметь любое происхождение, например, человеческое, мышиное, кроличье, куриное, свиное, овечье или от ламы. Антитела также могут быть химерными, как это описано в примерах, а также могут быть гуманизированными, супергуманизированными или их переформированными версиями, созданными с применением хорошо известных способов, описанных в данной области техники.
Предпочтительная композиция антител
Как показано в прилагаемых примерах, композиция антител против EGFR, основанная на антителах 992 и 1024, имеет уникальные отличительные свойства. Связывание антитела 992 усиливается за счет связывания других антител, включая 1024. В отличие от поступающих в продажу антител, как 992, так и 1024 преимущественно связываются с представленными на клетках конформационными эпитопами (примеры 14 и 15). Эпитопы антител 992 и 1024 перекрываются с эпитопами эрбитукса и вектибикса, но отличаются от них. В отличие от многих других композиций из двух антител, в которых отдельные антитела связываются с неперекрывающимися эпитопами, композиция, основанная на специфичностях связывания антител 992 и 1024 быстро и эффективно запускает интернализацию рецептора. На животной модели после лечения композициями антител, основанными на антителах 992 и 1024, наблюдался новый механизм действия, включающий терминальную дифференциацию, сопровождающуюся повышенной экспрессией инволюкрина и появлением жемчужин кератина. Этот уникальный механизм действия приводит к более эффективному и длительному ингибированию роста раковых клеток как in vitro, так и in vivo. Указанные явления наиболее отчетливо наблюдаются в примерах in vivo, когда опухоли продолжают уменьшаться и после окончания лечения. В контрольной группе, получавшей эрбитукс, опухоли возобновляли рост после окончания лечения. Это явно указывает на разные механизмы действия.
Авторы изобретения полагают, что новый механизм действия достигается при использовании комбинации двух специфичностей связывания, проявляемых антителами 992 и 1024 в одной композиции антител. Такой механизм действия также наблюдается при использовании третьего антитела, не конкурирующего с антителами 992 и 1024, например, в тройной комбинации антител 992, 1024 и 1030.
Эти наблюдения привели к разработке композиции, содержащей, по меньшей мере, 2 разные молекулы антител против EGFR человека, в которой первая индивидуальная молекула антитела против EGFR выбрана из группы, состоящей из антитела 992, антитела, содержащего последовательности антитела 992 VL (аминокислоты 3-109 из SEQ ID NO 72) и VH (аминокислоты 3-124 из SEQ ID NO 40), антитела, имеющего области CDR3 из антитела 992 (SEQ ID NO 116 и 111), антитела, связывающегося с тем же эпитопом, что и антитело 992, и антитела, способного ингибировать связывание антитела 992 с EGFR человека, а вторая индивидуальная молекула антитела против EGFR выбрана из группы, состоящей из антитела 1024, антитела, содержащего последовательности антитела 1024 VL (аминокислоты 3-114 из SEQ ID NO 73) и VH (аминокислоты 3-120 из SEQ ID NO 41), антитела, имеющего области CDR3 из антитела 1024 (SEQ ID NO 120 и 114), антитела, связывающегося с тем же эпитопом, что и антитело 1024, и антитела, способного ингибировать связывание антитела 1024 с EGFR человека.
Предпочтительно, чтобы указанная первая индивидуальная молекула антитела против EGFR была выбрана из группы, состоящей из антитела 992, антитела, содержащего последовательности VL и VH из антитела 992, антитела, имеющего области CDR3 из антитела 992, и антитела, связывающегося с тем же эпитопом, что и антитело 992, а указанная вторая индивидуальная молекула антитела против EGFR была выбрана из группы, состоящей из антитела 1024, антитела, содержащего последовательности VL и VH из антитела 1024, антитела, имеющего области CDR3 из антитела 1024, и антитела, связывающегося с тем же эпитопом, что и антитело 1024.
Настоящее изобретение рассматривает мутации в последовательностях CDR3 антител 992 и 1024, чтобы создавать антитела с такой же специфичностью связывания. Поэтому в одном из вариантов осуществления изобретения антитело, имеющее такую же специфичность связывания, что и антитело 992, содержит CDRH3, имеющий следующую формулу: CTX1X2X3X4X5X6X7X8X9X10X11X12X13X14X15W, где позиции от Х1 до Х15 индивидуально выбраны из перечисленных ниже групп аминокислот:
X1=R или K,
Х2=N, D, Е или Q,
Х3=G, А, V или S,
Х4=D, Е, N или Q,
Х5=Y, F, W или Н,
X6 = Y, F, W или H,
X7 = V, I, L или A,
X8 = S, T, G или A,
X9 = S, T, G или A,
X10 = G, A, V или S,
X11 = D, E, N или Q,
X12 = A, G, V или S,
X13 = M, L, I или V,
X14 = D или E, и
X15 = Y или F,
а CDRL3 описывается следующей формулой: CX1X2X3X4X5X6PPTF, где позиции от X1 до X6 индивидуально выбраны из перечисленных ниже групп аминокислот:
X1 = Q или H,
X2 = H, E или Q,
X3 = Y, F, W или H,
X4 = N, Q или H,
X5 = T, S, G или A, и
X6 = V, I, L или A.
В одном из вариантов осуществления изобретения антитело, имеющее такую же специфичность связывания, что и антитело 1024, содержит CDRH3, имеющий следующую формулу: CVX1X2X3X4X5X6X7X8X9X10X11W, где позиции от X1 до X11 индивидуально выбраны из перечисленных ниже групп аминокислот:
X1 = R или K,
X2 = Y, F W или H,
X3 = Y, F, W или H,
X4 = G, A, V или S,
X5 = Y, F, W или H,
X6 = D, E, N или Q,
X7 = E или D,
X8 = A, G, V или S,
X9 = M, L, I или V,
X10 = D, E, N или Q, и
X11 = Y или F,
а CDRL3 описывается следующей формулой: CX1X2X3X4X5X6PX7TF, где позиции от X1 до X7 индивидуально выбраны из перечисленных ниже групп аминокислот:
X1 = A, G или V,
X2 = Q или H,
X3 = N, Q или H,
X4 = L, I, M или V,
X5 = E, D, N или Q,
X6 = L, I, M или V, и
X7 = Y, F, W или H.
Применяя стандартные методики, можно получить антитела с мутантными областями CDR3, экспрессировать их и протестировать на связывание, используя описанные здесь способы.
В соответствии с этим аспектом изобретения антитела могут быть химерными, человеческими, гуманизированными, переформированными или супергуманизированными. Этих результатов можно достичь, применяя способы, известные в данной области техники. Например, антитела 992 и 1024 можно гуманизировать, применяя способы, описанные в примере 18. Способы "супергуманизации" описаны в патенте США №6881557.
Более предпочтительно, чтобы указанная первая индивидуальная молекула антитела против EGFR была выбрана из группы, состоящей из антитела 992, антитела, содержащего последовательности VL и VH из антитела 992, и антитела, имеющего области CDR3 из антитела 992, а указанная вторая индивидуальная молекула антитела против EGFR была выбрана из группы, состоящей из антитела 1024, антитела, содержащего последовательности VL и VH из антитела 1024, и антитела, имеющего области CDR3 из антитела 1024.
Более предпочтительно, чтобы указанная первая индивидуальная молекула антитела против EGFR была выбрана из группы, состоящей из антитела 992 и антитела, содержащего последовательности VL и VH из антитела 992, а указанная вторая индивидуальная молекула антитела против EGFR была выбрана из группы, состоящей из антитела 1024 и антитела, содержащего последовательности VL и VH из антитела 1024.
Наиболее предпочтительно, чтобы композиция состояла из антител 992 и 1024.
Как описано здесь, предпочтительно, чтобы первое и второе антитела против EGFR не ингибировали связывание друг друга с EGFR человека. Еще более предпочтительно, чтобы, по меньшей мере, одно из антител было способно увеличивать максимальную мощность связывания другого антитела с EGFR человека. Этот эффект наблюдается для антител 992 и 1024 (пример 16).
Соотношение между двумя антителами необязательно должно составлять точную величину 1:1. Следовательно, доля первого антитела в композиции по отношению ко второму антителу может составлять от 5 до 95%, например, от 10 до 90%, предпочтительно, от 20 до 80%, более предпочтительно, от 30 до 70%, более предпочтительно, от 40 до 60%, например, от 45 до 55%, например, приблизительно 50%.
Предпочтительно, чтобы первое и второе антитела относились к изотипу IgG1 или IgG2.
Примерами антител, связывающимися с тем же эпитопом, что и антитело 992, которые были идентифицированы авторами настоящего изобретения, являются антитела из кластера антител, содержащего клоны 1209, 1204, 992, 996, 1033 и 1220.
Примерами антител, связывающимися с тем же эпитопом, что и антитело 1024, которые были идентифицированы авторами настоящего изобретения, являются антитела из кластера антител, содержащего клоны 1031, 1036, 1042, 984, 1024, 1210, 1217, 1221 и 1218.
Специфичность связывания антител определяют последовательности CDR3. В предпочтительных вариантах осуществления изобретения антитело, содержащее область CDR3 из антитела 992, дополнительно содержит CDR1 и CDR2 из VH и VL антитела 992. Таким же образом, предпочтительное антитело, содержащее область CDR3 из антитела 1024, дополнительно содержит CDR1 и CDR2 из VH и VL антитела 1024. Последовательности CDR антител можно найти в таблице 12 (пример 17).
В других вариантах осуществления изобретения антитело, конкурирующее с антителом 992, выбирают из группы, состоящей из антител 1208, 1254 и 1277. Таким же образом, антитело, конкурирующее с антителом 1024, можно выбрать из группы, состоящей из антител 1042 и 1320.
В одном из вариантов осуществления изобретения композиция не содержит добавочных антител в дополнение к указанным первому и второму антителам, более предпочтительно, никаких дополнительных антител против EGFR.
В других вариантах осуществления изобретения композиция дополнительно содержит третье индивидуальное антитело против EGFR, причем молекула указанного третьего индивидуального антитела против EGFR может быть выбрана из группы, состоящей из антитела 1030, антитела, содержащего последовательности VL (аминокислоты 3-113 из SEQ ID NO 74) и VH (аминокислоты 3-120 из SEQ ID NO 42) антитела 1030, антитела, имеющего области CDR3 из антитела 1030 (SEQ ID NO 112 и 119), антитела, связывающегося с тем же эпитопом, что и антитело 1030, и антитела, способного ингибировать связывание антитела 1030 с EGFR человека. Предпочтительно, чтобы указанное третье антитело приводило к усилению связывания указанного первого и/или второго антитела с EGFR человека. В одном из вариантов осуществления изобретения композиция не содержит добавочных антител в дополнение к указанным первому, второму и третьему антителам, более предпочтительно, никаких дополнительных антител против EGFR.
Антитело, связывающееся с тем же эпитопом, что и антитело 1030, может быть выбрано из кластера антител, состоящего из клонов 1195, 1030, 1034, 1194, 980, 981, 1246 и 1223.
Антитело, содержащее область CDR3 из антитела 1030, может дополнительно содержать области CDR1 и CDR2 из VH и VL антитела 1030.
Антитела, входящие в композицию, могут находиться в общем контейнере для введения. Однако их можно производить, очищать и исследовать их свойства по отдельности, составляя композицию в двух или трех разных контейнерах, то есть, как набор частей с одним антителом в каждом контейнере. Эти части набора, как таковые, можно вводить одновременно, последовательно или по отдельности.
В дальнейшем аспекте две специфичности связывания антител 992 и 1024 комбинируются в одной биспецифической связывающей молекуле. Предпочтительно, чтобы биспецифическая связывающая молекула содержала последовательности CDR из антител 992 и 1024, более предпочтительно, последовательности VH и VL антител 992 и 1024. Биспецифическая связывающая молекула может представлять собой антитело с двойным вариабельным доменом, как это описано в примере 19. Биспецифическая связывающая молекула также может быть сконструирована в виде биспецифического фрагмента Fab, биспецифического scFV или диатела, как это описано в литературе.
Предпочтительно, чтобы композиции антител, основанные на специфичностях связывания антител 992 и 1024, приводили к одной или нескольким интернализаций рецептора, к регрессу опухолей A431NS in vivo, к индуцированию терминальной дифференциации клеток A431NS in vivo и к повышающей регуляции экспрессии опухолевого инволюкрина in vivo.
В настоящем документе приведено несколько примеров антител, проявляющих такие же или сходные эффекты, как и комбинация антител 992 и 1024. Примеры такого рода включают антитела, полученные в результате одной и той же иммунизации и относящиеся к одним и тем же кластерам, а также антитела, индивидуально конкурирующие с одним или двумя антителами. Композиции антител с одинаковым или сходным эффектом можно сконструировать на основе последовательностей VL и VH антител 992 и 1024, а также на основе CDR этих антител, особенно, CDR3 двух антител.
Дополнительные композиции антител с одинаковым эффектом или сходными эффектами можно изготовить, проводя иммунизацию и скрининг, по существу, так, как это описано в примерах. Антитела с такой же специфичностью связывания, как и антитела 992 и 1024, можно идентифицировать в двух отдельных анализах на конкуренцию, как это описано здесь. Наконец, композиции антител, в которых одно антитело усиливает связывание другого антитела, можно идентифицировать, проводя эксперименты по связыванию, по существу, таким образом, как это описано в примере 16. Композиции антител, как это описано в примерах, можно дополнительно скринировать на эффекты в отношении интернализации рецептора, на эффективность in vitro и in vivo, на аффинность связывания и т.д.
Применение композиций антител по изобретению
Для применения in vivo в целях лечения и профилактики заболеваний, связанных с экспрессией EGFR (например, свехэкспрессией), антитела по изобретению вводят пациентам (например, человека) в терапевтически эффективных дозах (например, таких дозах, которые приводят к ингибированию роста, фагоцитозу, уменьшению подвижности, к терминальной дифференциации и/или уничтожению опухолевых клеток, экспрессирующих EGFR) с использованием любого подходящего способа введения, например, инъекции и других способов введения, известных в данной области техники для клинических продуктов на основе антител.
Типичные EGFR-зависимые заболевания, которые можно лечить, облегчать и/или предупреждать с применением антител по изобретению, включают, но не ограничиваясь ими, аутоиммунные и раковые заболевания. Например, раковые заболевания, которые можно лечить, облегчать и/или предупреждать, включают рак мочевого пузыря, рак молочной железы, рак матки/шейки матки, рак почки, рак яичника, рак предстательной железы, почечно-клеточный рак, рак поджелудочной железы, рак толстой кишки, рак прямой кишки, рак желудка, плоскоклеточный рак, рак легких (немелкоклеточный), рак пищевода, рак головы и шеи, рак кожи. Аутоиммунные заболевания, которые можно лечить, включают, например, псориаз.
Еще в одном варианте осуществления изобретение относится к способу лечения, облегчения и/или профилактики глиобластомы, включая мультиформную глиобластому; астроцитомы, включая детскую астроцитому, глиомы; нейробластомы; нейроэндокринных опухолей желудочно-кишечного тракта; бронхоальвеолярной карциномы; фолликулярной папиллокарциномы; карциномы слюнных желез; амелобластомы; злокачественной периферийной невриномы; эндокринных опухолей поджелудочной железы или тестикулярных гермином, включая семиному, эмбриональную карциному, опухоль желточного мешка, тератому и хориокарциному.
Выделение и отбор кодирующих пар тяжелых вариабельных цепей и легких вариабельных цепей
Процесс генерирования композиции рекомбинантных антител против EGFR включает выделение из подходящего источника последовательностей, кодирующих вариабельные тяжелые цепи (VH) и вариабельные легкие цепи (VL), то есть генерирование репертуара кодирующих пар для VH и VL. Обычно подходящим источником для получения кодирующих последовательностей VH и VL являются фракции клеток, содержащие лимфоциты, в частности образцы крови, селезенки или костного мозга от животного не являющегося человеком, иммунизированного/вакцинированного полипептидом или пептидом EGFR человека или белками EGFR, полученными из клеток, экспрессирующих EGFR человека, или клетками, экспрессирующими EGFR человека, или фракциями таких клеток. Предпочтительно, чтобы фракции, содержащие лимфоциты, были получены от млекопитающих, не являющихся людьми, или трансгенных животных, с генами иммуноглобулина человека. Собранная фракция клеток, содержащая лимфоциты, может быть дополнительно обогащена для получения специфической популяции лимфоцитов, например, клеток из линий B-лимфоцитов. Предпочтительно, чтобы обогащение проводилось с применением сортировки клеток на магнитных частицах (MACS) и/или сортировки клеток с флуоресцентной активацией (FACS), пользуясь линиеспецифическими маркерными белками на клеточной поверхности, например, для B-клеток, плазмабластов и/или плазмацитов. Предпочтительно, чтобы клеточная фракция, содержащая лимфоциты, была обогащена и отсортирована на B-клетки, плазмабласты и/или плазмациты. Еще более предпочтительно, чтобы клетки с высокой экспрессией CD43 и CD138 были выделены из селезенки или крови. Эти клетки иногда называют циркулирующими плазматическими клетками, ранними плазматическими клетками или плазмабластами. Например, в настоящем изобретении их называют только плазмацитами, хотя взаимозаменяемо могут употребляться и другие термины.
Выделение кодирующих последовательностей VH и VL можно осуществлять классическим способом, когда кодирующие последовательности VH и VL случайно комбинируются в векторе для создания комбинаторной библиотеки пар кодирующих последовательностей VH и VL. Однако в настоящем изобретении предпочтительно отражать различие, аффинность и специфичность антител, выработанных при гуморальном иммунном ответе на иммунизацию EGFR. Это включает сохранение спаривания VH и VL, изначально представленного у донора, то есть создание репертуара пар последовательностей, в котором каждая пара кодирует вариабельную тяжелую цепь (VH) и вариабельную легкую цепь (VL), соответствующие паре цепей VH и VL, изначально представленной в антителе, вырабатываемом тем донором, от которого были выделены эти последовательности. Это также называют когнатной парой кодирующих последовательностей VH и VL, а антитело называют когнатным антителом. Предпочтительно, чтобы кодирующие пары VH и VL, рассматриваемые в настоящем изобретении (комбинаторные или когнатные), были получены от доноров мышей, то есть последовательности были бы мышиными.
Существует несколько разных подходов к генерированию когнатных пар кодирующих последовательностей VH и VL, причем один из подходов включает амплификацию и выделение кодирующих последовательностей VH и VL из единичных клеток, отсортированных из фракции клеток, содержащей лимфоциты. Для того чтобы получить репертуар пар кодирующих последовательностей VH и VL, который отражает разнообразие пар последовательностей VH и VL у донора, предпочтительно применять высокопроизводительный способ по возможности с минимальным скремблированием (случайным комбинированием) пар VH и VL, например, как это описано в документе WO 2005/042774 (включенном сюда в качестве ссылки).
Кодирующие последовательности VH и VL можно амплифицировать по отдельности и спаривать на втором этапе либо можно спаривать их во время амплификации (Coronella et al. 2000. Nucleic Acids Res. 28: E85; Babcook et al 1996. PNAS 93: 7843-7848 и WO 2005/042774). Второй подход включает внутриклеточную амплификацию и спаривание кодирующих последовательностей VH и VL (Embleton et al. 1992. Nucleic Acids Res. 20: 3831-3837; Chapal et al. 1997. BioTechniques 23: 518-524). Третий подход заключается в применении способа избранных лимфоцитарных антител (SLAM), который сочетает в себе локальный гемолиз в геле с клонированием кДНК VH и VL (Babcook et al. 1996. PNAS 93:7843-7848). Еще один способ, который можно использовать на мышах, представляет собой стандартную методику гибридомы, сопровождающуюся скринингом и отбором ведущих кандидатов с последующим клонированием кодируемых антител.
В предпочтительном варианте осуществления настоящего изобретения репертуар кодирующих пар VH и VL, в котором разные пары-члены отражают пары генов, ответственные за гуморальный иммунный ответ на иммунизацию EGFR, создается в соответствии со способом, включающим этапы i) получения фракции клеток, содержащей лимфоциты, от животного донора, иммунизированного EGFR человека, ii) факультативного обогащения указанной клеточной фракции B-клетками или плазмацитами, iii) получения популяции выделенных единичных клеток, содержащей дистрибутивные клетки из указанной клеточной фракции по отдельности во множестве сосудов, iv) амплификации и результирующего сцепления кодирующих пар VH и VL в мультиплексной процедуре RT-PCR с удлинением перекрывания и с применением матрицы, полученной из указанных единичных клеток, v) факультативного проведения вложенной PCR сцепленных кодирующих пар VH и VL. Предпочтительно, чтобы выделенные когнатные кодирующие пары VH и VL были подвергнуты процедуре скрининга, как это описано ниже.
После того как были генерированы пары последовательностей VH и VL, проводят процедуру скрининга для идентификации последовательностей, кодирующих пары VH и VL с реактивностью связывания в отношении EGFR-ассоциированного антигена. Предпочтительно, чтобы EGFR-ассоциированный антиген содержал такую внеклеточную часть EGFR как домен III, II, I и/или IV, фрагменты доменов или полный внеклеточный домен. Другие антигены включают такие мутанты, как делеционные мутанты EGFR или SNP, либо их фрагменты. Если пары последовательностей VH и VL являются комбинаторными, можно применить процедуру фагового дисплея для обогащения пар VH и VL, которые кодируют фрагменты антител, связывающиеся с EGFR, перед проведением скрининга.
Для того чтобы отразить разнообразие, аффинность и специфичность антител, вырабатываемых в ходе гуморального иммунного ответа на иммунизацию EGFR, настоящее изобретение позволило разработать процедуру скрининга на когнатные пары, позволяющую получить по возможности наиболее широкое разнообразие. В целях скрининга репертуар кодирующих пар когнатных VH и VL экспрессируют индивидуально либо как фрагменты антител (например, scFv или Fab), либо как полноразмерные антитела, применяя или бактериальный или происходящий от млекопитающих вектор скрининга, трансфицированный в подходящую клетку-хозяина. Репертуар Fab/антител можно скринировать (без ограничений) на реактивность по отношению к EGFR, на антипролиферативную активность против линий раковых клеток, экспрессирующих EGFR, а также на способность ингибировать связывание лиганда (например, EGF) с EGFR, на ингибирование фосфорилирования, индукцию апоптоза, интернализацию EGFR.
В параллельной серии анализов репертуар Fab/антител скринируют на действие против избранных антигенов, например, пептидов EGFR человека и, факультативно, обезьян cynomolgous или шимпанзе, или макака резус.Антигенные пептиды можно выбирать, например, из внеклеточного домена EGFR человека, мутантного внеклеточного домена EGFR человека и внеклеточного домена EGFR cynomolgous, или из их фрагментов. Пептиды могут быть биотинилированы для облегчения их иммобилизации на микрочастицах или планшетах при скрининге. Можно также использовать альтернативные средства для иммобилизации. Антигены выбирают, основываясь на знании биологии EGFR и на ожидаемом нейтрализующем и/или защитном эффекте, который потенциально могут дать антитела, способные связываться с этими антигенами. Таким же образом, эту процедуру скрининга можно применить к комбинаторной библиотеке фагового дисплея.
Рекомбинантные белки EGFR, используемые для скрининга, могут экспрессироваться в бактериях, клетках насекомых, клетках млекопитающих или другой подходящей системе экспрессии. Для правильного процессинга (включая гликозилирование) белки экспрессируются в клетках млекопитающих. Белок EGFR-ECD может либо экспрессироваться как растворимый протеин (без трансмембранной и внутриклеточной областей), либо гибридизироваться с третьим белковым компонентом для увеличения стабильности. Если белок EGFR экспрессируется со свободным хвостом для гибридизации, перед скринингом гибридный партнер может быть отщеплен. В дополнение к описанному выше первичному скринингу может быть проведен вторичный скрининг с той целью, чтобы убедиться, что ни одна из отобранных последовательностей не кодирует ложноположительные продукты.
Для скрининга, проводимого в соответствии с настоящим изобретением, обычно подходят иммунологические анализы. Такие анализы хорошо известны в данной области техники и к их числу относятся, например, ELISPOT, ELISA, FLISA, мембранные анализы (в том числе вестерн-блоттинг), матрицы на фильтрах и FACS. Анализы можно проводить без каких-либо этапов предварительного обогащения, с применением полипептидов, вырабатываемых из последовательностей, кодирующих пары VH и VL. В том случае когда репертуар кодирующих пар VH и VL представлен когнатными парами, перед скринингом нет никакой необходимости в обогащении, например, посредством фагового дисплея. Однако при скрининге комбинаторных библиотек предпочтительно проводить иммуноанализы в комбинации со способами обогащения или после способов обогащения, таких как фаговый дисплей, рибосомный дисплей, поверхностный бактериальный дисплей, дрожжевой дисплей, эукариотический вирусный дисплей, РНК-дисплей или ковалентный дисплей (см. обзор в ссылке FitzGerald, K., 2000. Drug Discov. Today 5, 253-258).
Кодирующие последовательности пар VH и VL, отобранные по результатам хода скрининга, обычно подвергают секвенированию и анализируют на различия в вариабельных областях. Особый интерес представляют различия в областях CDR, но также интересно исследовать представительство семейства VH и VL. Основываясь на этих анализах, проводят отбор последовательностей, кодирующих пары VH и VL, которые представляют общее разнообразие EGFR-связывающих антител, выделенных от одного или нескольких животных-доноров. Предпочтительно выбирать последовательности с различиями в областях CDR (CDRH1, CDRH2, CDRH3 и CDRL1, CDRL2 и CDRL3). Если встречаются последовательности с одной или несколькими идентичными или очень похожими областями CDR, которые относятся к разным семействам VH или VL, их также отбирают. Предпочтительно, чтобы в отобранных парах последовательностей отличалась, по меньшей мере, область CDR3 вариабельной тяжелой цепи (CDRH3). Потенциально выбор пар последовательностей VH и VL может быть основан исключительно на вариабельности области CDRH3. Во время прайминга и амплификации последовательностей могут встречаться мутации в каркасных участках вариабельной области, особенно в первом каркасном участке. Предпочтительно, чтобы возможные ошибки в первом каркасном участке были скорректированы, давая уверенность в том, что последовательности полностью или, по меньшей мере, на 98% соответствуют последовательностям, происходящим из зародышевой линии, например, последовательности VH и VL полностью были бы мышиными.
Если имеется уверенность в том, что общее разнообразие отобранных последовательностей, кодирующих пары VH и VL, высоко репрезентативно в отношении разнообразия, наблюдаемого на генетическом уровне в гуморальном ответе на иммунизацию EGFR, то можно ожидать, что общая специфичность антител, экспрессируемых из коллекции отобранных кодирующих пар VH и VL также окажется репрезентативной в отношении специфичности антител, вырабатываемых у животных, иммунизированных EGFR. Указание о том, репрезентативна ли специфичность антител, экспрессируемых из коллекции отобранных кодирующих пар VH и VL, в отношении специфичности антител, вырабатываемых донорами, можно получить, сравнивая титры антител из крови донора к избранным антигенам со специфичностью антител, экспрессируемых из коллекции отобранных кодирующих пар VH и VL. В дополнение к этому можно и далее анализировать специфичность антител, экспрессируемых из коллекции отобранных кодирующих пар VH и VL. Степень специфичности коррелируется с числом различных антигенов, по отношению к которым определяют связывающую реактивность. В следующем варианте осуществления настоящего изобретения специфичность отдельных антител, экспрессируемых из коллекции отобранных кодирующих пар VH и VL, анализируют посредством картирования эпитопов.
Картирование эпитопа можно осуществить, применяя множество методик, которые необязательно исключают применение друг друга. Один из способов картирования эпитопной специфичности молекулы антитела заключается в оценке связывания с пептидами разной длины, полученными из первичной структуры целевого антигена. Такие пептиды могут быть как линейными, так и конформационными, причем их можно применять во многих форматах анализа, включая ELISA, FLISA и поверхностный плазмонный резонанс (SPR, Biacore, FACS). Кроме того, можно осуществлять рациональный отбор пептидов, используя доступные данные о последовательности и структуре, чтобы отобразить, например, внеклеточные области или консервативные области целевого антигена, либо можно сконструировать панель перекрывающихся пептидов, представляющую избранную часть антигена или весь антиген (Meloen RH, Puijk WC, Schaaper WMM. Epitope mapping by PEPSCAN. В книге: Immunology Methods Manual. Ed Iwan Lefkovits 1997, Academic Press, pp 982-988). Специфическая реактивность клона антитела с одним или несколькими такими пептидами, в целом, будет указывать на эпитопную специфичность. Однако пептиды во многих случаях являются плохими имитаторами эпитопов, распознаваемых антителами, вырабатываемыми против белковоподобных антигенов, как вследствие утраты природной или специфической конформации, так и вследствие значительно большей скрытой площади поверхности взаимодействия между антителом и белковым антигеном по сравнению с антителом и пептидом. Второй способ эпитопного картирования, который учитывает определение специфичностей непосредственно на белковом антигене, заключается в избирательной маскировке эпитопа с применением существующих, хорошо определенных антител. Ограниченное связывание второго, зондирующего антитела с антигеном после блокирования, в целом, указывает на совмещенные или перекрывающиеся эпитопы. Эпитопное картирование посредством избирательной маскировки можно осуществлять посредством многих иммуноанализов, включая, но не ограничиваясь ими, ELISA и Biacore, хорошо известные в данной области техники (см. например, ссылки Ditzel et al. 1997. J. Mol. Biol. 267:684-695; Aldaz-Carroll et al. 2005. J. Virol. 79: 6260-6271). Еще один потенциальный способ для определения эпитопной специфичности антител против EGFR заключается в отборе "ускользнувших" мутантов в присутствии антитела. Это можно осуществить, например, применяя сканирование аланином. Секвенирование представляющего интерес гена (генов) таких "ускользнувших" мутантов обычно будет показывать, какие аминокислоты в антигене (антигенах) важны для распознавания антителом, то есть составляют эпитоп (часть эпитопа).
Выработка композиции антител против EGFR из отобранных кодирующих пар VH и VL
Композиция антител по настоящему изобретению может быть выработана из поликлональной экспрессирующей клеточной линии в одном или нескольких биореакторах или их эквивалентах. После реализации такого подхода антитела против EGFR могут быть очищены на выходе из реактора как единый препарат без попытки разделения в процессе отдельных членов смеси, составляющих композицию антител против EGFR. Если композиция антител вырабатывается более чем в одном биореакторе, то очищенную композицию антител против EGFR можно получить посредством объединения антител, полученных из индивидуально очищенных супернатантов из каждого реактора.
Один из способов выработки композиции рекомбинантных антител описан в документах WO 2004/061104 и WO 2006/007850 (эти источники включены сюда в качестве ссылки). Описанный там способ основан на сайт-специфической интеграции кодирующей последовательности антитела в геном индивидуальных клеток-хозяев при достаточной уверенности в том, что белковые цепи VH и VL в процессе выработки композиции сохраняют свое первоначальное спаривание. Кроме того, сайт-специфическая интеграция сводит к минимуму эффекты положения, благодаря чему можно ожидать, что рост и свойства экспрессии индивидуальных клеток в поликлональной клеточной линии будут очень сходными. Обычно указанный способ включает следующее: i) клетку-хозяина с одним или несколькими сайтами распознавания рекомбиназы, ii) вектор экспрессии, по меньшей мере, с одним сайтом распознавания рекомбиназы, совместимым с таким же сайтом клетки-хозяина, iii) генерирование коллекции векторов экспрессии посредством переноса отобранных кодирующих пар VH и VL из вектора скрининга в вектор экспрессии, чтобы из вектора могло экспрессироваться полноразмерное антитело или фрагмент антитела (такой перенос необязателен, если вектор скрининга идентичен вектору экспрессии), iv) трансфекция клетки-хозяина коллекцией векторов экспрессии и вектором, кодирующим рекомбиназу, которая способна комбинировать сайты распознавания в геноме клетки-хозяина с такими же сайтами в векторе, v) получение/генерирование поликлональной клеточной линии из трансфицированной клетки-хозяина, vi) экспрессирование и накопление композиции антител из поликлональной клеточной линии.
Если в одной композиции используется небольшое число антител (2-3 или немного более), они могут быть экспрессированы и очищены по отдельности способом, аналогичным производству моноклональных антител, например, как это описано в документе WO 2004/085474. Очищенные антитела можно смешивать после очистки или упаковывать в отдельные флаконы для смешивания перед введением или для раздельного введения.
Предпочтительно использовать такие клетки млекопитающих как клетки CHO, клетки COS, клетки BHK, клетки миеломы (например, клетки Sp2/0 или NS0), такие фибробласты как NIH 3T3, и иммортализованные клетки человека, в частности, клетки HeLa, клетки HEK 293 или PER C6. Однако также можно использовать эукариотические или прокариотические клетки, происходящие не от млекопитающих, например, растительные клетки, клетки насекомых, дрожжевые клетки, грибковые клетки, E. coli и т.д. Подходящая клетка-хозяин содержит в своем геноме один или более соответствующих сайтов распознавания рекомбиназы. Клетка-хозяин также должна содержать способ отбора, который функционально связан с сайтом интеграции, чтобы обладать способностью отбора на интегранты (то есть клетки, имеющие в сайте интеграции встроенную копию вектора экспрессии Ab против EGFR или фрагмент вектора экспрессии). Приготовление клеток, имеющих в своем геноме сайт FRT в предопределенном положении, было описано, например, в патенте США 5677177. Предпочтительно, чтобы клетка-хозяин имела только один сайт интеграции, который расположен в месте, допускающем высокую степень экспрессии интегранта (так называемая горячая точка).
Подходящий вектор экспрессии содержит сайт распознавания рекомбинации, соответствующий сайту (сайтам) распознавания рекомбиназы в клетке-хозяине. Предпочтительно, чтобы сайт распознавания рекомбиназы был сцеплен с подходящим геном, отличающимся от гена отбора, который используется для конструирования клетки-хозяина. Гены отбора хорошо известны в данной области техники и включают ген глутаминсинтетазы (GS), ген дигидрофолатредуктазы (DHFR) и ген устойчивости к неомицину, причем гены GS или DHFR можно использовать для генетической амплификации вставленной последовательности VH и VL. Вектор также может содержать два разных сайта распознавания рекомбиназы, позволяющие осуществлять опосредованный рекомбиназой кассетный обмен (RMCE) последовательности, кодирующей антитело, вместо полной интеграции вектора. Описание RMCE приведено в ссылках (Langer et al 2002; Schlake and Bode 1994). Пригодные сайты распознавания рекомбинации хорошо известны в данной области техники и включают сайты FRT, lox и attP/attB. Предпочтительно, чтобы вектор интеграции представлял собой изотипкодирующий вектор, в котором константные области (предпочтительно, включая интроны) представлены еще до переноса кодирующей пары VH и VL из вектора скрининга (или константные области уже представлены в векторе скрининга, если скрининг проводится на полноразмерных антителах). Константные области, представленные в векторе, могут представлять собой или всю константную область тяжелой цепи (от CH1 до CH3 или до CH4), или константную область, кодирующую фрагмент Fc антитела (от CH2 до CH3 или до CH4). Константная область каппа или лямбда легкой цепи также может быть представлена еще до переноса. Выбор числа представленных константных областей, если это вообще имеет место, зависит от использованной системы скрининга и переноса. Константные области тяжелой цепи можно выбирать из изотипов IgG1, IgG2, IgG3, IgG4, IgA1, IgA2, IgM, IgD и IgE. Предпочтительны изотипы IgG1, IgG2 и/или IgG3. Далее, вектор экспрессии для сайт-специфической интеграции нуклеиновой кислоты, кодирующей антитело против EGFR, содержит подходящие промоторы или эквивалентные последовательности, управляющие высоким уровнем экспрессии каждой из цепей VH и VL. Фиг.4 иллюстрирует один из возможных способов конструирования вектора экспрессии, хотя существует множество других способов.
Перенос выбранных кодирующих пар VH и VL из вектора скрининга можно произвести общепринятым способом расщепления рестрикционным ферментом и лигирования, чтобы каждая молекула вектора экспрессии содержала одну кодирующую пару VH и VL. Предпочтительно, чтобы перенос кодирующих пар VH и VL осуществлялся в индивидуальном порядке, однако по желанию их перенос можно осуществлять в общей массе. Если в вектор экспрессии переносят все отобранные кодирующие пары VH и VL, то получают коллекцию или библиотеку векторов экспрессии. По желанию можно также использовать альтернативные способы переноса. Если вектор скрининга идентичен вектору экспрессии, то библиотека векторов экспрессии составляется из пар последовательностей VH и VL, отобранных при скрининге, которые располагаются в векторе скрининга/экспрессии.
Способы трансфицирования последовательности нуклеиновой кислоты в клетку-хозяина известны в данной области техники. Для большей уверенности в сайт-специфической интеграции в клетке-хозяине также должна присутствовать подходящая рекомбиназа. В предпочтительном варианте это достигается посредством котрансфекции плазмиды, кодирующей рекомбиназу. Подходящими рекомбиназами являются, например, Flp, Cre или фаговая ЦC31 интеграза, применяемые вместе с системой клетка-хозяин/вектор, где имеются соответствующие сайты распознавания рекомбиназы. Клетка-хозяин также может быть трансфицирована в массе, а это означает, что библиотека векторов экспрессии трансфицируется в клеточную линию в ходе общей единичной реакции, благодаря чему удается получить поликлональную клеточную линию. В альтернативном варианте коллекцию векторов экспрессии можно трансфицировать в клетку-хозяина индивидуально, посредством чего можно генерировать коллекцию индивидуальных клеточных линий (каждая клеточная линия продуцирует антитело с особой специфичностью). Клеточные линии, генерированные посредством трансфекции (индивидуальные или поликлональные), затем подвергаются отбору на сайт-специфические интегранты и адаптируются к выращиванию в суспензии и бессывороточной среде, если перед трансфекцией они уже не обладали такими свойствами. Если трансфекция проводилась индивидуально, то индивидуальные клеточные линии далее анализируют на их ростовые свойства и на выработку антител. Предпочтительно, чтобы для создания поликлональной клеточной линии отбирались клеточные линии со сходными темпами пролиферации и сходным уровнем выработки антител. После этого генерируют поликлональную клеточную линию, смешивая индивидуальные клеточные линии в предопределенном соотношении. Обычно из поликлональной клеточной линии берут свое начало поликлональный маточный банк клеток (pMCB), поликлональный поисковый банк клеток (pRCB) и/или поликлональный рабочий банк клеток (pWCB). Поликлональную клеточную линию генерируют, смешивая индивидуальные клеточные линии в предопределенном соотношении. Поликлональную клеточную линию распределяют по ампулам, создавая таким образом поликлональный поисковый банк клеток (pRCB) или маточный банк клеток (pMCB), причем далее можно генерировать рабочий банк клеток (pWCB) посредством наращивания объемов клеток из поискового или маточного банка клеток. Поисковый банк клеток, прежде всего, предназначен для проведения исследований с целью подтверждения правильности концепции, в которых поликлональная клеточная линия может содержать не столько индивидуальных антител, как поликлональная клеточная линия в маточном банке клеток. Обычно pMCB дополнительно наращивают, чтобы заложить pWCB в целях масштабной выработки антител. При истощении pWCB можно нарастить клеточный материал из новой ампулы pMCB, чтобы заложить новый pWCB.
Один из вариантов осуществления настоящего изобретения заключается в создании поликлональной клеточной линии, способной экспрессировать композицию рекомбинантных антител против EGFR, предлагаемую настоящим изобретением.
Следующий вариант осуществления настоящего изобретения заключается в создании поликлональной клеточной линии, в которой каждая индивидуальная клетка способна экспрессировать единственную кодирующую пару VH и VL, причем поликлональная клеточная линия в целом способна экспрессировать коллекцию кодирующих пар VH и VL, где каждая пара VH и VL кодирует антитело против EGFR. Предпочтительно, чтобы коллекция кодирующих пар VH и VL представляла собой когнатные пары, полученные в соответствии со способами, предлагаемыми настоящим изобретением.
Композицию рекомбинантных антител, предлагаемую настоящим изобретением, можно получить, культивируя одну ампулу из pWCB в соответствующей питательной среде в течение такого промежутка времени, который позволяет осуществить достаточную экспрессию антител, причем поликлональная клеточная линия в это время остается стабильной (такой промежуток времени составляет приблизительно от 15 дней до 50 дней). Можно использовать такие способы культивирования как подпитка или перфузия. Композицию рекомбинантных антител получают из культуральной среды и очищают, применяя традиционные методики очистки. Для очистки IgG часто применяют аффинную хроматографию в сочетании с последующими этапами очистки, такими как ионообменная хроматография, гидрофобные взаимодействия и фильтрация в геле. После очистки оценивают присутствие всех индивидуальных членов в композиции поликлональных антител, например, посредством ионообменной хроматографии. Определение характеристик такой композиции антител подробно описано в документе WO 2006/007853 (включенном сюда в качестве ссылки).
Альтернативный способ экспрессирования смеси антител в рекомбинантном хозяине описан в документе WO 2004/009618. Этот способ позволяет продуцировать антитела с разными тяжелыми цепями, связанными с одной и той же легкой цепью из одной клеточной линии. Такой подход может быть применим при выработке композиции антител против EGFR из комбинаторной библиотеки.
Терапевтические композиции
Еще один из аспектов настоящего изобретения связан с фармацевтической композицией, содержащей в качестве активного ингредиента композицию антител против EGFR либо композицию рекомбинантного Fab или другого фрагмента рекомбинантного антитела против EGFR, либо биспецифическую связывающую молекулу, рассматриваемую в изобретении. Предпочтительно, чтобы активным ингредиентом такой композиции была композиция рекомбинантных антител против EGFR, как это описано в настоящем изобретении. Такая композиция предназначена для облегчения и/или профилактики, и/или для лечения рака. Предпочтительно, чтобы субъектом, которому вводится композиция, был человек, сельскохозяйственное животное или домашнее животное.
Фармацевтическая композиция содержит дополнительно фармацевтически приемлемый наполнитель.
Композицию антител против EGFR или фрагментов этих антител можно вводить в фармацевтически приемлемом разбавителе, носителе или наполнителе в стандартной форме дозирования. Для изготовления походящих лекарственных составов или композиций с целью их введения раковым пациентам можно действовать в соответствии с традиционной фармацевтической практикой. В предпочтительном варианте осуществления изобретения введение лекарства считается терапевтическим, если оно проводится после того как было диагностировано раковое заболевание. Можно использовать любой приемлемый способ введения лекарства, например, способ введения может быть парентеральным, внутривенным, внутриартериальным, подкожным, внутримышечным, внутрибрюшинным, интраназальным, пероральным, а также в виде аэрозолей или суппозиториев. Например, фармацевтические составы могут иметь форму жидких растворов или суспензий. При пероральном введении необходима защита лекарства от разрушения в желудке. При интраназальном введении лекарственных составов антитела можно использовать в виде порошков, назальных капель или аэрозолей.
В соответствии с настоящим изобретением фармацевтические композиции можно изготовлять способом, известным per se, например, посредством таких традиционных процессов как растворение, лиофилизация, смешение, гранулирование или конфекционирование. Фармацевтические композиции можно составлять в соответствии с общепринятой фармацевтической практикой (см., например, ссылки Remington: The Science and Practice of Pharmacy (20th ed.), ed. A.R. Gennaro, 2000, Lippincott Williams & Wilkins, Philadelphia, PA and Encyclopedia of Pharmaceutical Technology, eds. J. Swarbrick and J.C. Boylan, 1988-1999, Marcel Dekker, New York, NY).
Для приготовления фармацевтической композиции в соответствии с настоящим изобретением предпочтительно использовать растворы или суспензии активного ингредиента, особенно изотонические водные растворы или суспензии. В случае применения лиофилизированных композиций, которые содержат активный ингредиент в чистом виде или с носителем, например, маннитом, такие растворы или суспензии, если это возможно, приготавливают перед использованием. Фармацевтические композиции могут быть подвергнуты стерилизации и/или могут содержать наполнители, например, консерванты, стабилизаторы, увлажняющие и/или эмульгирующие агенты, солюбилизаторы, соли для регулирования осмотического давления и/или буферы, и могут быть изготовлены способом, известным per se, например, посредством применения общепринятых процессов растворения и/или лиофилизации. Указанные растворы или суспензии могут содержать вещества, усиливающие вязкость, например, натрий-карбоксиметилцеллюлозу, карбоксиметилцеллюлозу, декстран, поливинилпирролидон или желатин.
Инъекционные композиции готовят традиционным способом в стерильных условиях, то же самое относится и к расфасовке композиций в ампулы или флаконы, а также к герметизации контейнеров.
Содержание активного ингредиента в композиции составляет приблизительно от 1% до 95%, предпочтительно, приблизительно от 20% до 90%. В соответствии с настоящим изобретением фармацевтические композиции могут быть представлены в виде стандартных доз, например, в ампулах, флаконах, суппозиториях, таблетках, пилюлях или капсулах. Лекарственные составы могут вводиться человеку в терапевтически или профилактически эффективном количестве (например, в таком количестве, которое позволяет предупредить, элиминировать или облегчить патологическое состояние) для лечения/профилактики заболевания или патологического состояния. Предпочтительная дозировка вводимого терапевтического агента, по-видимому, зависит от таких переменных как тяжесть рака, общее состояние здоровья конкретного больного, наличие в композиции соединений-наполнителей и способ введения лекарства.
Терапевтическое применение композиций в соответствии с настоящим изобретением
В соответствии с настоящим изобретением предлагаемые фармацевтические композиции могут быть использованы для лечения или облегчения заболевания и млекопитающего. Патологические состояния, которые можно лечить или предупреждать предлагаемыми здесь фармацевтическими композициями, включают раковые заболевания и состояния. Предпочтительно подвергать пациентов терапевтическому лечению фармацевтическими композициями, предлагаемыми настоящим изобретением.
Один из вариантов осуществления настоящего изобретения заключается в способе профилактики, лечения или облегчения у млекопитающего одного или более симптомов, связанных с раком, причем указанный способ включает введение указанному млекопитающему эффективного количества композиции рекомбинантных антител против EGFR, предлагаемой настоящим изобретением.
Следующий вариант осуществления настоящего изобретения заключается в применении композиции рекомбинантных антител против EGFR, предлагаемой настоящим изобретением для приготовления фармацевтической композиции, используемой в целях лечения, облегчения или профилактики у млекопитающего одного или более симптомов, связанных с раком.
Предпочтительно, чтобы млекопитающим, упоминаемым в указанных выше вариантах осуществления изобретения, был человек, сельскохозяйственное или домашнее животное.
В соответствии с настоящим изобретением антитела показаны к применению для лечения некоторых солидных опухолей. Основываясь на ряде факторов, включая среди прочего уровень экспрессии EGFR, следует отметить, что предпочтительным показанием к применению предлагаемых настоящим изобретением композиций являются следующие типы опухолей: рак молочной железы, яичника, толстой кишки, прямой кишки, предстательной железы, мочевого пузыря, поджелудочной железы, головы и шеи, а также немелкоклеточный рак легкого. В связи с каждым из этих показаний четкий потенциал для клинического успеха открывают три клинических пути.
Адъюнктивная терапия: При адъюнктивной терапии пациенты получают лечение антителами, предлагаемыми настоящим изобретением, в сочетании с химиотерапевтическим или противоопухолевым средством и/или лучевой терапией. Целевые типы рака, перечисленные выше, будут подвергаться лечению по протоколу с добавлением антител, предлагаемых изобретением, к стандартной терапии первой и второй очереди. Схемы протоколов рассматривают оценку эффективности по снижению массы опухоли, а также по возможности снизить обычные дозы стандартных химиотерапевтических препаратов. Такое снижение доз создает возможности для дополнительной и/или более длительной терапии за счет снижения связанной с дозой токсичности химиотерапевтического средства. Ранее известные в данной области техники антитела против EGFR были использованы и продолжают находить применение в нескольких клинических испытаниях с адъюнктивной терапией, где они используются в комбинации с указанными ниже химиотерапевтическими или противоопухолевыми средствами: адриамицин (эрбитукс: запущенная карцинома предстательной железы), цисплатин (эрбитукс: запущенные карциномы головы/шеи и легких), таксол (эрбитукс: рак молочной железы), а также доксорубицин (эрбитукс).
Изобретение предлагает фармацевтические продукты, содержащие композицию антител, предлагаемую изобретением, а также, по меньшей мере, одно соединение, способное индуцировать дифференциацию раковых клеток, в виде комбинации для одновременного, раздельного или последовательного введения в схеме противораковой терапии. Комбинируя композиции антител, предлагаемые изобретением, со средствами, заведомо индуцирующими терминальную дифференциацию раковых клеток, можно добиться дополнительного улучшения лечебного эффекта.
По меньшей мере, одно соединение может быть выбрано из группы, состоящей из ретиноевой кислоты, транс-ретиноевых кислот, цис-ретиноевых кислот, фенилбутирата, фактора роста нервов, диметилсульфоксида, активной формы витамина D(3), рецептора активатора пролиферации пероксисом, 12-О- тетрадеканоилфорбол 13-ацетата, гексаметилен-бис-ацетамида, трансформирующего бета-фактора роста, бутировой кислоты, циклического АМФ и веснаринона. Предпочтительно, чтобы соединение было выбрано из группы, состоящей из ретиноевой кислоты, фенилбутирата, полностью транс-ретиноевой кислоты, активной формы витамина D.
Фармацевтические продукты, содержащие композицию антител, предлагаемую изобретением, и, по меньшей мере, одно химиотерапевтическое или противоопухолевое соединение, могут быть использованы в виде комбинации для одновременного, раздельного или последовательного введения при лечении рака. Химиотерапевтическое соединение может быть выбрано из группы, состоящий из адриамицина, цисплатина, таксола, доксорубицина, топотекана, фторпиримидина, оксалиплатина и иринотекана.
Монотерапия: Антитела, предлагаемые настоящим изобретением можно использовать для монотерапии опухолей, то есть вводить их пациентам без химиотерапевтического или противоопухолевого средства. Доклинические результаты, полученные в результате применения антител в соответствии с настоящим изобретением и обсуждаемые здесь, продемонстрировали положительные эффекты при автономной терапии указанными антителами.
Радиофармацевтическое средство: В результате связывания радионуклида (например, иттрия (90Y)) с антителами, предлагаемыми настоящим изобретением, можно ожидать, что рассматриваемые здесь антитела при наличии радиоактивной метки могут быть использованы как диагностическое радиофармацевтическое средство. В такой роли рассматриваемые здесь антитела способны локализовать как солидные опухоли, так и метастатические повреждения, клетки которых экспрессируют EGFR. В связи с применением рассматриваемых здесь антител в качестве радиофармацевтических средств указанные антитела можно использовать при вспомогательном хирургическом лечении солидных опухолей как для дооперационного скрининга, так и для послеоперационного контроля, то есть для определения того, какая опухоль частично осталась и/или рецидивировала. Антитело (111In)-эрбитукс было использовано как радиофармацевтическое средство в клиническом испытании I фазы на пациентах с неоперабельным плоскоклеточным раком легких (Divgi et al. J. Natl. Cancer Inst. 83:97-104 (1991). Пациентов обследовали при помощи стандартной передней и задней гамма-камеры. Предварительные данные показали, что были идентифицированы все первичные и крупные метастатические очаги опухолей, тогда как мелкие метастазы (менее 1 см) были выявлены только в половине случаев.
Ингибиторы тирозинкиназы (TKI) представляют собой синтетические молекулы с низким молекулярным весом, главным образом, производные хиназолина, которые взаимодействуют с внутриклеточным тирозинкиназным доменом рецепторов и ингибируют индуцированное лигандом фосфорилирование рецепторов за счет конкуренции за внутриклеточный сайт связывания Mg-АТР. Некоторые TKI в клиническом аспекте, включая гефитиниб (Iressa, ZD1839), эрлобтиниб (Tarceva, OSI-774), лапатиниб, (Tykerb, GW572016), канертиниб (CI-1033), ЕКВ-569 и PKI-166, нацелены на EGFR. Комбинированное лечебное применение TKI и антител против EGFR продемонстрировало полезные эффекты как in vivo, так и in vitro, направленные против EGFR-зависимых раковых клеток. Фармацевтические продукты, содержащие композицию антител, предлагаемую изобретением, и, по меньшей мере, один TKI, нацеленный на EGFR, могут быть использованы в виде комбинации для одновременного, раздельного или последовательного введения при лечении рака. Кроме того, мелкомолекулярные ингибиторы включают:
сорафениб (raf и множественные RTK), сунитиниб (множественные RTK), темсиролимус (mTOR), RAD001 (mTOR) и AZD217 (VEGFR2).
В других вариантах осуществления изобретения предлагаемые композиции антител применяются в комбинации с другими терапевтическими антителами. Примеры таких антител включают, например, антитела против HER2 (герцептин) и VEGF (авастин). Кроме того, в других вариантах осуществления изобретения предлагаемые композиции антител применяются в комбинации со средством, заведомо стимулирующим клетки иммунной системы, причем такое комбинированное лечение приводит к иммуноопосредованному повышению эффективности предлагаемых изобретением композиций антител. Примеры таких иммуностимулирующих средств включают, но не ограничиваясь ими, рекомбинантные интерлейкины (например, IL-21 и IL-2).
Доза и способ введения
Хотя специфические дозировки антител в соответствии с настоящим изобретением еще не были определены, некоторые соображения по этом поводу можно провести через сравнение со сходным продуктом (ImClone C225 (эрбитукс)), который был разрешен к официальному применению. Антитело C225 типично вводят в диапазоне доз от 5 до 400 мг/м2, причем низшие дозы применяются только в связи с исследованиями по безопасности. В соответствии с этим мы можем ожидать, что дозировка антител, предлагаемых настоящим изобретением, приблизительно соответствует указанной или несколько ниже нее, возможно находясь в диапазоне от 50 до 300 мг/м2, сохраняя при этом эффективность. Дозировка в мг/м2, в отличие от традиционного представления доз в мг/кг, является измерением, основанным на площади поверхности и удобна тем, что ее можно применять для пациентов всех размеров от младенцев до взрослых.
Доступная информация по предписаниям для препарата эрбитукс (Cetuximab) включает первоначальное внутривенное вливание в течение 120 минут в дозе 400 мг/м2, сопровождающееся последующими еженедельными 60-минутными вливаниями в дозе 250 мг/м2. Эти дозировки рекомендованы как для монотерапии, так для комбинированного лечения в сочетании с лучевой терапией. Для препарата вектибикс (panitumumab) рекомендуемая доза составляет 6 мг/кг при 60-минутном введении каждые 14 дней.
Предполагаемая клиническая дозировка антитела HuMaxEGFr (zumutumumab) производства компании Genmab составляет начальную дозу 8 мг/кг HuMax-EGFr, с последующими еженедельными вливаниями поддерживающей дозы до тех пор, пока заболевание не начнет прогрессировать. Поддерживающую дозу подбирают как необходимую, увеличивая ее до тех пор, пока у больного не появится кожная сыпь, но не более 16 мг/кг HuMax-EGFr (дозировки в базовом исследовании III фазы, доступные из описания продукта фирмы Genmab).
Клиническая дозировка композиций антител, предлагаемых настоящим изобретением, по-видимому также будет ограничиваться степенью кожных высыпаний, как это наблюдается при современном использовании в клинической практике моноклональных антител против EGFR (эрбитукс и вектибикс). Данные, полученные в шестинедельном токсикологическом исследовании на обезьянах Cynomolgus, не показали признаков кожных высыпаний, если композицию антител, предлагаемых изобретением, вводили животным в дозе, эквивалентной дозировке, применяемой при лечении одним из моноклональных антител, используемых в клинике (пример 20). Таким образом, предлагаемые изобретением композиции антител можно вводить внутривенно в еженедельной дозе 250 мг/м2, что соответствует 7,5 мг/кг для человека с поверхностью тела 1,8 м2 и массой тела 60 кг. Кроме того, до введения последующих еженедельных доз можно дать начальную загрузочную дозу 400 мг/м2 (соответствует 12 мг/кг для человека с поверхностью тела 1,8 м2 и массой тела 60 кг).
Предполагается, что для доставки в организм субъекта антител, предлагаемых изобретением, могут быть полезными три разных способа. Традиционная внутривенная доставка, предположительно, будет стандартным способом доставки лекарств для лечения большинства опухолей. Однако применительно к опухолям, расположенным в брюшной полости, например, опухолям яичников, желчного протока, других протоков и т.п., предпочтительным может оказаться внутрибрюшинное введение, позволяющее получить высокие дозы антител в опухоли и свести к минимуму клиренс антитела. Примерно так же, некоторые солидные опухоли обладают сосудистой сетью, что создает преимущества при региональном введении. Региональная перфузия позволяет получить высокую дозу антитела в месте расположения опухоли и свести к минимуму краткосрочный клиренс антитела.
Как и при любой терапии, основанной на вливаниях белков или антител, проблемы безопасности связаны, прежде всего, (i) с синдромом выброса цитокинов, то есть падением давления, лихорадкой, тремором, ознобом, (ii) с развитием иммуногенной реакции на вводимый материал (то есть развитием у больного антител человека против лечебного антитела, либо развитием реакций HAHA или HACA), и (iii) с токсичностью по отношению к нормальным клеткам, экспрессирующим рецептор EGF, например, гепатоцитам, которые экспрессируют EGFR. Для отслеживания каждой из этих проблем безопасности можно использовать стандартные тесты и контрольное наблюдение. Особенно большое внимание при клинических испытаниях надо уделять частым проверкам функции печени, чтобы можно было оценить повреждение печени, если таковое происходит.
Диагностическое применение
Еще один вариант осуществления изобретения направлен на диагностические наборы. Применительно к настоящему изобретению такие наборы включают композицию антител против EGFR, изготовленную в соответствии с изобретением, в которой белок может быть снабжен поддающейся выявлению меткой или не иметь метки для выявления в немеченом состоянии. Набор может быть использован для идентификации индивидов, страдающих раком с избыточной экспрессией EGFR.
ПРИМЕРЫ
ПРИМЕР 1: Клонирование антител против EGFR
Иммунизации
Самки мышей BALB/c, линии A или C57B16 (в возрасте 8-10 недель) были использованы для иммунизации посредством инъекций различных очищенных белков в дополнение к клеткам, избыточно экспрессирующим EGFR.
В некоторых случаях для иммунизации были использованы имеющиеся в продаже белки EGFR (R&D systems № по каталогу 1095-ER или Sigma № по каталогу E3641). В других случаях иммунизации были использованы рекомбинантные EGFR и EGFRvIII человека, полученные как гибридные белки, состоящие из ECD EGFR или EGFRvIII и гормона роста человека (hGH), а также включающие сайт расщепления вируса гравировки табака (TEV) в дополнение к His-tag, как это описано в примере 10b. В некоторых случаях ECD EGFR выделяли посредством расщепления TEV-протеазой с последующей очисткой в никелевой колонке.
Для клеточной иммунизации была использована линия клеток рака головы и шеи человека HN5 (Easty DM, Easty GC, Carter RL, Monaghan P, Butler LJ. Br J Cancer. 1981 Jun; 43(6):772-85. Ten human carcinoma cell lines derived from squamous carcinomas of the head and neck.), экспрессирующая приблизительно 107 рецепторов на клетку. Клетки были культивированы в среде DMEM с добавками 10% FBS (эмбриональной телячьей сыворотки), 3мМ глицерина, 5 мМ пирувата натрия и 1% пенициллина/стрептомицина. Перед каждой иммунизацией клетки отмывали в PBS, трипсинизировали ферментом TrypLE и ресуспендировали в питательной среде для выращивания. Затем клеточные суспензии дважды отмывали в PBS при центрифугировании на скорости 250×g в течение 5 минут с выбиванием клеток и ресуспендированием в 15 мл стерильного PBS.
Клетки или антиген разбавляли в PBS, после чего смешивали в соотношении 1:1 с адъювантом Фрейнда. Адъювант применяют для усиления и модуляции иммунного ответа. Для первых иммунизаций использовали полный адъювант Фрейнда (CFA), а для последующих иммунизаций использовали неполный адъювант Фрейнда (IFA). IFA представляет собой эмульсию типа масло-в-воде, состоящую из минеральных масел, а CFA представляет собой IFA, К которому добавлены термически убитые и высушенные микобактерии. Оба адъюванта обладают депонирующим эффектом. CFA дает начало длительной персистенции иммунного ответа, и его применяют при первых иммунизациях для стимуляции иммунного ответа, а IFA применяют для последующих иммунизаций. Проверку эмульсий осуществляли, нанося каплю эмульсии на поверхность стекла с водой. Если капля остается каплей, то эмульсия стабильна, и ее можно вводить посредством инъекций. Мышам вводили только стабильные эмульсии.
В зависимости от плана (см. таблицу 2) для каждой инъекции использовали 25-100 мкг антигена или 107 клеток. В общей сложности мыши получали 4 инъекции. Всем мышам впрыскивали или 300 мкл, или 200 мкл эмульсии. В зависимости от плана инъекции проводили подкожно (s.c.), внутрибрюшинно (i.p.) или внутривенно (i.v.).
В конце эксперимента мышей умерщвляли, сворачивая им шею, после чего извлекали селезенки и переносили их на клеточное сито с размером ячеек 74 мкм (Corning#136350-3479). Клетки мацерировали через фильтр, ресуспендировали в холодной среде RPMI 1640 с 10% FBS и центрифугировали на скорости 300×g в течение 5 минут. Клеточный осадок ресуспендировали в среде RPMI 1640 с 1% FBS, фильтровали через шприцевой фильтр с размером ячеек 50 мкм (BD# 340603) и накапливали центрифугированием. Клеточный осадок криоконсервировали после ресуспендирования в FCS с 10% DMSO, а замороженные клетки хранили при температуре -80°C вплоть до сортировки по методу FACS.
Сортировка мышиных плазматических клеток методом FACS
Флаконы с замороженными спленоцитами оттаивали при 37°C и переносили в 15 мл пробирку со льдом. В пробирку при постоянном покручивании добавляли по каплям 10 мл охлажденной на льду среды RPMI, 10% FBS (эмбриональной телячьей сыворотки). После однократного отмывания в 10 мл FACS PBS добавляли 5 мл FCS PBS перед фильтрованием клеток через Filcon с размером ячеек 50 мкм. Затем клетки осаждали центрифугированием, ресуспендировали в 1 мл PBS с 2% FBS (конечный объем) и окрашивали против CD43-FITC и против CD138-PE в соответствии со специфичным разбавлением до конечной концентрации приблизительно 5 мкг/мл. Клетки инкубировали при 4°C в течение 20 минут в темноте. Затем клетки дважды отмывали в 2 мл буфера FACS. Добавляли до 15 мл FACS PBS. Иодид пропидия (PI) добавляли в соотношении 1:100 (1 часть PI на 100 частей буфера FACS PBS), после чего клетки сортировали в 96-луночных планшетах PCR, содержащих реакционный буфер PCR (см. ниже) и центрифугировали в течение 2 минут на скорости 400×g перед замораживанием планшетов при температуре -80°C. Плазматические клетки сортировали как CD43-позитивные/CD-138-позитивные как показано на фиг.1.
Сцепление когнатных пар VH и VL
Сцепление кодирующих последовательностей VH и VL проводили на одиночных клетках, отсортированных как плазмациты, что облегчало когнатное спаривание кодирующих последовательностей VH и VL. При этом была использована двухэтапная процедура PCR, основанная на одноэтапной мультиплексной RT-PCR с перекрыванием-удлинением с последующим этапом вложенной PCR. Смеси праймеров, использованные в настоящем примере, амплифицируют только легкие каппа-цепи. Однако по желанию к мультиплексной смеси праймеров и к смеси праймеров вложенной PCR можно добавить праймеры, способные амплифицировать легкие лямбда-цепи. Если добавляют праймеры лямбда, то процедуру сортировки следует адаптировать так, чтобы не исключались лямбда-позитивные клетки. Принцип сцепления когнатных последовательностей VH и VL проиллюстрирован на фиг.2.
Полученные 96-луночные планшеты для PCR оттаивали, а отсортированные клетки служили матрицей для мультиплексной RT-PCR с перекрыванием-удлинением. Сортировочный буфер добавляли в каждую лунку перед реакционным буфером для сортировки одиночных клеток (OneStep RT-PCR Buffer; Qiagen), праймерами для RT-PCR (см. таблицу 3) и ингибитором РНК-азы (RNasin, Promega). Это дополняли смесью ферментов для одноэтапной RT-PCR (25-кратное разведение, Qiagen) и смесью dNTP (по 200 мкМ каждой) для получения заданной конечной концентрации в реакционном объеме 20 мкл. Планшеты инкубировали в течение 30 минут при 55°C для получения обратной транскрипции РНК из каждой клетки. После проведения RT планшеты проводили через следующий цикл PCR: 10 минут при 94°C, 35×(40 секунд при 94°C, 40 секунд при 60°C, 5 минут при 72°C), 10 минут при 72°C.
Реакции PCR проводили в термоциклере H20BIT с корзинкой со съемным уплотнением для 24 96-луночных планшетов (ABgene) для повышения пропускной способности. После циклической обработки планшеты для PCR хранили при -20°C.
Для проведения этапа вложенной PCR 96-луночные планшеты для PCR готовили со следующей смесью в каждой лунке (реакции на 20 мкл), чтобы получить заданную конечную концентрацию: 1× буфера FastStart (Roche), смесь dNTP (200 мкМ каждого компонента), смесь вложенных праймеров (см. таблицу 4), ДНК-полимераза Phusion (0,08 U, Finnzymes) и высококачественная смесь ферментов FastStart (0,8 U, Roche). В качестве матрицы для вложенной PCR, переносили 1 мкл материала из реакций мультиплексной PCR с перекрыванием-удлинением. Планшеты для вложенной PCR проводили через следующие термоциклы: 35×(30 секунд при 95°C, 30 секунд при 60°C, 90 секунд при 72°C), 10 минут при 72°C.
Для верификации присутствия фрагментов перекрывания-удлинения длиной приблизительно 890 пар оснований (п.о.) случайно отобранные реакции были проанализированы на 1% агарозном геле.
Планшеты хранили при -20°C до следующего процессинга фрагментов PCR.
Репертуар сцепленных кодирующих пар VH и VL из вложенной PCR накапливали, на смешивая пары от разных доноров, и очищали электрофорезом в препаративном 1% агарозном геле. Кодирующая последовательность константной легкой каппа-цепи человека была сплайсирована посредством перекрывающегося удлинения в кодирующую область VL объединенных продуктов PCR сцепленных кодирующих пар VH и VL (фиг.3). Кодирующая последовательность константной легкой каппа-цепи человека была амплифицирована из плазмиды, содержащей кодирующую последовательность антитела человека с легкой каппа-цепью, в реакции, содержащей связующий фермент (2 U, Finnzymes), 1× связующего буфера, смесь dNTP (200 мкМ каждого компонента), праймер hKCforw-v2 и праймер Kappa3' (таблица 5), а также плазмидную матрицу pLL138 (10 нг/мкл) в общем объеме 50 мкл. Реакцию проводили через следующие термоциклы: 25×(30 секунд при 95°C, 30 секунд при 55°C, 45 секунд при 72°C), 10 минут при 72°C. Полученный в результате PCR фрагмент очищали электрофорезом в препаративном 1% агарозном геле.
Очищенные объединенные фрагменты PCR из каждого репертуара сплайсировали в амплифицированный и очищенный фрагмент PCR константной кодирующей каппа-области человека (приложение 2) при последующем сплайсинге через PCR с перекрыванием-удлинением (общий объем 50 мкл), содержащую фрагмент кодирующей константной каппа-области человека (1,4 нг/мкл), очищенный накопленный фрагмент PCR (1,4 нг/мкл), связующую ДНК-полимеразу (0,5 U, Finnzymes), высококачественную смесь ферментов FastStart (0,2 U, Roche), 1× буфера FastStart (Roche), смесь dNTP (200 мкМ каждого компонента), праймер mhKCrev и набор праймеров mJH (см. таблицу 5). Реакцию проводили через следующие термоциклы: 2 минуты при 95°C, 25×(30 секунд при 95°C, 30 секунд при 55°C, 1 минута при 72°C), 10 минут при 72°C. Полученный в результате PCR фрагмент (длиной приблизительно 1070 п.о.) очищали электрофорезом в препаративном 1% агарозном геле.
Вставление когнатных кодирующих пар VH и VL в вектор скрининга
Для того чтобы идентифицировать антитела, обладающие специфичностью связывания с EGFR, полученные кодирующие последовательности VH и VL были экспрессированы в виде полноразмерных антител. Это включало вставление репертуара кодирующих пар VH и VL в вектор экспрессии и трансфекцию в клетку-хозяина.
Для генерирования репертуара векторов экспрессии, содержащих сцепленные кодирующие пары VH и VL, была использована двухэтапная процедура клонирования. Со статистической точки зрения, если репертуар векторов экспрессии содержит в десять раз больше рекомбинантных плазмид, чем число когнатных спаренных VH и VL, как продуктов PCR, использованных для генерирования репертуара скрининга, то существует 99% вероятность того, что представлены все уникальные пары генов. Таким образом, если было получено 400 фрагментов V-гена с перекрыванием-удлинением, то репертуар, генерированный для скрининга, составит, по меньшей мере 4000 клонов.
Вкратце, очищенный продукт PCR из репертуаров сцепленных кодирующих пар VH и VL, сплайсированный в кодирующую константную каппа-область человека, был расщеплен ДНК-эндонуклеазами XhoI и NotI в сайтах распознавания, введенных в концы продуктов PCR. Расщепленные и очищенные фрагменты были лигированы в вектор экспрессии IgG млекопитающих, переваренный XhoI/NotI, OO-VP-002 (фиг.4) посредством стандартных процедур лигирования. Лигирующая смесь была электропорирована в E. coli, добавлена в 2×YT планшеты, содержащие подходящий антибиотик, и инкубирована при 37°C в течение ночи. Амплифицированный репертуар векторов был очищен из клеток, восстановленных из планшетов с применением стандартных способов очистки ДНК (Qiagen). Плазмиды были подготовлены для вставления фрагментов промотор-лидер посредством расщепления эндонуклеазами AscI и NheI. Сайты рестрикции для этих ферментов были расположены между парами генов, кодирующих VH и VL. После очистки вектора двунаправленный фрагмент промотор-лидер млекопитающих, переваренный AscI-NheI, был вставлен в сайты рестрикции AscI и NheI посредством стандартных процедур лигирования. Лигированный вектор был амплифицирован в E. coli, а плазмида была очищена стандартными способами. Генерированный репертуар векторов скрининга был трансформирован в E. coli посредством общепринятых процедур. Полученные колонии были объединены в 384-луночные мастер-планшеты и заложены на хранение. Число выстроенных колоний превышало число входных продуктов PCR, по меньшей мере, в 3 раза, что давало 95%-ную вероятность присутствия всех полученных уникальных пар V-генов.
Скрининг на связывание с внеклеточным доменом EGFR
В целом, скрининг был проведен как двухэтапная процедура. Библиотеки антител были скринированы на реактивность по отношению к рекомбинантному белку EGFR по методике ELISA, после чего способ FMAT (FLISA) был использован как подход на клеточной основе с клеточной линией NR6wtEGFR для выявления антител против EGFR, связывающихся с EGFR, который экспрессируется на клеточной поверхности. Для библиотек 101 и 108/109 (таблица 2) анализ по методике ELISA был проведен с рекомбинантным EGFR, представляющим внеклеточный домен EGFR.
Вкратце, для проведения ELISA, планшеты Nunc maxisorb (№ по каталогу 464718) были покрыты 1 мкг/мл белка (собственного производства), разбавленного в PBS и выдержанного при 4°C в течение ночи. Перед блокированием в 50 мкл 2%-Milk-PBS-T планшеты были однократно отмыты смесью PBS+0,05% Tween 20 (PBS-T). Затем были добавлены 20 мкл 2%-milk-PBS-T и 5 мкл супернатантов из трансфектантов FreeStyle CHO-S (см. ниже), проведена инкубация материала в течение 1Ѕ часа при комнатной температуре, после чего планшеты были однократно отмыты PBS-T из расчета 20 мкл на лунку. Для выявления антител, связанных с лунками, было добавлено вторичное антитело (HRP-Goat-anti-human IgG, Jackson, № по каталогу 109-035-097), разбавленное в соотношении 1:10000 в 2% milk-PBS-T с последующей инкубацией в течение 1 часа при комнатной температуре. Планшеты были однократно отмыты в PBS-T перед добавлением 25 мкл субстрата (Kem-en-tec Diagnostics, № по каталогу 4390) и инкубацией материала в течение 5 минут. После инкубации добавляли 25 мкл 1M серной кислоты для остановки реакции. Специфический сигнал выявляли считывающим устройством ELISA на длине волны 450 нм.
Для выявления антител против EGFR способом FMAT на клеточной основе клетки SKBR-3 (ATCC #HTB-30) или NR6wtEGFR (Welsh et al., 1991, J Cell Biol, 114, 3, 533-543) хранили в питательной среде для выращивания, как это описано в ссылке. Клетки подсчитывали и разбавляли до концентрации 125000 клеток на миллилитр антителом Alexa-647-конъюгированный козий IgG против человека (H-L) (молекулярный зонд № A21445, партия № 34686A) при разведении 1:40000. Общее количество 20 мкл этой суспензии переносили в 384-луночные планшеты Nunc с прозрачным дном. Впоследствии к клеткам добавляли 10 мкл трансфекционного супернатанта. Сигнал FMAT из реакции измеряли после 6-10 часов инкубации.
Данные скрининга указывают на то, что 221 клон (4,8%) от общего числа клонов оказался позитивным в ELISA. 93 (2,0%) этих клонов также были позитивными в анализе FMAT. В целом, 220 (4,8%) клонов были позитивными в анализе FMAT, а среди них 127 (220-93) уникально позитивными на антиген клеточной поверхности. Библиотека 111 была скринирована сходным образом, но поскольку процедура иммунизации была направлена на выработку антител, специфичных по отношению к делеционному мутанту рецептора EGF (EGFRvIII), скрининговые тесты ELISA включали анализы для выявления как EGFR дикого типа, так и EGFRvIII. Семь клонов были идентифицированы как специфичные на EGFRvIII в анализах ELISA, причем интересно, что именно эти клоны были негативными в отношении окрашивания клеток, экспрессирующих wtEGFR по результатам FMAT. 13 клонов в анализах FMAT и ELISA были идентифицированы как позитивные на wtEGFR, но не на EGFRvIII, что оказалось уникальным для этой библиотеки по сравнению с библиотеками 101 и 108/109. Все позитивные клоны по результатам ELISA были отобраны для дальнейшего анализа.
Анализ последовательности и отбор клона
Клоны, идентифицированные как EGFR-специфичные по результатам ELISA, были извлечены из исходных мастер-планшетов (384-луночного формата) и объединены в новых планшетах. Из клонов была выделена ДНК, которую подвергли секвенированию на V-гены. Была проведена выверка последовательностей и отбор всех уникальных клонов. Множественные выверки полученных последовательностей отразили уникальность каждого конкретного клона и позволили провести идентификацию уникальных антител. В результате анализа 220 клонов были идентифицированы 70 генетически различных кластеров последовательностей антител. Каждый кластер родственных последовательностей, по-видимому, был получен через соматические гипермутации общего клона предшественника. В общем, из каждого кластера были выбраны один или два клона для проверки последовательности и специфичности. Вариабельные последовательности отобранных антител показаны в приложении 1. Нуклеотидные последовательности включают сайты рестрикции на обоих концах. Следовательно, соответствующие транслированные аминокислотные последовательности (с применением третьей рамки считывания последовательности ДНК) включают на N-конце две аминокислоты, которые не образуют части последовательностей VH и VL по определению IMGT (Lefranc et al (2003) IMGT unique numbering for immunoglobulin and T cell receptor variable domains and Ig superfamily V-like domains. Dev. Comp Immunol 27, 55-77). Все показанные последовательности VL включают одну и ту же константную каппа-область человека, которая начинается с аминокислот -TVAAP- и заканчивается на C-конце фрагментом -NRGEC. В целях настоящего изобретения термин «последовательность VL» применительно к специфическому антителу исключает константную каппа-область и две N-концевые аминокислоты (LA-). Термин последовательность применительно к специфическому антителу исключает две N-концевые аминокислоты (RA-).
Проверка достоверности последовательности и специфичности
Для того чтобы проверить достоверность клонов, кодирующих антитела, была приготовлена плазмида ДНК и проведена трансфекция клеток FreeStyle CHO-S (Invitrogen) по шкале 2 мл для экспрессии. Через 96 часов после трансфекции собирали супернатант. Уровень экспрессии оценивали в стандартном анализе ELISA против IgG, а специфичность определяли посредством EGFR-специфичного и EGFRvIII-специфичного анализа ELISA. Было продемонстрировано, что правильную специфичность и последовательность имеют 85% клонов.
Скрининг на антипролиферативные эффекты
Клеточное повреждение неизбежно приводит к утрате способности клетки поддерживать и обеспечивать энергию для метаболической функции и роста клетки. На этой предпосылке основаны анализы метаболической активности. Обычно они направлены на измерение митохондриальной активности. Реактив клеточной пролиферации WST-1 (Roche, № по каталогу 11 644 807 001) представляет собой готовый к употреблению субстрат, который измеряет метаболическую активность жизнеспособных клеток. Далее допускается, что метаболическая активность коррелируется с количеством жизнеспособных клеток. В этом примере анализ с WST-1 был использован для измерения количества метаболически активных клеток после обработки супернатантами клеточных культур, содержащими различные антитела против EGFR.
Перед проведением анализа с WST-1 разные объемы 2-мл супернатантов (0, 10, 25, 50 и 150 мкл) переносили в соответствующие лунки 96-луночного планшета.
Затем клетки HN5 отмывали 1×PBS и разделяли трипсинизацией с применением 3 мл раствора трипсина. Затем добавляли 17 мл полной среды, и клетки центрифугировали на скорости 300×g (1200 rcf) в течение 5 минут. Супернатант удаляли, а клетки ресуспендировали в смеси DMEM+0,5% FBS. Клетки подсчитывали, их концентрацию корректировали, и в лунки с супернатантами добавляли 1500 клеток, так, что каждая лунка содержала в общей сложности 200 мкл среды. Планшеты инкубировали 4 дня в увлажненном инкубаторе при 37°C. Затем в каждую лунку добавляли 20 мкл реактива WST-1, и планшеты инкубировали в течение 1 часа при 37°C. Далее планшеты переносили в орбитальный планшетный шейкер и оставляли еще на один час. Поглощательную способность измеряли на уровне 450 и 620 нм (опорная длина волны) считывающим устройством ELISA. Различие в уровне метаболически активных клеток (MAC) вычисляли как процентный показатель по сравнению с контрольными супернатантами, исходя из следующей формулы:
Затем эти величины были использованы как основа для контролируемого иерархического кластерного анализа (кластеризация основана на реактивности в ELISA), проведенного с применением бесплатного программного обеспечения Cluster и TreeView.
Предпочтительно иметь возможности для скрининга на функциональные антитела на раннем этапе процесса отбора антител. Супернатанты культур из 83 2-мл трансфекций были использованы для скрининга на функции подавления роста в анализе пролиферации, проведенном с применением клеток HN5 в 0,5% FBS. Результаты были визуализированы посредством простого иерархического кластерного анализа. Как можно увидеть из кластерного анализа (фиг.5), было обнаружено, что многие супернатанты снижают количество метаболически активных клеток HN5 (темно-серый цвет) с эффектом зависимости от концентрации
(кластер 2). Сходным образом, некоторые супернатанты увеличивают количество метаболически активных клеток HN5 (светло-серый цвет) с эффектом зависимости от концентрации (кластеры 1, 3 и 4). Интересное наблюдение заключалось в том, что те супернатанты, которые снижали количество метаболически активных клеток HN5, имели реактивность 2 (черные стрелки), тогда как супернатанты, увеличивающие количество метаболически активных клеток HN5, имели реактивность 1 (серые стрелки). Супернатанты с реактивностью 2 были позитивными в анализах ELISA как на wtEGFR, так и на EGFRvIII, тогда как супернатанты с реактивностью 1, были реактивными только в отношении wtEGFR. Таким образом, указанные анализы могут установить связь между реактивностью антител в ELISA и их функциональностью в клеточных анализах.
Репарация клонов
При использовании мультиплексного подхода PCR ожидается некоторая степень перекрестного примирования во внутри- и меж-V-генном семействе вследствие вырожденности праймеров и высокой степени гомологии. Перекрестное примирование внедряет в каркас иммуноглобулина аминокислоты, не встречающиеся в норме, что влечет за собой некоторые потенциальные последствия, например, структурные изменения и увеличение иммуногенности, причем все они приводят к снижению терапевтической активности.
Для того чтобы устранить эти препятствия и быть уверенным в том, что отобранные клоны воспроизводят естественный гуморальный иммунный ответ, такие перекрестно-примирующие мутации были скорректированы в процессе, называемом репарацией клонов.
На первом этапе процедуры репарации клонов последовательность VH была амплифицирована в PCR с набором праймеров, содержащим последовательность, соответствующую последовательности гена VH из представляющего интерес родоначального клона, благодаря чему можно было скорректировать любые мутации, внесенные перекрестным примированием. Фрагмент, полученный в PCR, подвергали перевариванию ферментами XhoI и AscI с последующим обратным лигированием в вектор экспрессии млекопитающих, переваренный ферментами XhoI/AscI (фиг.4) с применением общепринятых приемов лигирования. Лигированный вектор был амплифицирован в E. coli, а плазмида была очищена стандартными способами. Последовательность VH была секвенирована для верификации исправлений, а вектор был подвергнут перевариванию ферментами NheI/NotI для его подготовки к вставлению легкой цепи.
На втором этапе полноразмерная легкая цепь была амплифицирована в PCR с набором праймеров, содержащим последовательность, соответствующую последовательности гена VL из представляющего интерес родоначального клона, благодаря чему можно было скорректировать любые мутации, внесенные перекрестным примированием. Полученный в PCR фрагмент был переварен ферментами NheI/NotI и лигирован в приготовленный ранее вектор, содержащий VH. Продукт лигирования был амплифицирован в E. coli, а плазмида была очищена стандартными способами. Впоследствии легкая цепь была секвенирована для верификации исправлений.
В том случае, если константная каппа-область выбранного клона содержит мутации, внесенные во время амплификации генов, его замещают константной областью без мутаций. Это осуществляют в PCR с перекрыванием, где отремонтированный ген VL (амплифицированный без константной области) гибридизируют с константной областью, имеющей правильную последовательность (его получают в отдельной PCR). Всю последовательность амплифицируют и клонируют в вектор, содержащий VH, как это описано выше, после чего исправленную легкую цепь секвенируют для верификации исправлений.
Таблица 2 | ||||||
Графики иммунизации, использованные для генерирования стартового материала при клонировании антител против EGFR | ||||||
График, группа мышей | Линия | Инъекция 1 | Инъекция 2 | Инъекция 3 | Инъекция 4 | Завер-шение |
101 | Balb/c | День 1: 25 мкг rhEGFR (R&D systems 1095-ER) CFA s.c. | День 35: 25 мкг rhGH-EGFR (Symphogen) IFA s.c. | День 56: 25 мкг rhEGFR* (Symphogen) IFA s.c. | День 70: 25 мкг rhEGFR (Symphogen) IFA s.c. | День 73 |
108 | Balb/c | День 1: 1×107 клеток HN5 CFA i.p. | День 28: 25 мкг rhEGFR* (Symphogen) IFA s.c. | День 42: 1×107 клеток HN5 IFA i.p. | День 56: 25 мкг rhEGFR* (Symphogen) IFA s.c. | День 59 |
109 | Balb/c | День 1: 1×107 клеток HN5 CFA i.p. | День 28: 25 мкг rhEGFR* (Symphogen) IFA s.c. | День 42: 1×107 клеток HN5 IFA i.p. | День 56: 25 мкг rhEGFR* (Symphogen) PBS i.v. | День 59 |
111 | Balb/c | День 1: 25 мкг rhEGFR* (Symphogen) CFA s.c. | День 28: 25 мкг rhEGFR+ rhEGFRvIII** (Symphogen) IFA s.c. | День 42: 25 мкг rhEGFR+ rhEGFRvIII** (Symphogen) IFA s.c. | День 56: 25 мкг rhEGFR+ rhEGFRvIII** (Symphogen) IFA s.c. | День 59 |
118 | Balb/c | День 1: 1×107 клеток HN5 CFA i.p. | День 29: 100 мкг rhGH-EGFR (Symphogen) IFA s.c. | День 44: 1×107 клеток HN5 IFA i.p. | День 58: 25 мкг rhEGFR (Sigma E3461) IFA s.c. | День 61 |
119 | C57B | День 1: 1×107 клеток HN5 CFA i.p. | День 29: 100 мкг rhGH-EGFR (Symphogen) IFA s. c. | День 44: 1×107 клеток HN5 IFA i.p. | День 58: 25 мкг rhEGFR (Sigma E3641) IFA s.c. | День 61 |
Таблица 3 | |||
Смесь праймеров с перекрыванием-удлинением для мультиплексной RT-PCR | |||
Название праймера | Конц. (нМ) | Последовательность | SEQ ID |
mHCre | 0,2 | GACSGATGGGCCCTTGGTGG | 1 |
mKapp | 0,2 | GCTGTAGGTGCTGTCTTTGC | 2 |
mVH | |||
MVH A | 0,04 | TATTCCCATGGCGCGCCSAGGTCCARCTGCARCAGYCTG | 3 |
MVH B | 0,04 | TATTCCCATGGCGCGCCGARGTGMAGCTKGTKGAGTC | 4 |
MVH C | 0,04 | TATTCCCATGGCGCGCCSAGGTGCAGCTKMAGGAGTC | 5 |
MVH 8 | 0,04 | TATTCCCATGGCGCGCCCAGGTTACTCTGAAAGAGTC | 6 |
MVH 9 | 0,04 | TATTCCCATGGCGCGCCCAGATCCAGTTGGTGCAGTCTG | 7 |
mVK | |||
mVK D | 0,04 | GGCGCGCCATGGGAATAGCTAGCCGAYATCCAGATGACHCARWCT | 8 |
mVK E | 0,04 | GGCGCGCCATGGGAATAGCTAGCCRACATTGTGMTGACHCAGTC | 9 |
mVK F | 0,04 | GGCGCGCCATGGGAATAGCTAGCCSAMATTGTKCTSACCCARTCTC | 10 |
mVK 1- | 0,04 | GGCGCGCCATGGGAATAGCTAGCCGATRTTGTGATGACBCARRCT | 11 |
W=A/T, R=A/G, S=G/C, Y=C/T, K=G/T, M=A/C, H=ACT, B=GCT; Конц. - заключительная концентрация. |
Таблица 4 | |||
Набор вложенных праймеров | |||
Название праймера | Конц. (нМ) | Последовательность | SEQ ID |
mHCrev | 0,2 | GGACAGGGMTCCAKAGTTCCADKT | 16 |
hmJK | |||
hmJK1- | 0,2 | GACAGATGGTGCAGCCACAGTTCGTTTGATTTCCAGCTTGGTG | 17 |
hmJK2- | 0,2 | GACAGATGGTGCAGCCACAGTTCGTTTTATTTCCAGCTTGGTC | 18 |
hmJK4- | 0,2 | GACAGATGGTGCAGCCACAGTTCGTTTTATTTCCAACTTTGTC | 19 |
hmJK5- | 0,2 | GACAGATGGTGCAGCCACAGTTCGTTTCAGCTCCAGCTTGGTC | 20 |
K=G/T, M=A/C, D=AGT; Конц. - заключительная концентрация. |
Таблица 5 | |||
Набор праймеров для сплайсинга константной каппа-области | |||
Название праймера | Конц. (нм) | Последовательность | SEQ ID |
Амплификация константной каппа-области человека | |||
hKCforw-v2 | 0,2 | GAACTGTGGCTGCACCATCTGTC | 21 |
Kappa3' | 0,2 | ACCGCCTCCACCGGCGGCCGCTTATTAACACTCTCCCCTGTTG | 22 |
Сплайсинг посредством перекрывания-удлинения | |||
mHKCrev | 0,2 | ACCGCCTCCACCGGCGGCCGCTTATTAACACTCTCCCCTGTTGFFGCTCTT | 23 |
набор mJH | |||
mJH1 | 0,2 | GGAGGCGCTCGAGACGGTGACCGTGGTCCC | 12 |
mJH2 | 0,2 | GGAGGCGCTCGAGACTGTGAGAGTGGTGCC | 13 |
mJH3 | 0,2 | GGAGGCGCTCGAGACAGTGACCAGAGTCCC | 14 |
mJH4 | 0,2 | GGAGGCGCTCGAGACGGTGACTGAGGTTCC | 15 |
ПРИМЕР 2: Выработка антител против EGFR млекопитающих
Для кратковременной экспрессии антител против EGFR была использована система экспрессии FreeStyle MAX CHO (Invitrogen). Антитела были экспрессированы в объеме 200-2000 мл.
Приблизительно за 24 часа до трансфекции проводили пересев клеток CHO-S, чтобы довести их концентрацию до 0,5×106 клеток на миллилитр. Плазмиду (1,25 мкг на миллилитр среды для культивирования клеток) разбавляли бессывороточной средой OptiPro и смешивали c раствором реактива для трансфекции FreeStyle MAX в соответствии с рекомендациями поставщика. Реактивы для трансфекции переносили в клеточную культуру, а через 6 дней после этого собирали супернатант.
Экспрессированные антитела очищали из супернатанта культуры с применением этапа аффинной хроматографии в колонке Protein A-Sepharose (MabSelect Sure, GE Health Care) для очистки молекул IgG1. Антитела были элюированы из колонки с применением 0,1M глицина 2,7. Фракции, содержащие антитела, определенные при измерении поглощательной способности на уровне 280 нм, были объединены и подвергнуты диализу 5 мМ ацетатом натрия, 150 мМ NaCl, pH 5. Очищенные образцы антител были протестированы на наличие эндотоксина по аналитической методике LAL.
ПРИМЕР 3: Определение специфичностей эпитопа
Конкурентный анализ ELISA с эталонными антителами
На основе применения эталонных антител, связывающихся с известными доменами EGFR, как это описано в ссылке (J.R. Cochran et. al., JIM 2004: 287; 147-158), был разработан конкурентный анализ ELISA, при помощи которого можно было провести различие между связывающими эпитопами антител против EGFR при инкубации с вторичным реактивом, который был специфичен в отношении области Fc антител против EGFR человека и не проявлял перекрестной реактивности с мышиными или крысиными Fc IgG. Методика ELISA была адаптирована из описаний, опубликованных в ссылке Ditzel et al., 1995, The Journal of Immunology, Vol 154, Issue 2 893-906.
Анализ ELISA с блокированием эпитопа проводили посредством разбавления антигена полноразмерного EGFR до концентрации 0,5 мкг/мл в PBS и покрытия из расчета 50 мкл на лунку ELISA в течение ночи при 4°C. На следующее утро лунки дважды отмывали PBS-T и блокировали в течение одного часа смесью PBS-T-1% BSA при комнатной температуре с последующим двукратным отмыванием в PBS-T. Затем 25 мкл мышиных или крысиных эталонных антител mAb добавляли в независимые лунки ELISA в разведении, известном из предыдущих экспериментов, чтобы увеличить максимальное связывание антигена в 200 раз. Через 15 минут 25 мкл антител против EGFR в концентрации 2 мкг/мл добавляли в лунки, предварительно инкубированные с эталонными антителами, или в лунки, содержащие 25 мкл PBS. После перемешивания компонентов это давало конечную концентрацию антитела против EGFR 1 мкг/мл и 100-кратное максимальное связывание антигена относительно эталонных антител. Антитела были инкубированы в течение 45 минут при комнатной температуре, после чего лунки четыре раза отмывали PBS-T. Вторичный конъюгат козьего IgG против человека с HRP разбавляли в соотношении 1:3000, и 50 мкл этого материала добавляли в каждую лунку с последующей 30-минутной инкубацией при комнатной температуре. Наконец, лунки четыре раза отмывали PBS-T, планшеты разрабатывали, добавляя TMB (50 мкл на лунку) и проводили считывание на волне 620 нм каждые 5-15-30 минут. Степень ингибирования рассчитывали по формуле: % ингибирования = (1-(OD конкуренции/OD без конкуренции (PBS))) × 100.
Реактивы ELISA:
1) Покровный буфер: 1×PBS, Gibco № по каталогу: 20012-019
2) Антигены: Полноразмерный EGFR дикого типа, очищенный от клеток A431, Sigma E3641
3) Планшет ELISA: NUNC Maxisorp, № по каталогу: 442404
4) Буфер блокирования/разбавления: 1% BSA в PBS-T (PBS-T-1% BSA)
5) Отмывочный буфер: 1×PBS/0,05% Tween 20 (PBS-T)
6) Положительный контроль: Эрбитукс (Merck KGaA, 64271 Дармштадт, Германия, № по каталогу: 018964, Cetuximab), Вектибикс (Amgen Inc, One Amgen Center Drive, Саузенд Оукс, штат Калифорния 91320-1799, США, № по каталогу: 3241400, Panitumumab)
7) Эталонные антитела:
• ICR10 (крысиное), Abcam, Ab231
• 199.12 (мышиное), Lab Vision Ab-11, MS-396-PABX
• EGFR.1 (мышиное), Lab Vision Ab-3, MS-311-PABX
• H11 (мышиное), Lab Vision Ab-5, MS-316-PABX
• B1D8 (мышиное), Lab Vision Ab-16, MS-666-PABX
• 111.6 (мышиное), Lab Vision Ab-10, MS-378-PABX
• 225 (мышиное), Lab Vision Ab-2, MS-269-PABX
• 528 (мышиное), Lab Vision Ab-1, MS-268-PABX
8) Конъюгат козьего IgG против человека и HRP, Serotec, Star 106P
9) TMB Plus, KemEnTec, № по каталогу: 4390L
10) 1M H2SO4
Результаты конкурентного анализа ELISA показаны на фиг.6. Конкурентные анализы ELISA были использованы для ранжирования супернатантов с антителами против EGFR в соответствии с доменной специфичностью использованных эталонных антител против внеклеточного домена EGFR. Значения ингибирования в диапазоне 50-100% расценивали как указание на значительную конкуренцию между парами антител, связывающими перекрывающиеся эпитопы или эпитопы, находящиеся в большой близости с антигеном, тогда значения ингибирования ниже 50% указывали на то, что эпитопы, распознанные парами антител, не соседствуют друг с другом, что приводит к снижению стерического несоответствия. Было обнаружено, что антитела против EGFR связывают несколько эпитопов на ECD EGFR, включая домены I, II и III. Для некоторых антител этот анализ не позволяет различить специфическую направленность mAb против домена I или домена II. Такие специфичности получили обозначение домен I/II. Далее оказалось, что некоторые антитела связывают уникальные эпитопы, которые не удается в дальнейшем расшифровать при помощи использованного конкурентного анализа ELISA (например, клоны 1229 и 1320, фиг.6). Вполне возможно, что некоторые из этих антител направлены против домена IV, для которого авторы изобретения не располагают какими-либо эталонными реактивностями антител. Интересно, что антитела к домену III далее можно было подразделить на четыре подгруппы, основываясь на различном характере конкуренции, полученном с проверенными мышиными эталонными антителами, направленными против этого домена. Группа I состояла только из mAb 992, конкурирующего за связывание с эталонными антителами Ab1 и Ab2. Группа II состояла из mAb 1024 и 1042, которые были получены из одной и той же реаранжировки Ig и, следовательно, демонстрировали очень близкую гомологию последовательностей, как на уровне ДНК, так и на уровне аминокислот. Было обнаружено, что эти два антитела конкурируют за связывание только с Ab2. Группа III состояла из mAb 1030, 1208 и 1277, которые конкурировали за связывание с эталонными антителами Ab1, Ab5 и Ab10. И, наконец, группа IV состояла из mAb 1254, конкурирующего за связывание со всеми использованными эталонными антителами, направленными против домена III: Ab1, Ab2, Ab5 и Ab10.
Конкурентный анализ для разных эпитопов с эталонными или одинаковыми видами антител при использовании технологии поверхностного плазмонного резонанса
Анализ SPR проводили в аппарате Biacore 3000 с четырьмя проточными кюветами. Чип CM5 Biacore был конъюгирован с 10000 резонансных единиц (Ru) поликлонального антитела против His в проточных кюветах 1-4 в соответствии с инструкциями производителя. При скорости потока 5 мкл/мин 15 мкл 6×His ECD EGFR в концентрации 20 мкг/мл впрыскивали для захвата во все четыре проточные кюветы, с которыми было конъюгировано поликлональное антитело против His. Сразу же после впрыскивания антигена в каждой проточной кювете при базисном прогоне было установлено максимальное связывание mAb против EGFR без конкуренции. Вкратце, 5 мкл антитела в концентрации 40 мкг/мл впрыскивали во все проточные кюветы с захваченным EGFR при последующем отслаивании комплекса антиген/антитело посредством кислого промывания с низким pH (время контакта с 10 мМ смеси глицин-HCl, pH2, - 10 секунд). После определения максимального связывания антитела против EGFR в каждой проточной кювете проводили конкурентный прогон в таком же цикле аппарата Biacore. Сначала проточные кюветы насыщали антигеном ECD EGFR с последующим впрыскиванием различных эталонных антител или антител против EGFR в разные проточные кюветы при тех же условиях насыщения антигеном, как было описано выше. Этот этап немедленно сопровождался вторым впрыскиванием антитела против EGFR в проточные кюветы, насыщенные антигеном EGFR и конкурентным антителом, для сведения к минимуму диссоциации или антигена, или блокирующего антитела. Затем комплексы антиген/антитело отслаивали посредством кислого промывания с низким pH (время контакта с 10 мМ смеси глицин-HCl, pH2, - 10 секунд), после чего повторяли с новым антителом против EGFR весь цикл, начиная с базисного прогона. Степень ингибирования испытуемых антител против EGFR определяли путем сравнения величины Ru max для индивидуального антитела против EGFR до и после конкуренции при введении контрольных точек, зафиксированных за две секунды до и через две секунды после впрыскивания каждого образца. Пример одного цикла Biacore показан на фиг.7.
Реактивы:
1. Чип CM5, Biacore, № по каталогу: BR-1000-14
2. NHS, Biacore BR-1000-50
3. EDC, Biacore BR-1000-50
4. 10 мМ ацетатный буфер pH 4,5, Biacore, № по каталогу: BR-1003-50
5. Антитело Tetra-His (без BSA), Qiagen, № по каталогу: 34670
6. Этаноламин, 1,0M pH 8,5, Biacore BR-1000-50
7. Подвижный буфер 10×HBS-EP: 0,01M HEPES pH 7,4, 0,15M NaCl, 3 мМ EDTA, 0,005% об./об. сурфактанта P20
8. Антиген: Внеклеточный домен рекомбинантного EGFR человека собственного производства с 6×His.
9. 10 мМ глицин HCl pH 2,0
10. Эталонные антитела:
• ICR10 (крысиное), Abcam, Ab231
• 199.12 (мышиное), Lab Vision Ab-11, MS-396-PABX
• EGFR.1 (мышиное), Lab Vision Ab-3, MS-311-PABX
• H11 (мышиное), Lab Vision Ab-5, MS-316-PABX
• B1D8 (мышиное), Lab Vision Ab-16, MS-666-PABX
• 111.6 (мышиное), Lab Vision Ab-10, MS-378-PABX
• 225 (мышиное), Lab Vision Ab-2, MS-269-PABX
• 528 (мышиное), Lab Vision Ab-1, MS-268-PABX
Для подтверждения результатов эпитопного анализа, полученных по методике конкурентного ELISA, и для проведения дальнейшего эпитопного анализа с конкуренцией между теми же видами пар антител был проведен анализ конкуренции, основанный на связывании антител, с измерениями в режиме реального времени по методике поверхностного плазмонного резонанса. Полученная в результате этого анализа эпитопная карта клонов против EGFR, протестированных в сравнении с панелью эталонных антител, показана ниже на фиг.8. Значения ингибирования в диапазоне 50-100% расценивали как указание на значительную конкуренцию между парами антител, связывающими перекрывающиеся эпитопы или эпитопы, находящиеся в большой близости с антигеном, тогда как значения ингибирования ниже 50% указывали на то, что эпитопы, распознанные парами антител, не соседствуют друг с другом, что приводит к снижению стерического несоответствия. Значения ингибирования ниже 25% не были включены в анализ для перекрывающихся эпитопов, поскольку они были расценены как показатель статистически незначимого ингибирования. Было обнаружено, что все испытуемые антитела, кроме 1320, конкурируют с одним или более использованных эталонных антител, а это указывало на то, что антитело 1320 было направлено против неизвестного эпитопа, для которого еще не располагают какими-либо эталонными активностями антител. Полностью человеческие или гуманизированные антитела вектибикс и эрбитукс были включены в анализ и, в соответствии с полученными результатами, оказалось, что они связывают перекрывающиеся эпитопы. Данные, полученные из конкурентных анализов ELISA и SPR в целом хорошо коррелировались в отношении установленной доменной специфичности антител против EGFR. Однако в двух анализах иногда наблюдались небольшие различия по характеру конкуренции между отдельными эталонными антителами, что, по-видимому, было связано с тем фактом, что в конкурентном анализе ELISA был использован антиген полноразмерного рецептора EGF, а в конкурентном анализе SPR - рекомбинантный внеклеточный домен EGFR.
После того как эпитопное картирование антител против EGFR было подтверждено в двух разных анализах конкуренции, был проведен конкурентный анализ тех же видовых комбинаций пар антител против EGFR с той целью, чтобы выяснить, какие пары антител распознавали разные эпитопы, и можно ли далее разделить на эпитопные кластеры пары антител, распознающих перекрывающиеся эпитопы. Результаты этого анализа показаны на фиг.9. И вновь в этом анализе значения ингибирования в диапазоне 50-100% расценивали как указание на значительную конкуренцию между парами антител, связывающих перекрывающиеся эпитопы. Этот критерий представлялся достоверным, поскольку антитела, протестированные против самих себя и, следовательно, распознающие полностью перекрывающиеся эпитопы, дали значения ингибирования в диапазоне 70%-100%, как это показано на фиг.9. Кроме того, это наблюдение иллюстрирует, что диссоциация пар антигенов или антител в промежутке времени проведенного анализа не оказывает влияния на итоги эксперимента для проходивших тестирование антител. При группировке антител в соответствии с предполагаемой доменной специфичностью ECD EGFR, определенной в предыдущих разделах, было обнаружено, что антитела связывающиеся исключительно с доменом I либо с доменом I или II (I/II), главным образом, формируют кластер с антителами, имеющими такую же специфичность, но не с антителами, распознающими домен III. Сходным образом, антитела к домену III, которые, как было выяснено, конкурируют за связывание только с антителами, распознающими домен III, но не с антителами, распознающими домен EGFR I или I/II. Хотя было обнаружено, что два антитела к домену III (1024 и 1042) полученные из одной и той же реаранжировки Ig, распознают перекрывающиеся эпитопы, важное наблюдение заключалось в том, что попарные комбинации 1024 или 1042 с 992 или 1030 не приводят к значительной конкуренции. Таким образом, был сделан вывод, что антитела 992, 1030 и 1024/1042 распознавали три неперекрывающихся эпитопа домена III антигена ECD EGFR. Наконец, было обнаружено, что mAb 1320 конкурирует за связывание с mAb 1024 и 1449, которые направлены против домена III, но не с другими антителами к домену III, участвовавшими в тестировании (конкуренция 1320 с 1042 не наблюдалась). Таким образом, было предположено, что mAb 1320 осуществляет связывание на периферии домена III на внеклеточном домене EGFR. Обзорное представление об эпитопной специфичности можно получить на фиг.10, где проиллюстрированы эпитопные карты антител, направленных против доменов I, I/II или III EGFR.
После выяснения того факта, что попарные комбинации антител 992, 1030 и 1024/1042 не приводят к значительной конкуренции, как это определяется в анализе SPR, были запланированы новые эксперименты Biacore, чтобы исследовать вопрос о том, как много антител может одновременно связываться с рецепторным антигеном. Прежде всего было исследовано, какое влияние оказывает насыщение домена III тремя антителами 992, 1024 и 1030 на связывание антител, направленных на другие специфичности EGFR, не относящиеся к домену III. Результат этого анализа показан на фиг.11A. Ингибирование отдельных антител выявляли посредством их тестирования в комбинациях или с единичным антителом, или со смесью (до трех антител), полученных при постепенном добавлении одного нового антитела в каждом цикле Biacore. Чтобы обеспечить полную блокаду распознаваемого эпитопа, антитела были протестированы в индивидуальных концентрациях 40 мкг/мл. Как показано на фиг.11A, было обнаружено, что три антитела к домену III (992, 1024 и 1030) связываются с рецептором одновременно без какого-либо взаимного ингибирования. Наблюдаемые отрицательные значения ингибирования, увеличивающиеся при каждом последующем добавлении антитела, позволили предположить синергический эффект связывания для связывания следующих антител. Важно отметить, что, если домен III был инкубирован с тремя антителами, то другие антитела, направленные против неперекрывающихся эпитопов на домене I/II (mAb 1261), домене I (1347) или на неизвестной специфичности (1361), проявляли связывание без блокирования эпитопов смесью трех mAb. Кроме того, эти протестированные антитела демонстрировали небольшие отрицательные величины ингибирования, свидетельствующие о том, что они связывались лучше после насыщения рецептора смесью трех mAb. Следовательно, по результатам этого эксперимента можно было предположить, что шесть протестированных антител могли связываться с антигеном ECD рецептора EGF одновременно. Для того чтобы далее проверить этот наблюдаемый феномен, была приготовлена смесь, состоявшая из всех протестированных антител (1261, 1347, 992, 1024, 1030 и 1361), которую проанализировали на ингибирование каждого индивидуального образца антитела в смеси. В качестве положительного контроля при тестировании были использованы смеси антител, в которые не были включены испытуемые образцы антител. Как представлено на фиг.11B/C, было обнаружено, что при тестировании на связывание с рецептором EGF, который был предварительно инкубирован с полной смесью антител, все шесть испытуемых антител ингибируются на 80-116%. Однако, если из этой смеси удаляли отдельные образцы антител, значительного ингибирования конкретных образцов не наблюдалось, а это доказывало, что отдельные антитела в смеси блокировали связывание с рецептором EGF только для самих себя. Этот эксперимент четко проиллюстрировал, что одновременно связываться с EGFR могут, по меньшей мере, шесть антител, распознающих неперекрывающиеся эпитопы. В заключительном эксперименте было исследовано, могут ли связываться с EGFR другие антитела, направленные против домена I (1284), I/II (1257) или против кластера неизвестной специфичности (1183, 1255), если этот рецептор был предварительно инкубирован со смесью из шести антител. Как представлено на фиг.11D, ни одно из протестированных антител не было способно осуществлять значительное связывание с EGFR при предварительной инкубации этого рецептора со смесью из шести антител. Это могло быть обусловлено тем, что коллекция не включала антител против тех сайтов, которые оставались незанятыми смесью из шести антител. Альтернативное объяснение: фактически, возможно, что все сайты на протестированных доменах были блокированы антителами.
Таблица 6 | ||||
Имеющиеся в продаже антитела с документированными специфичностями против внеклеточных доменов EGFR | ||||
Клон | Вид | Домен I | Домен II | Домен III |
ICR10 | Крыса | × | ||
199.12/Ab11 | Мышь | × | ||
EGFR.1/Ab3 | Мышь | × | ||
H11/Ab5 | Мышь | × | ||
111.6/Ab10 | Мышь | × | ||
528/Ab-1 | Мышь | × | ||
255/Ab-2 | Мышь | × |
ПРИМЕР 4: Ингибирование активации EGFR
Определение опосредованной антителами блокады связывания лиганда EGF с рецептором EGFR посредством конкурентного анализа ELISA
Для того чтобы верифицировать связывание протестированных антител против EGFR с рецептором EGFR и одновременное блокирование ими связывания биотинилированного лиганда EGF, лунки ELISA покрывали из расчета 80 мкл на лунку полноразмерным EGFR в концентрации 0,5 мкг/мл в PBS на ночь при температуре 4°C. На следующее утро лунки дважды отмывали PBS-T и на один час блокировали 150 мкл PBS-T-1% BSA при комнатной температуре с последующим двукратным отмыванием в PBS-T. Затем в лунки добавляли 80 мкл антител против EGFR в серийном разведении, а также контрольные антитела, после чего планшеты инкубировали 30 минут при комнатной температуре. После инкубации антител 20 мкл биотинилированного лиганда EGF в концентрации 0,5 мкг/мл добавляли во все лунки с разведениями антител против EGFR или в лунки, содержащие только PBS-T 1% BSA, после чего планшеты инкубировали при комнатной температуре в течение 1 часа. Затем лунки пять раз отмывали PBS-T, после чего инкубировали 30 минут при комнатной температуре с вторичным реактивом стрептавидин-HRP, разбавленным в соотношении 1:1000 блокирующим буфером (из расчета 100 мкл на лунку). Наконец, лунки еще пять раз отмывали PBS-T, после чего планшеты разрабатывали, добавляя субстрат ТМВ (100 мкл на лунку), и инкубировали в течение 60 минут. После инкубации реакцию останавливали,, добавляя 1М H2SO4 (100 мкл на лунку), и считывали планшеты на уровне 0D 450 нм.
Реактивы ELISA:
1) Покровный буфер: 1×PBS, Gibco №по каталогу: 20012-019
2) Антиген: Полноразмерный EGFR дикого типа, очищенный от клеток А431, Sigma E2645
3) Планшет ELISA: NUNC Maxisorp, №по каталогу: 442404
4) Буфер блокирования/разбавления: 1% BSA в PBS-T (PBS-T-1% BSA)
5) Отмывочный буфер: 1×PBS/0,05% Tween 20 (PBS-T)
6) Положительный контроль: эрбитукс, вектибикс
7) Отрицательный контроль: Synagis (Medimmune Inc, Palivizumab, № по каталогу: NDC 60574-4111-1)
8) Биотинилированный лиганд EGF, Invitrogen, № по каталогу: Е3477
9) Стрептавидин-HRP, сверхчувствительный: Sigma S 2438
10) ТМВ Plus, KemEnTec, №по каталогу: 4390L
11) 1М H2SO4
Конкурентные анализы ELISA были проведены для ранжирования способности антител против EGFR ингибировать связывание биотинилированного лиганда EGF с полноразмерным рецептором EGFR, внесенным в виде покрытия в лунки ELISA. Как представлено на фиг.12, как эрбитукс, так и вектибикс очень мощно блокировали связывание лиганда EGF, тогда как антитело Synagis в отрицательном контроле, не направленное против EGFR, не ингибировало связывания лиганда EGF. Как показано на фиг.12А, три антитела (992, 1030 и 1042), направленные против домена III и распознающие неперекрывающиеся эпитопы, были протестированы по отдельности или в эквимолярной смеси на их способность ингибировать связывание лиганда EGF. Из трех протестированных антител только антитело mAb 1030 продемонстрировало умеренную ингибиторную активность в отношении лиганда EGF по сравнению с эрбитуксом и вектибиксом. Эквимолярная смесь mAb 992, 1030 и 1042 оказалась более эффективной в ингибировании связывания лиганда EGF по сравнению с теми же антителами при их тестировании по отдельности. При общей концентрации IgG 1 мкг/мл было обнаружено, что эквимолярная смесь ингибирует связывание лиганда EGF приблизительно в два раза эффективнее, чем mAb 1030 и в четыре раза эффективнее, чем mAb 992 и 1042 при их тестировании по отдельности, а это свидетельствовало о синергическом эффекте смешивания трех антител к домену III, распознающих неперекрывающиеся эпитопы. Как показано на фиг.12В, в этом анализе также были протестированы клоны антител против EGFR 1208, 1260, 1277 и 1320. Эти четыре клона были способны ингибировать связывание лиганда EGF с эффектом дозовой зависимости, что оказалось более эффективным, чем результат применения клонов 992, 1030 и 1042 по сравнению с контрольным эрбитуксом. Оказалось, что в концентрациях выше 0,33 мкг/мл клоны антител против EGFR 1208, 1260, 1277 и 1320 были столь же эффективными в блокировании связывания лиганда EGF, как и эрбитукс в соответствующих концентрациях.
Способность ингибировать фосфорилирование EGFR, индуцированное EGF, в клетках HN5
Антитела против EGFR были протестированы на реактивность в отношении фосфорилирования EGFR с применением внутриклеточного вестерн-анализа. Внутриклеточная вестерн-процедура позволяет выявить EGFR и фосфорилированный EGFR (pEGFR) в одном и том же образце, а это, в свою очередь, создает возможность для того, чтобы сравнить соотношение экспрессии EGFR и pEGFR при обработке каждым антителом и для каждого набора данных. Клетки HN5 в соответствии с инструкциями, полученными из АТСС, культивировали в среде DMEM с добавкой 10% FCS и пенициллина/стрептомицина. 43000 клеток HN5 высевали в 96-луночные планшеты Nunc (№ по каталогу 167008) за 24 часа до выращивания на минимальной среде. Перед добавлением антител клетки выращивали 16 часов в условиях голодания на среде DMEM. Антитела добавляли в конечной концентрации 10 мкг/мл в 200 мкл DMEM, а смесь пипетировали вверх и вниз, по меньшей мере, пять раз для лучшего перемешивания компонентов. После 30-минутной обработки антителами добавляли EGF в концентрации 50 мкг/мл в соответствующие лунки и оставляли на 7,5 минут.Внутриклеточные вестерн-анализы проводили, главным образом, по инструкциям, предоставленным производителем набора In-cell western (Odyssey, LI-COR biosciences).
После стимулирования EGF клетки фиксировали в 3,7% формальдегиде (Sigma F-8775, партия 71K500, содержащем ~1% метанола) в течение 20 минут. Перед блокированием в блокирующем буфере LI-COR (927-40000) были проведены пять 5-минутных отмываний в PBS-Triton X-100 (0,1%) для того, чтобы сделать клеточные мембраны проницаемыми. Первичные антитела добавляли в концентрациях, соответствующих предоставленным инструкциям, и инкубировали с осторожным встряхиванием при комнатной температуре в течение 2,5 часов (total EGFR mouse, разведение 1:500, BioSource International, № по каталогу AHR5062 и Phospho-EGFR Tyr1173 Rabbit, разведение 1:100, Biosource, № по каталогу 44-794G).
После инкубации с первичными антителами клетки пятикратно отмывали в течение пяти минут в PBS-T (0,1% tween-20), после чего добавляли вторичные антитела (goat-anti-rabbit IRDye 680, разведение 1:200, LI-COR, № по каталогу 926-32221 и goat-против mouse, IRDye 800CW, разведение 1:800, LI-COR, № по каталогу 926-32210) и инкубировали в течение 1 часа при комнатной температуре при осторожном встряхивании планшетов, покрытых алюминиевой фольгой.
Перед проведением измерений на флуоресцентном считывающем устройстве Tecan планшеты пятикратно отмывали в течение пяти минут в PBS-T. Все отмывания завершали резким движением, переворачивая планшет открытой стороной вниз для сбрасывания отмывающего раствора, с последующим постукиванием шаблоном по бумажному полотенцу. (Применительно к обработке планшетов ELISA важно отметить, что во время этой обработки клетки остаются на планшете, а отмывочный раствор при этой процедуре удаляется быстрее и легче, чем при отсасывании, которое может нарушить целостность монослоя клеток). Остатки отмывочного раствора после заключительного отмывания удаляли легким отсосом со стороны лунок многоканальной пипеткой. Флуоресцентный сигнал измеряли в канале 680 нм (возбуждение 675 нм и эмиссия 705 нм, в обоих случаях полоса пропускания 10 нм) и в канале 800 нм (возбуждение 7 62 нм и эмиссия 798 нм, в обоих случаях полоса пропускания 10 нм).
По результатам внутриклеточного вестерн-анализа становится очевидным, что значительное влияние на статус pEGFR клеток HN5 (р<0,05) оказывают три антитела: 1208, 1277 и 1320 (фиг.13).
Смесь антител против EGFR (992, 1030 и 1042) и отдельные антитела в данном случае были протестированы посредством внутриклеточного вестерн-анализа на эффект ингибирования фосфорилирования EGFR, индуцированного EGF. Как можно видеть на фиг.14, антитела 992 и 1030, а также смесь антител против EGFR значительно ингибировали фосфорилирование EGFR, индуцированное EGF (р<0,05).
ПРИМЕР 5: Интернализация рецепторов E6F в клетках A431NS
Клетки A431NS (АТСС# CRL-2592) трипсинизировали из культурального флакона Т175 со слиянием порядка 80-90% при помощи фермента TrypLE. Обособленные клетки отмывали в PBS и суспендировали в бессывороточной среде DMEM. Клеточный материал разделяли на порции по 1-2 мл и инкубировали 30 минут на льду с испытуемыми антителами. Концентрация антител составляла 10 мкг/мл. Клетки три раза отмывали в среде DMEM (250 г, 4 минуты, 4°С) и ресуспендировали в 1,8 мл среды DMEM. Каждую порцию распределяли в шесть пробирок FACS (по 300 мкл клеточной суспензии в каждую). Три пробирки из каждой порции помещали в водяную баню с температурой 37°С ровно на 40 минут, а другие пробирки сразу же ставили на лед. После инкубации клетки дважды отмывали в среде DMEM (250 г, 4 минуты, 4°С), а клеточный осадок повторно растворяли в 100 мкл кроличьего IgG против человека Fcγ F(ab′)2-FITC в среде DMEM. Клетки инкубировали 30 минут при 4°C, после чего три раза отмывали в среде DMEM при 4°C и анализировали в проточном цитометре FACSCalibur.
Результаты показаны на фиг.15. Инкубация с эрбитуксом и вектибиксом продемонстрировала такой же уровень интернализации рецептора порядка 30% при сохранении первоначального окрашивания поверхности на 70%. Инкубация только с антителом 992 приводила к ингибированию рецептора приблизительно на 45%. Инкубация со смесью антител, содержащей два дополнительных антитела с неперекрывающимися эпитопами, приводила к усилению ингибирования рецептора: 992+1024→74%, 992+1024+1030→83%.
Дальнейшее добавление антител не приводило к дополнительному увеличению интернализации рецептора. Таким образом, для достижения максимального уровня интернализации в клетках А431 нужны, по меньшей мере, три антитела.
ПРИМЕР 6: Анализы пролиферации
Клеточное повреждение неизбежно приводит к утрате способности клетки поддерживать и обеспечивать энергию для метаболической функции и роста клетки. На этой предпосылке основаны анализы метаболической активности. Обычно они направлены на измерение митохондриальной активности. Реактив клеточной пролиферации WST-1 (Roche, № по каталогу 11 644 807 001) представляет собой готовый к употреблению субстрат, который измеряет метаболическую активность жизнеспособных клеток. Далее допускается, что метаболическая активность коррелируется с количеством жизнеспособных клеток. В этом примере анализ с WST-1 был использован для измерения количества метаболически активных клеток после обработки разными антителами в различной концентрации.
Перед проведением анализа с WST-1 соответствующие антитела и смеси антител разбавляли в среде DMEM с добавками 0,5% FBS и 1% P/S до конечной общей концентрации антител 20 мкг/мл, что создавало в лунке с самой высокой концентрацией конечную концентрацию антител 10 мкг/мл. Затем 150 мкл этих растворов добавляли в лунки столбца 2 96-луночного планшета и готовили трехкратные серийные разведения вниз до столбца 9, так, что каждая лунка содержала 100 мкл раствора антител. В столбец 11 добавляли 100 мкл среды. В ряды 1 и 8, а также в столбцы 1 и 12 добавляли 200 мкл среды для уменьшения эффекта испарения среды в экспериментальных лунках.
Затем клетки A431-NS отмывали 1×PBS и разделяли трипсинизацией с применением 3 мл раствора трипсина. Затем добавляли 17 мл полной среды, и клетки центрифугировали на скорости 300×g (1200 rcf) в течение 5 минут. Супернатант удаляли, а клетки ресуспендировали в смеси DMEM+0,5% FBS. Проводили подсчет клеток и подгонку их концентрации до 15000 клеток на миллилитр. Затем 100 мкл клеточной суспензии добавляли в экспериментальные лунки столбцов 2-11 из расчета 1500 клеток на лунку. Планшеты инкубировали 4 дня в увлажненном инкубаторе при 37°C. Затем в каждую лунку добавляли 2 0 мкл реактива WST-1, и планшеты инкубировали в течение 1 часа при 37°C. Далее планшеты переносили в орбитальный планшетный шейкер и оставляли еще на один час. Поглощательную способность измеряли на уровне 4 50 и 620 нм (опорная длина волны) считывающим устройством ELISA. Количество метаболически активных клеток (MAC) рассчитывали как процентный показатель по сравнению с необработанным контролем, исходя из следующей формулы:
Для исследований по титрованию EGF лиганд разбавляли до концентрации 20 нМ/мл в среде DMEM+0,5% FBS, получая в лунке с самой высокой концентрацией EGF уровень 10 нМ/мл. Затем 150 мкл этого раствора добавляли в лунки столбца 2 96-луночного планшета и готовили трехкратные серийные разведения вниз до колонки 9, так, что каждая лунка содержала 100 мкл раствора EGF. В столбец 11 добавляли 100 мкл среды. В ряды 1 и 8, а также в колонки 1 и 12 добавляли 200 мкл среды для уменьшения эффекта испарения среды в экспериментальных лунках. Соответствующие антитела и смеси антител разбавляли до конечной общей концентрации антител 40 мкг/мл в среде DMEM с добавками 0,5% FBS и 1% P/S, что давало конечную концентрацию антител в лунках 10 мкг/мл. Затем 50 мкл этих растворов добавляли в лунки столбцов 2-9 96-луночного планшета.
Затем клетки A431-NS отмывали 1×PBS и разделяли трипсинизацией с применением 3 мл раствора трипсина. Затем добавляли 17 мл полной среды, и клетки центрифугировали на скорости 300×g (1200 rcf) в течение 5 минут. Супернатант удаляли, а клетки ресуспендировали в смеси DMEM+0,5% FBS. Проводили подсчет клеток и подгонку их концентрации до 40000 клеток на миллилитр. Затем 50 мкл клеточной суспензии добавляли в экспериментальные лунки столбцов 2-11 из расчета 2000 клеток на лунку. Планшеты инкубировали 4 дня в увлажненном инкубаторе при 37°C. Затем в каждую лунку добавляли 20 мкл реактива WST-1, и планшеты инкубировали в течение 1 часа при 37°C. Далее планшеты переносили в орбитальный планшетный шейкер и оставляли еще на один час. Поглощательную способность измеряли на уровне 4 50 и 620 нм (опорная длина волны) считывающим устройством ELISA. Количество метаболически активных клеток определяется по результату вычитания поглощательной способности на длине волны 4 50 нм из поглощательной способности на опорной длине волны 620 нм.
Количество метаболически активных клеток (MAC) рассчитывали как процентный показатель по сравнению с необработанным контролем, исходя из следующей формулы:
Результаты
Для того чтобы продемонстрировать превосходство смеси из трех антител против EGFR с неперекрывающимися эпитопами в пределах домена III над одиночными антителами, был проведен эксперимент, в котором исследовали ингибирование роста клеток A431-NS. Как можно видеть на фиг.16А, антитела, сами по себе, являются плохими ингибиторами роста клеток A431-NS, но при их применении в комбинации наблюдается синергический эффект в отношении роста клеток A431-NS. Хотя смесь антитела 992 с антителом 1042 или антителом 1030 достаточно мощна, смесь всех трех антител превосходит обе попарные смеси во всем диапазоне концентраций антител.
Было исследовано влияние отдельных антител и смесей антител на рост клеток A4 31-NS, стимулированных различными концентрациями EGF, а результаты этого исследования показаны на фиг.17. Как можно видеть на фиг.17, концентрации EGF выше 0,1 нМ в отсутствие антител токсичны для клеток. Однако очевидно, что смесь трех антител с неперекрывающимися эпитопами в пределах домена III EGFR (992, 1030 и 1042) действует синергически, ингибируя рост клеток A431-NS в присутствии EGF при его концентрации, по меньшей мере, до 0,3 нМ, причем смесь превосходит все моноклональные антитела.
Далее, авторы изобретения продемонстрировали, что синергический ингибиторный эффект в отношении роста клеток А431-NS можно также получить, комбинируя два антитела с неперекрывающимися эпитопами в домене III EGFR с такими антителами, которые направлены на эпитопы I или II EGFR. Как можно видеть на фиг.18, комбинации антител 992 и 1024, которые направлены на домен III EGFR, с антителом, направленным или на домен I EGFR (1284), или на домен I/II EGFR (1434) обладают такой же мощностью, как и комбинация трех антител, реагирующих с неперекрывающимися эпитопами в пределах домена III EGFR (992+1024+1030). В дополнение к этому следует отметить, что эти смеси антител с большей мощностью ингибируют рост клеток А431-NS, чем терапевтические антитела против EGFR эрбитукс и вектибикс.
Сходные анализы были проведены на двух других линиях раковых клеток, DU145 (АТСС#НТВ-81) и MDA-MB-468 (АТСС#НТВ-132). Результаты этих анализов пролиферации показаны на фиг.16B и 16B. В обоих случаях смесь трех антител (992, 1030 и 1042) превосходила смеси двух антител и одиночные антитела. В отношении клеток DU145 смесь трех антител превосходила вектибикс во всех концентрациях, а в отношении клеток MDA-MB-468 - в высоких концентрациях.
Используя способ, подобный описанному выше, авторы изобретения протестировали разные комбинации трех антител против EGFR.
Результаты
Эффекты различных комбинаций трех антител были исследованы на клеточной линии A431NS. Ингибиторная активность в отношении роста клеток для двадцати наиболее эффективных из проанализированных комбинаций показана на фиг.37. Все комбинации ингибировали пролиферацию клеточной линии A431NS более чем на 60% по сравнению с необработанным контролем. Еще одно интересное наблюдение заключается в том, что за исключением комбинаций (992+1024+1254, 992+1024+1320 и 992+1277+1320) все остальные комбинации содержат антитела с неперекрывающимися эпитопами. Это свидетельствует о том, что из трех антител можно сконструировать несколько комбинаций, связывающих разные эпитопы.
ПРИМЕР 7: Апоптоз
Апоптоз представляет собой клеточный механизм, который ведет к смерти клеток. Ранее этот механизм был описан при использовании таких антител против EGFR как эрбитукс (Baselga J. The EGFR as a target for anticancer therapy - focus on cetuximab. Eur J Cancer. 2001 Sep:37, Suppl 4:S 16-22). В связи с этим авторы провели исследование, чтобы ответить на вопрос, в какой степени отдельные антитела против EGFR 992, 1042 и 1030, а также смесь (992+1042+1030) способны индуцировать апоптоз.
Клетки A431NS в исходном количестве 1×104 были инкубированы в среде DMEM с добавками 0,5% FBS и антибиотиков для тройных определений в 96-луночных культуральных планшетах в присутствии смеси антител против EGFR (равные части 992, 1030, 1042), отдельных антител 992, 1030, 1042, эрбитукса или вектибикса в диапазоне концентраций от 0,01 мкг/мл до 10 мкг/мл. Клетки и антитела были инкубированы в течение 22 часов. Были собраны десять супернатантов, которые проанализировали набором ELISA производства компании Roche, № по каталогу: 11774425001 (Базель, Швейцария) на присутствие комплексов гистон-ДНК.
Эффект смеси был сопоставлен с каждым из моноклональных антител по отдельности, а также с эталонными антителами эрбитукс и вектибикс на клеточной линии A431NS (результаты представлены на фиг.19). Антитела были протестированы в 10-кратном разведении. Смесь оказалась значительно более эффективной (P<0,05) по сравнению с отдельными моноклональными антителами, а также вектибиксом при тестировании в концентрациях 1 мкг/мл и 10 мкг/мл. Смесь статистически значимо (p<0,05) увеличивала апоптоз по сравнению с эрбитуксом в концентрации 1 мкг/мл.
ПРИМЕР 7b:
В дополнение к примеру 7, смесь антител 992+1024, а также смесь антител 992+1024+1030 были исследованы на апоптотическую активность теми же способами, как это описано в примере 7 (фиг.35). Фактический уровень апоптоза был оценен по отношению к максимальному положительному контролю. Обе смеси, отдельные моноклональные антитела 992, 1024 и 1030, а также контрольное антитело в концентрации 1 мкг/мл сравнивали с эрбитуксом на клетках A431NS. Смесь антител 992+1024 проявила себя значительно лучше, чем эрбитукс и отдельные моноклональные антитела (во всех сравнениях P<0,05).
ПРИМЕР 8: Эффективность in vivo
Смесь против EGFR, состоящая из антител 992, 1030 и 1042, была исследована на эффективность in vivo на модели ксенотрансплантатов у мышей nude с применением клеток A431NS. Эта модель широко используется для исследования мощности моноклональных противораковых антител, включая антитела против EGFR. Мыши nude характеризуются иммунной недостаточностью и утратой T-клеток. Это позволяет выращивать в мышах клетки человека.
Две группы мышей nude в возрасте 6-8 недель получили подкожные инъекции 1×106 клеток A431NS. После того как средний размер опухолей достиг 100 мм3, было начато лечение мышей. Животные получили пять внутрибрюшинных инъекций антител в дозе 1 мг с интервалом 2-3 дня. Размер опухолей измеряли по двум диаметрам, применяя штангенциркули с цифровой индикацией и вычисляя объем опухолей по следующей формуле:
Объем опухоли (мм3)=L×W2×0,5,
где L означает наибольший диаметр, a W - наименьший диаметр (Teicher BA, Tumor Models in Cancer Research. Humana Press, NJ, USA 2002, р596). В конце эксперимента опухоли иссекали и взвешивали.
В качестве контрольного антитела был использован препарат Synagis. Эксперимент также включал лечение эрбитуксом и вектибиксом в том же количестве и по той же схеме, как и для смеси против EGFR (антитела 992, 1030 и 1024).
Как можно видеть на фиг.20, смесь антител 992, 1030 и 1042 значительно ингибировала рост опухолевых клеток A431NS (Р<0,05). Показатели среднего веса представлены на фиг.21. Результаты коррелируются с измерениями размеров опухолей. Выявлены статистически значимые различия между группой активной терапии и контрольной группой.
ПРИМЕР 8b: Эффективность in vivo
В дополнение к экспериментам in vivo, описанным в примере 8, смеси антител 992+1024 и 992+1024+1030 были исследованы на описанной выше модели ксенотрансплантатов A431NS (фиг.36). Четыре группы мышей nude в возрасте 6-8 недель (каждая численностью по 9 животных) получили подкожные инъекции 1×106 клеток A431NS. Когда средний размер опухолей достиг 100 мм3, мыши получили первую инъекцию антител. Четыре указанные группы получили смесь 992+1024, смесь 992+1024+1030, эрбитукс или контрольное антитело Synagis. В общей сложности мыши получили 17 инъекций в дозе 0,5 мг (4 раза в неделю). Первую инъекцию проводили в 8-й день, а последнюю в 34-й день эксперимента. Размеры опухолей измеряли в течение 56 дней. По окончании лечения антителами у мышей, получавших эрбитукс, опухоли начали увеличиваться в размерах, тогда как в двух группах мышей, получавших смеси антител 992+1024 или 992+1024+1030, опухоли продолжали уменьшаться в размерах. В группе, получавшей смесь 992+1024, никакого увеличения опухолей не наблюдалось в 91-й день от начала эксперимента (57 дней после окончания исследования). Средний размер опухолей в группе, получавшей комбинацию 992+1024, в 56-й день был значительно меньше, чем в группе, получавшей эрбитукс (P<0,01).
В этом эксперименте также прослеживали выживание мышей. Мышей учитывали как умерших, когда опухоль достигала максимального размера, определенного заранее. В представленной ниже таблице указано число мышей, выживших через 56 дней после инокуляции опухолевых клеток. В обеих группах, получавших комбинации, показатели выживания были лучше по сравнению с эрбитуксом.
Группа | 992+1024 | 992+1024+1030 | Эрбитукс | Контроль |
Исходное число мышей | 9 | 9 | 9 | 9 |
Выживание на 56-й день | 9 | 9 | 2 | 0 |
Дополнительные эксперименты
Предварительные данные по опухолевым лизатам из экспериментов с ксенотрансплантатами, описанных в примере 8, показывают, что комбинация антител 992+1042+1030 индуцирует сильную понижающую регуляцию выработки VEGF клетками A431NS, где VEGF является важным медиатором ангиогенеза. Усиленное образование кровеносных сосудов, феномен, наблюдаемый во многих солидных опухолях, представляет собой механизм, участвующий в непрерывной доставке питательных веществ и т.п., следовательно, тесно связанный с условиями выживания.
Кроме того, другие предварительные данные показывают, что в опухолевых лизатах из эксперимента с ксенотрансплантатами, описанного в примере 8, может наблюдаться повышенный уровень комбинации антител 992+1042+1030 по сравнению с эрбитуксом и вектибиксом.
ПРИМЕР 8c: Усиленная дифференциация опухолевых клеток in vivo
Терминальная дифференциация клеток представляет собой сложный процесс, который включает активацию специфических программ генной экспрессии клеточного типа, управляющих многоэтапным процессом необратимой утраты пролиферативной способности клеток. При злокачественном заболевании раковые клетки часто находятся в недифференцированном состоянии, характеризующемся высоким темпами пролиферации, в связи с чем было высказано предположение о том, что лекарства, способные индуцировать терминальную дифференциацию раковых клеток, могут оказаться способными элиминировать злокачественные клетки и восстановить нормальный клеточный гомеостаз (Pierce GB, Speers WC: Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation. Cancer Res 48:1996-2004, 1988). Ранее были опубликованы сообщения о том, что в определенных экспериментальных условиях моноклональные антитела против EGFR способны увеличивать степень терминальной дифференциации опухолевых клеток при плоскоклеточном раке человека, выросших в ксенотрансплантатах опухолей у мышей с недостаточностью иммунной системы (Milas L, Mason K, Hunter N, Petersen S, Yamakawa M, Ang K, Mendelsohn J, Fan Z: In vivo enhancement of tumor radioresponse by C225 antiepidermal growth factor receptor antibody. Clin Cancer Res 6:701-8, 2000; Modjtahedi H, Eccles S, Sandle J, Box G, Titley J, Dean C: Differentiation or immune destruction: two pathways for therapy of squamous cell carcinomas with antibodies to the epidermal growth factor receptor. Cancer Res 54:1695-701, 1994).
Авторы изобретения гистологическими методами исследовали масштабы терминальной дифференциации раковых клеток A431NS в ксенотрансплантатах опухолей у мышей при лечении антителами против EGFR. Гистологическое исследование включало по 3 случайно отобранных привитых опухоли в каждой из четырех экспериментальных групп эксперимента, описанного в примере 8.
Ткани были рассечены и быстро заморожены, затем смонтированы при помощи устройства Tissue-Tek на криомикротом (Leitz, модель 1720), рассечены на срезы по 5 мкм, нанесены на предметные стекла Superfrost Plus и окрашены гематоксилином/эозином. Затем два независимых наблюдателя проводили микроскопическое исследование всех тканевых срезов по "слепому" принципу, подсчитывая участки кератинизации ("раковые жемчужины"), отражающие масштабы терминальной дифференциации (Modjtahedi et al., 1994). Полученные результаты представлены в таблице 7. Мыши, получавшие лечение смесью трех антител против EGFR (992+1024+1030, группа 1), имели заметно более крупные и более многочисленные очаги терминальной дифференциации раковых клеток по сравнению с мышами, получавшими лечение эталонными антителами эрбитукс и вектибикс (группы 2 и 3, соответственно). В контрольной группе (группа 4), получавшей вместо антител PBS, каких-либо признаков терминальной дифференциации не наблюдалось.
Характерные микроскопические изображения были получены при помощи микроскопа, оснащенного цифровой камерой (см. фиг.26).
В результате проведенного исследования комбинация из трех антител против EGFR с неперекрывающимися эпитопами в пределах домена III (клоны 992, 1030 и 1042) продемонстрировала неожиданно сильный эффект индуцирования дифференциации опухолевых клеток in vivo по сравнению с моноклональными антителами эрбитукс и вектибикс. Наблюдаемые эффекты терминальной дифференциации привели нас к выводу о том, что композиции антител, предлагаемые изобретением, могут быть использованы в комбинированной терапии вместе с другими средствами, индуцирующими дифференциацию, например, ретиноевой кислотой, 4-фенилбутиратом.
Таблица 7 | |||
Группа | Номер опухоли | Балльная оценка количества раковых жемчужин | Комментарии |
1 | 16 | ++++ | Большие раковые жемчужины |
1 | 17 | +++ | Большие раковые жемчужины |
1 | 54 | ++++ | Большие раковые жемчужины |
2 | 14 | ++ | Маленькие раковые жемчужины |
2 | 45 | ++ | Маленькие раковые жемчужины |
2 | 49 | ++ | Маленькие раковые жемчужины |
3 | 11 | ++ | Маленькие раковые жемчужины |
3 | 34 | ++ | Маленькие раковые жемчужины |
3 | 56 | ++ | Маленькие раковые жемчужины |
4 | 43 | - | |
4 | 60 | - | |
4 | 31 | - |
ПРИМЕР 8d: Длительный эффект композиции антител, предлагаемой изобретением, по ингибированию роста раковых клеток
Эксперимент с ксенотрансплантатами опухолей, описанный в примерах 8 и 8b, был еще раз осуществлен для исследования эффективности смеси антител 992+1024 in vivo. Вкратце, мыши BALB/c nu/nu получили подкожную инъекцию 106 клеток A431NS в бок туловища. Привитым опухолям давали вырасти до среднего размера 100 мм3 (7-й день), после чего мышей рандомизировали на пять групп по девять животных в каждой и начинали лечение антителами. Эти пять групп получали высокую (2 мг в неделю) или низкую (1 мг в неделю) дозу смеси антител 992+1024 или эталонного антитела эрбитукс, либо высокую дозу (2 мг в неделю) контрольного антитела Synagis. В общей сложности все мыши получили по 9 инъекций (0,5 или 1 мг антитела два раза в неделю), начиная с 7-го дня и кончая 33-м днем исследования.
Высокая доза (2 мг в неделю) смеси антител 992+1024 оказалась очень эффективной в сдерживании начального опухолевого роста и в индуцировании длительной регрессии опухолей по сравнению с эрбитуксом (Р=0,0002, фиг.38). Ни одно из животных, получавших 2 мг в неделю смеси антител 992+1024, не скончалось в период исследования (118 дней от начала эксперимента, фиг.38 и 39), что на уровне статистической значимости отличалось в лучшую сторону от исходов в группе с высокой дозой эрбитукса 2 мг в неделю, где на 60-й день осталось в живых только одно из девяти животных (Р=0,0008, фиг.39). Это свидетельствует о длительном эффекте лечения смесью антител 992+1024 в отношении сроков выживания. Хотя и с несколько меньшим эффектом по сравнению с высокой дозой, низкая доза смеси антител 992+1024 (1 мг в неделю) также оказалась способной сдерживать опухолевый рост, причем лучше на уровне статистической значимости, чем эрбитукс в высокой дозе 2 мг в неделю, как по ингибированию опухолевого роста (Р=0,0135, фиг.38), так и по выживанию (Р=0,0087, фиг.39). Эти результаты демонстрируют превосходящую мощность комбинации 992+1024 по сравнению с эрбитуксом, даже при использовании смеси в низкой дозе. Результаты также демонстрируют длительное ингибирование опухолевого роста комбинацией 992+1024 по сравнению с официально разрешенным моноклональным антителом.
ПРИМЕР 9: Рост сфероидов
Для исследования сфероидов в 96-луночный планшет с круглым дном добавляли 35 мкл раствора Poly-HEMA (120 мкг/мл) и оставляли на ночь для выпаривания под вытяжным колпаком. Poly-HEMA предотвращает прикрепление клеток. Клетки A431-NS обрабатывали, как описано выше, подсчитывали и подгоняли концентрацию до 100000 клеток на миллилитр. Затем в экспериментальные лунки столбцов 2-11 добавляли 5 0 мкл клеточной суспензии (5000 клеток на лунку) вместе с 50 мкл 5% раствора матригеля (Matrigel). Для снижения эффекта испарения среды в экспериментальных лунках в ряды 1 и 8, а также в столбцы 1 и 12 добавляли 200 мкл среды. Планшеты центрифугировали на скорости 300×g в течение 5 минут и оставляли на ночь в увлажненном инкубаторе с температурой 37°C для формирования материала. На следующий день соответствующие антитела и смеси антител разбавляли до конечной общей концентрации антител 20 мкг/мл в пустом 96-луночном планшете. Эту процедуру выполняли в среде DMEM с добавками 0,5% FBS и 1% P/S, получая конечную общую концентрацию антител 10 мкг/мл в лунке с наивысшей концентрацией антител. Затем 150 мкл этих растворов добавляли в лунки столбца 2 96-луночного планшета и готовили трехкратные серийные разведения вниз до столбца 9, так, что каждая лунка содержала 100 мкл раствора антител. В столбец 11 добавляли 100 мкл среды. Затем 100 мкл этих растворов переносили в планшет со сфероидами и оставляли для инкубации на 7 дней. Затем в каждую лунку добавляли 20 мкл реактива WST-1, и планшеты инкубировали в течение 1 часа при 37°C. Далее планшеты переносили в орбитальный планшетный шейкер и оставляли еще на один час. Поглощательную способность измеряли на уровне 4 50 и 620 нм /опорная длина волны) считывающим устройством ELISA. Количество метаболически активных клеток (MAC) рассчитывали как процентный показатель по сравнению с необработанным контролем, исходя из следующей формулы:
Смесь трех антител с неперекрывающимися эпитопами в пределах домена III (992+1030+1042) эффективно ингибировала рост сфероидов A431-NS и была более действенной, чем моноклональные терапевтические антитела против EGFR эрбитукс и вектибикс (фиг.22).
ПРИМЕР 10: Связывание с ECD EGFR Cynomolgus
Клонирование внеклеточного домена EGFR Cynomolgus
Внеклеточный домен EGFR Cynomolgus, исключая сигнальный пептид, клонировали из кДНК Cynomolgus, выделенной из эпидермиса при помощи вложенной PCR и сиквенс-специфических праймеров, извлеченных из опубликованной последовательности полноразмерного EGFR человека (GENBANK X00588, Ullrich, A. et. al. Nature 309(5967),418-425 (1984)).
Реактивы для PCR:
кДНК обезьяны Cynomolgous, выделенная из здорового кожного эпидермиса:
CytoMol Unimed, № по каталогу: ccy34218, № партии: A711054.
Реакционный буфер Phusion (5×): Finnzymes, № по каталогу: F-518, № партии: 11.
Фермент Phusion: Finnzymes, F-530S (2 единицы на мкл).
dNTP 25 мМ: Bioline, № По каталогу: BIO-39029, № партии: DM-103F.
Праймеры для амплификации ECD EGFR Cynomolgus, включая частичную сигнальную последовательность и трансмембранный домен:
праймер 5' ATG: 5'-TCTTCGGGAAGCAGCTATGC-3' (SEQ ID NO 135)
праймер 3' Tm 2: 5'-TTCTCCACTGGGCGTAAGAG-3' (SEQ ID NO 136)
Праймеры вложенной PCR для амплификации ECD EGFR Cynomolgus Bp 1-1863 и инкорпорирования XbaI, сайтов рестрикции MluI и стоп-кодона перед трансмембранным доменом:
5' EGFR XbaI: 5'-ATCTGCATTCTAGACTGGAGGAAAAGAAAGTTTGCCAAGGC-3' (SEQ ID NO 137)
3' EGFR MluI: 5'-TACTCGATGACGCGTTTAGGATGGGATCTTAGGCCCGTTCC-3' (SEQ ID NO 138)
Условия PCR:
30 циклов: 98°C/30 секунд плавление, 55°C/30 секунд отжиг, 72°C/60 секунд удлинение. После 30 циклов PCR продуктам реакции давали еще 5 минут для удлинения.
Реакции PCR проводили с 1 мкл матрицы и 2 единицами фермента Phusion в общем объеме 50 мкл реакционного буфера, содержащего 0,2 мМ dNTP, 0,5 мкМ праймера.
Полученная конечная полоска PCR с кажущейся длиной приблизительно 1800-1900 пар оснований была клонирована в векторе экспрессии. ДНК- и белковая последовательность клонированного внеклеточного домена EGFR Cynomolgus показаны на фиг.23, а белковая последовательность ECD EGFR Cynomolgus, выверенная по ECD EGFR человека, показана на фиг.24. Выверка последовательностей ДНК ECD EGFR человека и ECD EGFR Cynomolgus показала идентичность последовательностей на 97,6%, тогда как выверка соответствующих белковых последовательностей показала их идентичность на 98,6%.
Демонстрация перекрестной реактивности антител между внеклеточными доменами EGFR человека и Cynomolgus в анализе ELISA
Для того чтобы подтвердить тот факт, что протестированные антитела против EGFR одинаково хорошо связываются с ECD EGFR, как человека, так и обезьяны Cynomolgus, и в соответствии с этим обосновать проведение токсикологических исследований на обезьянах Cynomolgus, серийные четырехкратные разведения антител, начиная с 1 мкг/мл, были протестированы методом ELISA на связывание с рекомбинантными белками ECD EGFR человека и Cynomolgus. Демонстрация в этом анализе идентичных профилей связывания антител была расценена, как свидетельство хорошей перекрестной реактивности испытуемых антител с EGFR разных биологических видов. Лунки ELISA были покрыты из расчета 50 мкл на лунку полноразмерным EGFR в концентрации 1 мкг/мл в PBS на ночь при 4°C. На следующее утро лунки дважды отмывали PBS-T и на один час блокировали 100 мкл PBS-T-1% BSA при комнатной температуре с последующим двукратным отмыванием в PBS-T. Затем в лунки добавляли 50 мкл серийно разведенных антител против EGFR, а также контрольные антитела и инкубировали материал 1 час при комнатной температуре. После инкубации антител лунки пятикратно отмывали PBS-T, с последующей 30-минутной инкубацией при комнатной температуре с вторичным реактивом стрептавидин-HRP, разбавленным блокирующим буфером в соотношении 1:3000 (из расчета 50 мкл на лунку). Наконец, лунки пятикратно отмывали PBS-T, планшеты разрабатывали, добавляя субстрат TMB (50 мкл на лунку), и инкубировали при комнатной температуре. После инкубации реакцию останавливали, добавляя 1M H2SO4 (100 мкл на лунку), и производили считывание планшетов на уровне OD 450 нм.
Реактивы ELISA:
1. Планшет ELISA, NUNC Maxisorp, № по каталогу: 442404
2. Антиген: ECD rEGFR человека, ECD rEGFR Cynomolgus
3. Покровный буфер: 1×PBS, Gibco № по каталогу: 20012-019
4. Отмывочный буфер: 1×PBS/0,05% Tween 20 (PBS-T)
5. Буфер блокирования/разбавления: 1% BSA в PBS-T
6. Конъюгат козьего IgG против человека и HRP: Serotec, Star 106Р
7. ТМВ Plus (KemEnTec, № по каталогу 4390L)
8. (1М H2SO4)
Как показано на фиг.25, описанный анализ ELISA позволяет провести различие между перекрестной реактивностью антител против EGFR с ECD EGFR человека и Cynomolgus (фиг.25А) и видовой специфичностью антител, распознающих только ECD EGFR человека, которые были использованы для иммунизации мышей (фиг.25В).
ПРИМЕР 11: Ингибирование подвижности
В большинстве случаев смертельный исход рака связан с диссеминацией опухолевых клеток и их последующим ростом в отдаленных участках. Местная инвазия прилегающих здоровых тканей нарушает гомеостатические функции и препятствует хирургическому или радиологическому иссечению опухоли. Недавние исследования пролили свет на центральную роль индуцированной подвижности раковых клеток в этом феномене рассеивания раковых опухолей. Известно, что EGFR способствует клеточной подвижности и рассеиванию опухоли, следовательно, ингибирование опосредованной EGFR подвижности является важным механизмом действия лекарств, нацеленных на EGFR.
Было проведено исследование влияния смеси двух антител 992 и 1024 на подвижность клеток раковой линии карциномы головы и шеи. Сфероиды, состоящие из 10000 клеток, были подготовлены в течение ночи, как это описано в примере 9. Затем сфероиды переносили в культуральные флаконы для клеток NUNC T25 и давали клеткам прикрепиться в течение ночи. Затем добавляли 10 мкг/мл смеси антител 992+1024 или антитело отрицательного контроля, после чего сфероиды инкубировали еще 24 часа. После этого получали изображения с 40-кратным увеличением, а площадь, покрытую клетками, измеряли при помощи компьютерной программы Image J.
Результаты: Как можно видеть на фиг.27А, добавление специфических антител против EGFR 992 и 1024 приводит к значительному снижению площади, покрытой опухолевыми клетками. Количественная оценка подвижности представлена на фиг.27В, которая показывает, что подвижность снизилась приблизительно на 60% по сравнению с применением отрицательного контрольного антитела. Это снижение подвижности высоко значимо статистически (р<0,01).
Таким образом, комбинация антител 992 и 1024 мощно ингибирует подвижность опухолевых клеток, опосредованную EGFR, свидетельствуя о том, что такие комбинации антител против EGFR можно применять для лечения диссеминированного заболевания.
ПРИМЕР 12: Активация инволюкрина композицией антител Sym004
Инволюкрин является маркером ранней дифференциации плоских (чешуйчатых) клеток и представляет собой белок, который участвует в формировании рогового конверта. Поэтому уровень инволюкрина можно использовать, как мерило количества опухолевых клеток, завершивших дифференциацию. Авторы изобретения оценивали уровень инволюкрина в белковых лизатах из ксенотрансплантатов опухолей A431NS, либо не подвергавшихся никаким воздействиям, либо леченных эрбитуксом, вектибиксом или смесью антител 992+1030+1042 с применением поступающего в продажу набора Involucrin ELISA (Biomedical Technologies). Опухолевые лизаты были приготовлены посредством гомогенизации 30-40 мг опухолевых тканей в 1 мл буфера RIPA с применением устройства TissueLyzer компании Qiagen. Концентрацию белка в каждом просветленном лизате определяли, применяя аналитический набор BCA Protein компании Pierce, а уровень инволюкрина оценивали анализом ELISA в 0,4 мкг белка из каждого образца.
Результаты: Как можно видеть на фиг.27, обнаруживается значительно более высокий уровень инволюкрина в группе, получавшей лечение смесью антител 992+1030+1042, по сравнению с отрицательным контролем, а также группами, получавшими эрбитукс и вектибикс. Таким образом, комбинация антител 992, 1030 и 1042 повышает уровень инволюкрина в ксенотрансплантатах опухолей A431NS, то есть предположительно индуцирует высокую степень дифференциации опухолевых клеток A431NS. В этой группе лечения был получен результат, который хорошо коррелируется с большим количеством раковых жемчужин (см. пример 8).
ПРИМЕР 13: Интернализация EGFR композицией антител Sym004
Некоторые антитела функционируют, индуцируя интернализацию своей цели на поверхности клетки. Известно, что EGFR подвергается интернализации при активации таким лигандом, как EGF.
Способность смеси двух антител 992 и 1024 индуцировать интернализацию EGFR была исследована с применением конфокальной микроскопии. Клетки A431NS и HN5 высевали на 8-луночные предметные стекла LabTek и инкубировали в течение ночи в среде DMEM с добавкой 0,5% FBS. Затем к клеткам добавляли 10 мкг/мл смеси антител 992+1024 с меткой Alexa-488 или контрольное антитело эрбитукс с последующей инкубацией в течение разного времени. Затем получали изображения с 60-кратным увеличением при помощи конфокального микроскопа Biorad или с большим, или с маленьким отверстием диафрагмы.
Результаты: Как показано на фиг.29A, добавление специфичных к EGFR антител 992 и 1024 с меткой Alexa-488 на 2 часа приводит к накоплению антител во внутриклеточных везикулах клеток из линий A431NS и HN5. В отличие от этого, эрбитукс обнаруживается, главным образом, на клеточной поверхности. Фиг.29B показывает изображения клеток A431NS с применением меньшего отверстия диафрагмы, которые позволяют получить более тонкие срезы клеток. Из этих изображений явно следует, что антитела 992+1024 локализуются внутри клетки, тогда как эрбитукс находится, главным образом, на клеточной поверхности. Фиг.30 показывает период времени для интернализации, опосредованной смесью антител 992+1024: уже через 30 минут после добавления этих антител их можно обнаружить во внутриклеточных везикулах. Спустя 4 часа почти все антитела 992+1024 обнаруживаются внутри клеток при небольшом или очень слабом окрашивании на клеточной поверхности. В отличие от этого, эрбитукс остается на клеточной поверхности. Также были получены данные, свидетельствующие о том, что интернализация, индуцированная смесью антител 992+1024, приводит к стойкому разрушению EGFR и его исчезновению из клеток.
Таким образом, комбинация антител 992 и 1024 быстро и мощно индуцирует интернализацию EGFR, тогда как эрбитукс не обладает такой способностью.
ПРИМЕР 14: Измерение аффинности антитела поверхностным плазмонным резонансом
Измерение моновалентной аффинности антител IgG Sym004 против рекомбинантного растворимого ECD EGFR
Кинетический анализ полноразмерных антител IgG, предлагаемых изобретением, был проведен в системе BIAcore 2000 по аналитической методике, описанной в ссылке (Canziani, Klakamp, et al. 2004, Anal. Biochem, 325:301-307), которая позволяет измерить моновалентную аффинность целых молекул IgG против растворимого антигена. Вкратце, приблизительно 10000 Ru поликлонального антитела IgG Fc против человека были конъюгированы с поверхностью чипа CM5 согласно инструкциям производителя, что сопровождалось последующим захватом 25 мкг индивидуальных антител против EGFR, предлагаемых изобретением, или отрицательного контрольного антитела Synagis на поверхности чипа против Fc. Плотность захваченного IgG была оптимизирована для каждого клона таким образом, что связывание наивысшей концентрации антигена, задействованной в анализе, не превышало 25 Ru. Затем для генерирования характеристических кривых впрыскивали на скорости потока 25 мкл/мин в серийных двукратных разведениях в буфере HBS-EP 250 мкл растворимого ECD EGFR человека, который по данным вытеснительной гель-хроматографии содержал только моновалентный белок. Поверхность чипа восстанавливали между циклами, снимая с нее комплексы антиген/антитело 10-секундным впрыскиванием 100 мМ H3PO4. Кинетический анализ был проведен посредством первого вычитания реакции проточной кюветы, содержащей отрицательное контрольное антитело Synagis с последующим вычитанием реакции, вызванной изолированным впрыскиванием чистого буфера HBS-EP ("двойная опорная точка"). Константу скорости ассоциации (ka) и константу диссоциации (kd) оценивали глобально по генерированным сенсограммам при помощи ознакомительной компьютерной программы BIA 4.1, предоставленной производителем.
Реактивы:
1. Чип CM5: Biacore, № по каталогу: BR-1000-14
2. NHS: Biacore BR-1000-50
3. EDC: Biacore BR-1000-50
4. 10 мМ ацетатный буфер pH 4,5: Biacore, № по каталогу: BR-1003-50
5. Козий IgG Fc против человека: Caltag, № по каталогу: H10500
6. Этаноламин, 1,0M pH 8,5: Biacore BR-1000-50
7. Подвижный буфер 10×HBS-EP: 0,01M HEPES pH 7,4, 0,15M NaCl, 3 мМ EDTA, 0,005% об./об. сурфактанта P20
8. Антиген: Внеклеточный домен EGFR человека с 6×His.
9. 100 мМ H3PO4
Расчетные показатели моновалентной аффинности полноразмерных IgG, предлагаемых изобретением, против растворимого ECD EGFR человека показаны ниже в таблице 8.
Таблица 8 | ||||
Измеренные показатели аффинности антител IgG против EGFR против растворимого рецептора. Измерения антител производили методом поверхностного плазмонного резонанса в системе BIAcore 2000 с применением оценочной компьютерной программы, предоставленной производителем | ||||
IgG | kON(M-1с-1) | koff (1/с) | tЅ(мин) | KD(нМ) |
992* | NA | NA | 0,2 | 170,0 |
1024 | 1,8E+05 | 4,9E-03 | 2,4 | 26,7 |
1030 | 1,3E+04 | 3,7E-04 | 31,1 | 29,2 |
1254 | 8,1E+04 | 1,0E-03 | 11,3 | 12,7 |
1260 | 3,7E+04 | 1,6E-04 | 74,1 | 4,2 |
1261 | 1,7E+05 | 3,2E-03 | 3,6 | 18,6 |
1277 | 1,3E+05 | 5,3E-05 | 217,6 | 0,4 |
1284 | 3,2E+04 | 1,5E-04 | 78,1 | 4,6 |
1320 | 1,2E+05 | 2,8E-03 | 4,1 | 24,2 |
1347 | 2,4E+04 | 5,0E-04 | 22,9 | 21,4 |
*Аффинность антитела 992 определяли анализом Скэтчарда (Scatchard). NA - не применимо. |
Большинство протестированных антител Sym004 распознавали растворимый ECD EGFR человека с аффинностью в диапазоне 10-20 нМ, за исключением антител 1260, 1277 и 1284, которые имели большую аффинность: 4,2 нМ, 0,4 нМ и 4,6 нМ, соответственно. Наконец, было обнаружено, что антитело 992 связывается с растворимым ECD EGFR намного с меньшей аффинностью, чем другие протестированные антитела. Позднее был проведен кинетический анализ этого антитела по методике Скэтчарда, в результате которого была продемонстрирована аффинность против растворимого ECD EGFR человека 170 нМ.
Измерение аффинности антител Fab Sym004 против иммобилизованного рекомбинантного ECD EGFR
Для того чтобы исследовать возможные различия в презентации антигена между ECD EGFR, представленным в растворимой и иммобилизованной форме, было проведено новое измерение аффинности иммобилизованного химерного антигена рецептора EGF, получившего название EGFR-Fc (R&D Systems, 344-ER), который состоит из ECD EGFR человека, гибридизированного с Fc IgG человека. С этой целью были генерированы фрагменты Fab антител IgG 992, 1024 и 1030, позволяющие провести измерение моновалентной аффинности.
Выработка Fab:
Фрагменты Fab антител 992, 1024 и 1030 были получены посредством переваривания папаином с применением набора для изготовления Fab компании Pierce и в соответствии с инструкциями производителя. Вкратце, 2 мг каждого антитела IgG были подвергнуты буферному обмену в колонках NAP-5 (Amersham Biosciences) со свежеприготовленным буфером переваривания, содержащим 20 мМ цистеина-HCl, pH 7,0, в соответствии с инструкциями производителя. Затем 350 мкл кашицы из папаинового бисера были дважды отмыты в том же буфере для переваривания с последующим осаждением и сбросом супернатанта. Антитела были переварены при добавлении к бисеру 1 мл антитела IgG с буферным обменом и инкубированы в течение ночи при 37°C с встряхиванием на скорости 1000 оборотов в минуту. На следующее утро непереваренный IgG отделяли от чернового материала Fab посредством истощения полноразмерного IgG в колонках HiTrap Protein A (Ge Healthcare). Полученный материал Fab в заключение был подвергнут диализу PBS в течение ночи и проанализирован способом SDS-PAGE в редуцирующих и нередуцирующих условиях. Полоса белка приблизительно 50 кДа в нередуцирующих условиях была расценена как указание на успешную выработку Fab.
Реактивы:
1. Набор ImmunoPure для изготовления Fab, Pierce, № по каталогу: 44885
2. Опресняющая колонка NAP5, Amersham, № по каталогу: 17-0853-02
3. PBS pH 7,2, Gibco; #20012-019
4. HiTrap Protein A HP, колонка 1 мл, GE Healthcare, #17-0402-01
5. NuPAGE 4-12% гель Novex Bis-Tris, Invitrogen, #NP0322BOX
6. Молекулярный маркер, Seeblue Plus 2, Invitrogen, # LC5925
7. Антитела против EGFR - 2,0 мг каждого
Кинетический анализ антител Fab, рассматриваемых в изобретении, был проведен в системе Biacore 2000 с применением рекомбинантного антигена, иммобилизованного на поверхности сенсора с очень низкой плотностью во избежание ограничений в переносе массы. Вкратце, общее количество 285 Ru рекомбинантного химерного ECD-Fc EGFR (R&D Systems, № по каталогу 344-ER) было конъюгировано с поверхностью чипа CM5 в соответствии с инструкциями производителя. Затем фрагменты Fab, полученные из антител, предлагаемых изобретением, были протестированы в серийных двукратных разведениях, начиная с оптимизированной концентрации, которая не приводила к максимальным значениям Ru выше 25 при тестировании на чипе с иммобилизованным EGFR. Кинетический анализ был проведен посредством первого вычитания реакции, вызванной изолированным впрыскиванием чистого буфера HBS-EP. Константу скорости ассоциации (ka) и константу диссоциации (kd) оценивали глобально по генерированным сенсограммам при помощи ознакомительной компьютерной программы BIA 4.1, предоставленной производителем.
Расчетные показатели аффинности протестированных фрагментов Fab антител, предлагаемых изобретением, против растворимого ECD EGFR человека показаны ниже в таблице 9.
Таблица 9 | ||||
Измеренные показатели аффинности фрагментов Fab антител против EGFR против иммобилизованного рецептора. Измерения антител производили методом поверхностного плазмонного резонанса в системе BIAcore 2000 с применением оценочной компьютерной программы, предоставленной производителем | ||||
Fab | kON(M-1с-1) | koff (1/с) | tЅ(мин) | KD(нМ) |
Fab 992* | NA | NA | 0,2 | 150,0 |
Fab 1024 | 1,9E+05 | 4,9E-03 | 2,3 | 25,6 |
Fab 1030 | 8,7E+04 | 2,0E-04 | 57,5 | 2,3 |
*Аффинность фрагмента антитела 992 определяли анализом Скэтчарда (Scatchard). NA - не применимо. |
Как показано выше в таблице 9, было обнаружено, что фрагменты Fab антител 992 и 1024 имеют аффинность 150 нМ и 26 нМ, соответственно, что соответствует показателям аффинности, представленным в предыдущем примере, что иллюстрирует незначительные различия в распознавании антителами растворимого и иммобилизованного EGFR для этих двух антител. Однако антитело 1030 проявляло в десять раз более высокую аффинность 2,3 нМ против иммобилизованного антигена по сравнению с растворимым рецептором и, вследствие этого, преимущественно распознавало эпитоп, представленный на иммобилизованном антигене.
ПРИМЕР 15: Исследование презентации антигена EGFR и ранжирование функциональной аффинности на клетках A431-NS
Сравнение между презентацией антигена на клетках A431-NS и очищенным полноразмерным рецептором EGFR
Поскольку кинетический анализ показал, что антитело 992 распознавало ECD рекомбинантного EGFR с аффинностью в диапазоне 150-170 нМ, было проведено исследование по вопросу о том, связана ли эта слабая аффинность с тем фактом, что mAb 992 преимущественно связывает нативные конформации EGFR, экспрессируемые на клетках A431-NS, в отличие от конформаций, представленных на ECD рекомбинантного EGFR или от полноразмерного EGFR, очищенного от клеток A431. Для того чтобы исследовать различия в презентациях антигена рецептора EGF, были проведены исследования конкурентным методом ELISA по анализу связывания для субпопуляций антител, предлагаемых изобретением, с применением фрагментов Fab во избежание эффектов авидности на протестированных клетках A431-NS и очищенном полноразмерном EGFR из тех же клеток.
Выработка Fab: Выработку фрагментов Fab осуществляли тем же способом, который был описан в примере 14.
Непрямой анализ ELISA: Для непрямого анализа ELISA, полноразмерный EGFR (Sigma E2645) покрывали из расчета 1 мкг/мл карбонатным буфером (50 мкл на лунку) на ночь при температуре 4°C. На следующее утро лунки дважды отмывали PBS-T и на один час блокировали PBS-T, содержащим 1% BSA при комнатной температуре с последующим двукратным отмыванием в PBS-T. Затем в независимые лунки ELISA добавляли 50 мкл серийных разведений антител Fab в среде DMEM, содержащей 1% BSA и инкубировали материал 1 час при комнатной температуре, после чего лунки четырежды отмывали PBS-T. Затем добавляли 50 мкл конъюгата вторичного козьего антитела против человека (Fab-специфичного) и HRP, разбавленного 1:5000 в среде DMEM, содержащей 1% BSA, и инкубировали материал на льду в течение 30 минут. Наконец, лунки четырежды отмывали PBS-T, планшеты разрабатывали, добавляя субстрат TMB (50 мкл на лунку) и проводили считывание на волне 620 нм каждые 5-15-30 минут. После инкубации с субстратом реакцию останавливали, добавляя 1M H2SO4, и считывали поглощательную способность на волне 450 нм.
Реактивы, непрямой анализ ELISA:
1) Покровный буфер: 50 мМ карбонатный буфер, pH 9,8
2) Антигены: Полноразмерный EGFR дикого типа, очищенный от клеток A431, Sigma E2645
3) Планшет ELISA: NUNC Maxisorp, № по каталогу: 442404
4) Отмывочный буфер: 1×PBS/0,05% Tween 20 (PBS-T)
5) Буфер блокирования/разбавления: 1% BSA в PBS-T (PBS-T-1% BSA)
6) Буфер для разбавления антител: среда DMEM с содержанием 1% BSA
7) Конъюгат козьего антитела против человека (Fab-специфичного) и HRP: Jackson, № по каталогу: 109-035-097
8) Субстрат TMB Plus: KemEnTec, № по каталогу: 4390L
9) 1M H2SO4
Клеточный анализ ELISA: Относительную аффинность связывания, соответствующую молярной концентрации, дающей половину максимальной OD (ED50), определяли посредством титрования антител на клетках A431-NS. Вкратце, 10000 клеток A431-NS выращивали в 96-луночных планшетах ELISA, содержащих среду DMEM с добавками 0,5% FCS и 1% P/S при 37°C, в атмосфере с 5% CO2 в течение ночи. На следующее утро слившиеся клетки (приблизительно 20000 на лунку) дважды отмывали PBS и фиксировали 15-минутной инкубацией с 1% раствором параформальдегида при комнатной температуре с последующим четырехкратным отмыванием PBS. Затем тестируемые антитела EGFR и антитело для отрицательного контроля Synagis серийно разводили в среде DMEM, содержащей 1% BSA, 50 мкл каждого разведения добавляли в лунки и инкубировали 1 час при комнатной температуре, после чего лунки четырежды отмывали PBS. Затем добавляли 50 мкл конъюгата вторичного козьего антитела против человека (Fab-специфичного) и HRP, разбавленного 1:5000 в среде DMEM, содержащей 1% BSA, и инкубировали на льду в течение 30 минут. Наконец, лунки четырежды отмывали PBS, планшеты разрабатывали, добавляя субстрат TMB Plus (50 мкл на лунку) и проводили считывание на волне 620 нм каждые 5-15-30 минут. После инкубации с субстратом реакцию останавливали, добавляя 1M H2SO4, и считывали поглощательную способность на волне 450 нм. Функциональную аффинность, выраженную в величинах ED50, рассчитывали посредством вычитания среднего фонового связывания только с вторичным реактивом и последующей нормализации кривых связывания на построенных графиках процентных величин от максимального связывания применительно к каждому протестированному антителу.
Реактивы, клеточный анализ ELISA:
1) Среда DMEM: Gibco, № по каталогу: 41966-029
2) FCS: Gibco, № по каталогу: 10099-141
3) Пенициллин-стрептомицин (P/S): Gibco, № по каталогу: 15140-122
4) Планшет ELISA: Costar, № по каталогу: 3595
5) Отмывочный буфер (PBS): Gibco, № по каталогу: 20012-019
6) Буфер для разбавления антител: среда DMEM с содержанием 1% BSA
7) Раствор для фиксации клеток: BD Biosciences, № по каталогу: 340181
8) Конъюгат козьего антитела против человека (Fab-специфичного) и HRP: Jackson, № по каталогу: 109-035-097
9) Субстрат TMB Plus: KemEnTec, № по каталогу: 4390L
10) 1M H2SO4
Различия в антигенной презентации рецептора EGF, экспрессируемого на клетках A431-NS и рецептора, очищенного от этих клеток, определяли в исследованиях связывания на основе конкурентного анализа ELISA, с применением такого же реактива вторичного антитела и тех же значений времени инкубации. Результаты показаны на фиг.31. Эксперимент отчетливо показал, что фрагменты Fab антител 992 и 1024 слабо связываются с очищенным полноразмерным EGFR, нанесенным в виде покрытия на лунки ELISA, по сравнению с связыванием Fab 1030 в тех же концентрациях. Однако эта слабая активность связывания антител 992 и 1024 восстанавливалась, когда антитела проходили тестирование на клетках A431-NS, по отношению к которым фрагменты Fab всех трех антител демонстрировали сильную активность связывания. Сравнение двух разных анализов ELISA четко проиллюстрировало преимущественное связывание фрагментов Fab антител 992 и 1024 с нативными конформациями EGFR, экспрессируемыми на клеточной поверхности, в отличие от конформаций, представленных на очищенном антигене в лунках ELISA. Этот результат также позволяет предположить, что очевидно слабая аффинность антитела 992 при измерении методом поверхностного плазмонного резонанса на рекомбинантном и иммобилизованном ECD EGFR была обусловлена неблагоприятной презентацией эпитопа антитела 992 в протестированных системах.
Ранжирование функциональной аффинности на клетках A431-NS.
Клеточные анализы ELISA, проведенные так, как это описано выше, были использованы для ранжирования функциональной аффинности IgG и фрагментов Fab антител 992, 1024, 1030, вектибикс и эрбитукс посредством вычисления половинных значений максимальной OD, выраженных как значения ED50. Результаты этого анализа показаны на фиг.32, а расчетные значения ED50 представлены ниже в таблице 10.
Таблица 10 | ||||||||
Ранжирование функциональной аффинности, выраженной в виде значений ED50, на основе эффектов авидности IgG или моновалентной аффинности Fab | ||||||||
Авидность IgG | Аффинность Fab | |||||||
IgG | Log ED50 | ED50 нМ | SD | Fab | Log ED50 | ED50 нМ | SD | |
992 | -0,56 | 0,3 | 0,04 | 992 | 1,00 | 9,9 | 0,11 | |
1024 | -0,49 | 0,3 | 0,05 | 1024 | 0,30 | 2,0 | 0,02 | |
1030 | 0,17 | 1,5 | 0,02 | 1030 | 0,27 | 1,8 | 0,05 | |
Вектибикс | -0,15 | 0,7 | 0,04 | Вектибикс | 0,08 | 1,2 | 0,04 | |
Эрбитукс | -0,23 | 0,6 | 0,04 | Эрбитукс | 0,07 | 0,8 | 0,06 | |
Значения ED50 были определены посредством серийного титрования антител на клетках A431-NS. SD: Стандартное отклонение аппроксимации кривой. |
Эксперимент отчетливо показал, что, если принимать во внимание эффекты авидности, то IgG 992 и 1024 связывали клетки A431-NS с более высокой авидностью, чем эрбитукс и вектибикс, тогда как IgG 1030 имел низшую аффинность тестированных антител IgG. Однако при определении моновалентной аффинности к клеткам фрагментов Fab антитело 992 проявляло минимальную аффинность на уровне приблизительно 10 нМ. Однако эта моновалентная функциональная аффинность все-таки была, по меньшей мере, в 15 раз ниже, чем при тестировании в системе BIAcore.
ПРИМЕР 16: Исследование усиления связывания, индуцированного антителами
Конкурентный эксперимент BIAcore, проведенный на парах антител, предлагаемых изобретением, показал, что связывание антител 992 и 1024 усиливалось приблизительно на 55% и 58%, соответственно (фиг.9A), когда эти антитела тестировались против друг друга в обоих направлениях. Для дальнейшего изучения этого феномена был спланирован клеточный анализ ELISA с использованием нефиксированных клеток для исследования эффекта связывания клона антитела IgG при предварительном насыщении рецептора фрагментом Fab другого антитела, связывающего неперекрывающийся эпитоп.
Клеточный анализ ELISA: Анализ ELISA был проведен, по существу, так же, как описано в примере 15, но с некоторыми модификациями. Клетки оставляли нефиксированными, чтобы обеспечить конформационную гибкость EGFR после добавления антитела. Вкратце, 10000 клеток A431-NS выращивали в 96-луночных планшетах ELISA, содержащих среду DMEM с добавками 0,5% FCS и 1% P/S при 37°C, в атмосфере с 5% CO2 в течение ночи. На следующее утро слившиеся клетки (приблизительно 20000 на лунку) дважды отмывали PBS, а лунки для исследования индуцированного антителами усиления связывания преинкубировали с 25 мкл 40 нМ одиночных фрагментов Fab антител 992, 1024 или 1030 либо с 12,5 мкл 80 нМ каждого единичного Fab в описанных выше двойных комбинациях для насыщенного связывания. В лунки, используемые для тестирования антител IgG без добавления фрагментов Fab, добавляли 25 мкл среды DMEM, содержащей 1% BSA. После добавления Fab и среды лунки ELISA в течение 30 минут инкубировали при комнатной температуре, после чего в них добавляли 25 мкл серийных трехкратных разведений антител IgG, предлагаемых изобретением, или антитела Synagis для отрицательного контроля, начиная с концентрации 360 нМ, и инкубировали на льду еще один час. Затем лунки четырежды отмывали PBS, добавляли 50 мкл конъюгата вторичного моноклонального мышиного антитела против человека (Fc-специфичного) и HRP, разбавленного 1:5000 в среде DMEM, содержащей 1% BSA, и инкубировали на льду в течение 30 минут. Наконец, лунки четырежды отмывали PBS, планшеты разрабатывали, добавляя субстрат TMB Plus (50 мкл на лунку) и проводили считывание на волне 620 нм каждые 5-15-30 минут. После инкубации с субстратом реакцию останавливали, добавляя 1M H2SO4, и считывали поглощательную способность на волне 450 нм. Функциональную аффинность, выраженную в величинах ED50, рассчитывали посредством вычитания среднего фонового связывания только с вторичным реактивом и последующей нормализации кривых связывания на построенных графиках процентных величин от максимального связывания применительно к каждому протестированному антителу.
Реактивы, клеточный анализ ELISA:
1) Среда DMEM: Gibco, № по каталогу: 41966-029
2) FCS: Gibco, № по каталогу: 10099-141
3) Пенициллин-стрептомицин (P/S): Gibco, № по каталогу: 15140-122
4) Планшет ELISA: Costar, № по каталогу: 3595
5) Отмывочный буфер (PBS): Gibco, № по каталогу: 20012-019
6) Буфер для разбавления антител: среда DMEM с содержанием 1% BSA
7) Конъюгат мышиного антитела против человека (Fc-специфичного) и HRP: Ab-direct, № по каталогу: MCA647P
8) Субстрат TMB Plus: KemEnTec, № по каталогу: 4390L
9) 1M H2SO4
Исследования усиления связывания, индуцированного антителами, были проведены посредством конкурентного анализа ELISA с применением того же реактива вторичного антитела и тех же временных периодов инкубации. Результаты этого исследования показаны на фиг.33, а расчетные значения ED50 представлены ниже в таблице 11.
Таблица 11 | |||
Ранжирование функциональной аффинности, выраженной значениями ED50 на основе эффектов авидности IgG с предварительным насыщением рецептора перечисленными фрагментами Fab или без такого насыщения | |||
IgG | Log ED50 | ED50 нМ | SD |
IgG 992 | -0,24 | 0,6 | 0,07 |
IgG 992/Fab 1024 | -0,31 | 0,5 | 0,02 |
IgG 992/Fab 1030 | -0,38 | 0,4 | 0,05 |
IgG 992/Fab 1024 & 1030 | -0,34 | 0,5 | 0,04 |
IgG | Log ED50 | ED50 нМ | SD |
IgG 1024 | -0,01 | 1,0 | 0,01 |
IgG 1024/Fab 992 | -0,05 | 0,9 | 0,04 |
IgG 1024/Fab 992 & 1030 | -0,08 | 0,8 | 0,02 |
IgG | Log ED50 | ED50 нМ | SD |
IgG 1030 | 0,33 | 2,2 | 0,06 |
IgG 1030/Fab 992 | 0,20 | 1,6 | 0,03 |
IgG 1030 /Fab 992 & 1024 | 0,34 | 2,2 | 0,06 |
Значения ED50 были определены посредством серийного титрования антител IgG на клетках A431-NS. SD: Стандартное отклонение аппроксимации кривой. |
Как представлено на фиг.33 и в таблице 11 выше, IgG 992 демонстрировало явное усиление связывания при предварительном насыщении рецептора фрагментами Fab антител 1024, 1030 или комбинацией 1024 и 1030. Инкубация с фрагментами Fab приводила к снижению величин ED50 на 0,4 и 0,5 нМ, соответственно, по сравнению с 0,6 нМ при тестировании одного IgG 992 (без насыщения рецептора фрагментами других антител). Сходным образом, усиленное связывание при предварительном насыщении клеток Fab 992 также демонстрировали IgG 1024 и 1030, а также IgG 1024, если перед ним к клеткам добавляли фрагменты Fab 992 и 1030. Этот результат четко иллюстрирует преимущество обладания более чем одним антителом против неперекрывающихся эпитопов на одном и том же целевом рецепторе.
В этом эксперименте были обнаружены несколько меньшие показатели функциональной аффинности по сравнению с примером 2. Такой результат, вероятно, связан с тем, что в настоящем примере был использован иной вторичный реактив, а также с тем, что протестированные IgG были инкубированы с нефиксированными клетками на льду во избежание интернализации.
ПРИМЕР 16B: Клонирование полноразмерного EGFR Cynomolgus
Полноразмерный EGFR Cynomolgus, включая сигнальный пептид, клонировали из кДНК Cynomolgus, выделенной из эпидермиса при помощи вложенной PCR, и сиквенс-специфических праймеров, извлеченных из опубликованной последовательности полноразмерного EGFR человека (GENBANK X00588, Ullrich, A. et. al. Nature 309(5967), 418-425 (1984)).
Реактивы для PCR:
кДНК обезьяны Cynomolgous выделенная из здорового кожного эпидермиса: CytoMol Unimed, № по каталогу: ccy34218, № партии: A711054.
Реакционный буфер FastStart (10Ч): Roche, № по каталогу: 03 553 361 001
Фермент FastStart: Roche, № по каталогу: 03 553 361 001
Фермент Phusion: Finnzymes, F-530S (2 единицы на мкл).
dNTP 25 мМ: Bioline, № по каталогу: BIO-39029
Праймеры для амплификации полноразмерного EGFR Cynomolgus, включая сигнальную последовательность:
праймер 5' ATG: 5'-TCTTCGGGAAGCAGCTATGC-3' (SEQ ID NO 135)
праймер 3' STOP: 5'-TCATGCTCCAATAAATTCACTG-3' (SEQ ID NO 139)
Условия PCR:
95°C - 2 минуты, 40 циклов: 95°C - 30 секунд, 55°C - 30 секунд, 72°C - 3 минуты 30 секунд с заключительной инкубацией при 72°C в течение 5 минут.
Праймеры для амплификации полноразмерного EGFR Cynomolgus и инкорпорирования сайтов рестрикции Not и Xho во вложенной PCR:
E579 Cyn Not5' 5'-GGAGTCGGCGGCCGCACCATGCGACCCTCCGGGACGG-3' (SEQ ID NO 140)
E580 Cyn Xho5' 5'-GCATGTGACTCGAGTCATGCTCCAATAAATTCACTGC-3' (SEQ ID NO 141)
Условия PCR:
95°C - 2 минуты, затем 30 циклов: 95°C - 30 секунд плавление, 55°C - 30 секунд отжиг, 72°C - 3 минуты удлинение. После 30 циклов PCR продуктам реакции давали еще 10 минут для удлинения.
Реакции PCR проводили с 0,5 мкл шаблона и 0,1 мкл фермента Phusion, 0,4 мкл фермента FastStart в общем объеме реакционного буфера 50 мкл с конечной концентрацией 1Ч буфера FastStart, 0,2 мМ dNTP и 0,2 мкМ каждого праймера.
Фрагмент PCR с кажущейся длиной приблизительно 4000 п.о. был получен и клонирован с применение набора для клонирования TOPO TA (Invitrogen, номер изделия 4506-41), а затем секвенирован. ДНК- и белковая последовательность клонированного EGFR Cynomolgus показана на фиг.34. Выверка белковой последовательности EGFR человека и EGFR Cynomolgus показала идентичность последовательности 99,2%.
Демонстрация перекрестной реактивности антител между полноразмерными EGFR человека и Cynomolgus посредством анализа FACS
Полноразмерные EGFR человека и Cynomolgus были экспрессированы на поверхности клеток CHO посредством стабильной трансфекции, а клетки протестированы на связывание с использованием панели серийно разведенных антител к EGFR методом анализа FACS. Определения были сделаны в KD-зависимых условиях при сохранении молярного избытка антитела на уровне, по меньшей мере, в 5 раз превышающем количество молекул антигена EGFR, экспрессированных на клеточной поверхности фиксированного количества клеток во всех сериях разведений антитела. Такая схема исследования позволяла провести анализ FACS для связывания антител при полном насыщении рецептора во всем диапазоне концентраций тестируемого антитела.
Вкратце, количественный анализ FACS был проведен в матричной системе биоанализатора BD FACS для определения количества молекул EGFR, экспрессированных на поверхности клеток CHO, которые были трансфицированы полноразмерным EGFR человека или обезьяны Cynomolgus. Анализ был проведен посредством титрования IgG эрбитукс с меткой PE на клетках и определения количества молекул эквивалента PE при сравнении со стандартной кривой, полученной по частицам калибровки Rainbow с известной плотностью PE. Количественный анализ показал, что клетки CHO, трансфицированные EGFR, демонстрировали на поверхности каждой клетки приблизительно 350000 молекул. Затем серийные 5-кратные разведения предлагаемых изобретением антител, начиная с 5 нМ, посредством инкубации сопоставляли с 10000 клеток CHO, трансфицированных EGFR, в увеличивающемся объеме, что позволяло создать, по меньшей мере, 5-кратный молярный избыток антитела по сравнению с антигеном EGFR, представленным на поверхности в каждом определении. Антитела инкубировали с клетками в течение 14 часов в шейкере, чтобы стимулировать полное насыщение антигена во всем диапазоне протестированных концентраций антитела, наряду с тем, что добавляли буфер FACS с 0,02% NaN3 и поддерживали температуру на уровне 4°C для профилактики интернализации рецептора. После инкубации клетки осаждали центрифугированием на скорости 1200 об/мин в течение 5 минут при 4°C и ресуспендировали в 200 мкл буфера FACS. Далее клетки окрашивали с вторичным козьим F(ab')2 антителом IgG против человека FcGamma PE в разведении 1:500 и инкубировали в течение 30 минут при 4°C в шейкере. Наконец, клетки дважды отмывали в буфере FACS и анализировали в матричной системе биоанализатора BD FACS с пропусканием клеток CHO, экспрессирующих EGFR, которые демонстрировали однородные рассеивающие свойства вперед/вбок.
Реактивы FACS:
Частицы калибровки Rainbow: BD, № по каталогу: 559123
Буфер FACS: 1ЧPBS + 2% FCS + 0,02% NaN3
Антитело IgG: козий F(ab')2 против человека FcGamma PE: Jackson ImmunoResearch, № по каталогу: 109-116-170
Описанный анализ связывания FACS был применен для определения перекрестной реактивности антител IgG против EGFR 992 и 1024 и их сравнения с контрольным антителом IgG 1320, которое не проявляет перекрестной реактивности с EGFR Cynomolgus. Как показано ниже на фиг.40, описанный анализ FACS позволил четко отделить антитела, проявляющие выраженную перекрестную реактивность между полноразмерными EGFR человека и обезьяны Cynomolgus (фиг.40A - IgG 992 и фиг.40B - IgG 1024), от видоспецифических антител, распознающих только полноразмерный EGFR человека (фиг.40C - IgG 1320). По результатам этого анализа был сделан вывод о том, что антитела IgG 992 и 1024 проявляют блестящую перекрестную реактивность против полноразмерных EGFR человека и обезьяны Cynomolgus, экспрессированных на поверхности стабильно трансфицированных клеток CHO. Различие в связывании между EGFR cynomolgus и EGFR человека удивительно в связи с высокой степенью сходства последовательностей и подчеркивает важность тестирования антител на связывание с точной целевой последовательностью у животных, используемых в доклинических токсикологических исследованиях.
ПРИМЕР 17: Клоны, гомологичные антителам 992, 1024 и 1030
Скрининг клонов антител на связывание с EGFR, основанный на иммуносорбентных анализах (ELISA) и клеточных анализах, привел к идентификации клонов 992, 1024, 1030, как это описано в предыдущих примерах. Были также идентифицированы EGFR-специфичные клоны, гомологичные клонам 992, 1024 и 1030 (таблица 12).
Ожидается, что клоны, принадлежащие к одному и тому же кластеру, будут иметь одну и ту же специфичность связывания, но при этом могут связываться с разной аффинностью. Следовательно, клоны в пределах одного кластера могут замещать друг друга в композициях антител, предлагаемых настоящим изобретением, при том условии, что их аффинность связывания не будет различаться слишком сильно.
Таблица12 IGHV
Таблица 12 продолжение IGKV
ПРИМЕР 18: Гуманизация антител 922 и 1024
Все антитела содержат для вызова у человека реакции анти-антител. Реакция в какой-то мере коррелируется со степенью "очеловечения" (гуманизации) используемого терапевтического антитела. Предсказать иммуногенность и, следовательно, выработку анти-антител у человека невозможно, но в клинической практике имеется тенденция к предпочтительному использованию антител с высокой степенью гуманизации. Гуманизацию антител, описанных в настоящем изобретении, можно повысить в процессе гуманизации [Reichert JM, Monoclonal antibodies in the clinic. Nature Biotechnol, 2001; 19:819-822; Reichert JM, Rosensweig CJ, Faden LB and Dewitz MC. Monoclonal antibody successes in the clinic. Nature Biotechnol, 2005; 23:1073-1078].
Гуманизация мышиного mAb, в принципе, достигается посредством пересадки участков определения комплементарности (CDR) в каркасные участки (FR) доменов IGHV и IGKV человека с близкородственной последовательностью при помощи процедуры, обычно называемой пересадкой CDR (Jones PT, Dear PH, Foote J, Neuberger MS and Winter G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature, 1986; 321:522-525). Однако простая пересадка CDR только из гипервариабельных участков может привести к снижению аффинности, поскольку некоторые каркасные аминокислоты или участки создают критический контакт с антигеном или поддерживают конформацию петель CDR, связывающих антиген [Queen C, Schneider WP, Selick HE, Payne PW, Landolfi NF, Duncan JF, Avdalovic NM, Levitt M, Junghans RP and Waldmann TA. A humanized antibody that binds to the interleukin 2 receptor. Proc Natl Acad Sci U S A, 1989; 86:10029-10033; Al-Lazikani B, Lesk AM and Chothia C. Standard conformations for the canonical structures of immunoglobulins. J Mol Biol, 1997; 273:927-948]. Поэтому гуманизация антител должна включать как пересадку петель CDR из вариабельных областей мышиного происхождения в высоко гомологичный каркас человека, так и сохранение ключевых остатков мышиного каркаса с документированным влиянием на активность связывания антигена (Winter, G. and W.J. Harris. "Humanized antibodies." Immunol. Today 14. 6 (1993): 243-46). Для достижения гуманизации при сохранении аффинности и функции антител были разработаны и успешно применены несколько способов (см. обзор в ссылке Almagro, J.C. and J. Fransson. "Humanization of antibodies." Front Biosci. 13 (2008): 1619-33). Гуманизации можно достичь рациональными способами, например, пересадкой CDR, перепрофилированием, супергуманизацией, оптимизацией содержимого цепочки человека, причем все эти способы подразумевают конструирование новых кандидатов на роль гуманизированных антител. Аминокислотная последовательность кандидатов основана на понимании и предсказании структуры антитела, а также на вкладе отдельных аминокислот в связывание антигена прямым и опосредованным образом через стабилизацию общей структуры участков, взаимодействующих с антигеном. Как правило, кандидаты должны быть очищены, а некоторые аминокислоты мутированы в обратном направлении к исходным мышиным остаткам, поскольку каждое антитело имеет непредвиденные индивидуальные ограничения. Общим для всех способов является то, что для сохранения аффинности и функциональности может потребоваться несколько успешных этапов конструирования, тестирования и переконструирования. Альтернативой являются более эмпирические подходы, которые подразумевают создание обширных комбинаторных библиотек и извлечение антител с желательными свойствами из пула вариантов посредством отбора такими способами как дрожжевой или фаговый дисплей, либо альтернативные методы скрининга.
Антитела против EGFR, описанные в настоящем изобретении, могут быть гуманизированы посредством пересадки CDR в V-области человека. В предпочтительном сценарии отбор V-области человека основывается на гомологии с исходной мышиной V областью. У человека также можно использовать V-области гена с другими желательными свойствами, например, с низкой иммуногенностью. Настоящий пример описывает способ гуманизации химерных антител против EGFR 992 и 1024. Гуманизированные последовательности, показанные на фиг.41A, были получены посредством пересадки определяемых IMGT участков CDR из IGHV 992 в IGHV1-46/IGHJ4 и из IGKV 992 в IGKV1-27/IGKJ1-01. Аминокислотные последовательности, показанные на фиг.41B, были получены in silico посредством пересадки определяемых IMGT участков CDR из IGHV 1024 в IGHV1-2*02/IGHJ6*02 и из IGKV 1024 в IGKV2-28*01/IGKJ2*01. Были синтезированы искусственные гены, кодирующие указанные гуманизированные антитела, и эти гены были вставлены в вектор экспрессии млекопитающего. Антитела были экспрессированы, очищены и протестированы на активность, как это описано в примере 3. После начального тестирования можно определить кинетику связывания гуманизированных антител методом поверхностного плазмонного резонанса, как это описано в примере 14. Подобным образом, можно определить связывание с hEGFR, экспрессированным на поверхности клеток, как это описано в примере 15.
Если связывающая активность гуманизированных аминокислот оказывается значительно ниже, чем наблюдаемая у исходных антител, то для восстановления аффинности применяют последовательную схему обратных мутаций, начиная с гуманизированных каркасных остатков, расположенных в зоне Vernier, или остатков, предположительно, поддерживающих структуру участков CDR (Foote, J. and G. Winter. "Antibody framework residues affecting the conformation of the hypervariable loops." J Mol. Biol. 224.2 (1992): 487-99; Padlan, E.A. "Anatomy of the antibody molecule." Mol. Immunol 31. 3 (1994): 169-217.). Согласно нумерации IMGT эти остатки для IGHV 992 представляют аминокислоты 13, 45 и 80, для IGKV 992 - аминокислоту 25, для IGHV 1024 - аминокислоты 13, 45, 80 и 82, для IGKL 1024 - аминокислоту 78. Эти мутанты могут быть сконструированы посредством PCR-опосредованного сайт-направленного мутагенеза с применением стандартных методов молекулярной биологии. Сконструированные мутанты подлежат тестированию, как это описано выше. Ожидается, что эти наборы кандидатов приведут к созданию гуманизированных антител с сохраненными свойствами связывания антигенов. Однако нельзя исключить того, что потребуются дополнительные обратные мутации или созревание аффинности посредством введения аминокислотных замен в участках CDR посредством сайт-направленного мутагенеза.
ПРИМЕР 19: Антитело с двойным вариабельным доменом
Белок антитела с двойным вариабельным доменом (DVD) конструируют методами генной инженерии посредством тандемной гибридизации доменов IGHV антител 992 и 1024 за счет линкера из 6 аминокислот (ASTKGP), а также доменов IGKV антител 992 и 1024 за счет линкера из 5 аминокислот (TVAAP) [Wu C, Ying H, Grinnell C, Bryant S, Miller R, Clabbers A, Bose S, McCarthy D, Zhu RR, Santora L, vis-Taber R, Kunes Y, Fung E, Schwartz A, Sakorafas P, Gu J, Tarcsa E, Murtaza A and Ghayur T. Simultaneous targeting of multiple disease mediators by a dual-variable-domain immunoglobulin. Nature Biotechnol, 2007; 25:1290-1297]. Двойные слияния домена IGHV и домена IGKV приводят к созданию доменов IGHC и IGKC, соответственно. В одном полноразмерном антителе DVD (992L1024), IGHV и IGKV 992 составляют N-концевой участок, сопровождающийся линкером, а также, соответственно, IGHV и IGKV 1024. В другом полноразмерном антителе DVD (1024L992), N-концевой участок составляют IGHV и IGKV 1024, после чего идет линкер, а также, соответственно, IGHV и IGKV 992. В качестве матрицы для двухэтапного PCR-опосредованного конструирования генов, кодирующих DVD, используется плазмидная ДНК, кодирующая антитела 992 и 1024. Сначала раздельно амплифицируют два кодирующих участка IGHV and IGKV вариабельного домена, так, чтобы они содержали участки перекрывающегося удлинения в положении участка, кодирующего линкер (комбинации матриц и праймеров см. в таблице 13 и таблице 14). Ген IGKV, кодирующий C-концевой проксимальный вариабельный домен, амплифицируют так, что в кодирующую последовательность включается ген, кодирующий константный домен легкой цепи (IGKC). Кодирующие последовательности и аминокислотные последовательности субъединиц антител с двойным отрицательным доменом показаны в приложении 3.
Первую PCR готовили со следующей смесью в каждой пробирке (реакции по 50 мкл) для получения заданной конечной концентрации: 1Ч буфер FastStart (Roche), смесь dNTP (200 мкм каждого компонента), праймеры (10 пмоль каждого) (см. таблицу 14), смесь ферментов FastStart High Fidelity (2,2 U, Roche) и 100 нг плазмидного шаблона (см. таблицу 14). PCR проводили по следующему термоциклу: 2 минуты при 95°C, 20Ч (30 секунд при 95°C, 30 секунд при 55°C, 1 минута при 72°C), 10 минут при 72°C. Результирующие продукты PCR с правильным размером из первой PCR (см. таблицу 14) очищали препаративным электрофорезом в агарозном геле и использовали на втором этапе, в ходе которого были сплайсированы два вариабельных домена посредством PCR перекрывания-удлинения. Вторую PCR, сплайсинг фрагментов ДНК посредством перекрывания-удлинения, готовили со следующей смесью в каждой пробирке (реакции по 50 мкл) для получения заданной конечной концентрации: 1Ч буфер FastStart (Roche), смесь dNTP (200 мкм каждого компонента), праймеры (10 пмоль каждого) (см. таблицу 15), смесь ферментов FastStart High Fidelity (2,2 U, Roche) и шаблон (100 нг фрагмента PCR, см. таблицу 15). PCR проводили с тем же термоциклом, который был определен выше. Результирующие продукты второго этапа PCR очищали препаративным электрофорезом в агарозном геле и обрабатывали рестрикционными ферментами AscI и XhoI для двойного IGHV, а также NheI и NotI для двойного IGKV (включая IGKC). Фрагменты последовательно вшивали в вектор экспрессии IgG млекопитающего 00-VP-002 (фиг.4) посредством стандартных процедур переваривания рестрикционными ферментами и вшивания. Результирующий плазмидный вектор экспрессии амплифицировали в E. coli, а плазмидный препарат очищали стандартными способами. Антитела DVD экспрессировали и очищали в соответствии с примером 2, а снятие характеристик активности проводили в соответствии с примером 3-13.
Если результирующие антитела проявят слабое связывание или отсутствие связывания в целевым hEGFr, можно протестировать другие линкеры.
Таблица 13 | ||
Праймеры для конструирования антител DVD из клонов 992 и 1024 | ||
SEQ ID NO | Название праймера | Последовательность |
121 | 3'JH | GGAGGCGCTCGAGACGGTGACTGAGGTTCCTTGAC |
122 | 992_5'VH | CCAGCCGGGGCGCGCCGAGGTCCAACTGCAGCAACCTGGGTCTGAGCTGGTG |
123 | 1024_5'VH | CCAGCCGGGGCGCGCCCAGGTCCAACTGCAGCAGCCTGGGGCTGAACTG |
124 | 992_5'VK | catgggaatagctagccGACATTCAGATGACTCAGACTACATCCTCCCTG |
125 | 1024_5'VK | catgggaatagctagccGACATCGTGATGACACAAGCTGCATTCTCCAATC |
126 | Kappa3' | ACCGCCTCCACCGGCGGCCGCTTATTAACACTCTCCCCTGTTG |
127 | 992H_O3' | CTGGGGGCCCTTGGTGCTGGCTGACGAGACGGTGACTGAGGTTC |
128 | 1024H_O5' | GCCAGCACCAAGGGCCCCCAGGTCCAACTGCAGCAGC |
129 | 1024H_O3' | CGGGGCCCTTGGTGCTGGCTGACGAGACGGTGACTGAG |
130 | 992H_O5' | GCCAGCACCAAGGGCCCCGAGGTCCAACTGCAGCAAC |
131 | 992K_O3' | GTCTGGTGCAGCCACAGTTCGTTTGATTTCCAGCTTGGTG |
132 | 1024K_O5' | CGAACTGTGGCTGCACCAGACATCGTGATGACACAAGC |
133 | 1024K_O3' | GTCTGGTGCAGCCACAGTTCGTTTTATTTCCAGCTTGGTCC |
134 | 992K_О5' | CGAACTGTGGCTGCACCAGACATTCAGATGACTCAGACTAC |
Таблица 14 | |||||
Комбинации праймеров и шаблонов 1-го этапа PCR для конструирования генов, кодирующих DVD, из 992 и 1024 | |||||
DVD | Шаблон для PCR | Праймеры для амплификации гена IGHV | Праймеры для амплификации гена IGKV | ||
1-й этап PCR | 1-й продукт PCR (размер п.о.) |
1-й этап PCR | 1-й продукт PCR (размер п.о.) |
||
992L1024 | 992 | 992_5'VH 992H_O3' | 992HO (406 п.о.) |
992_5'VK 992K_O3' | 992KO (359 п.о.) |
1024 | 1024HJD5' 3'JH | HO1024 (381 п.о.) |
1024K_O5' Kappa3' | KO1024* (702 п.о.) |
|
1024L992 | 992 | 992H_О5' 3'JH | H0992 (393 п.о.) |
992K_O5' Kappa3' | K0992 (687 п.о.) |
1024 | 1024_5'VH 1024H_O3' |
1024HO (392 п.о.) |
1024_5'VK 1024K_O3' |
1024KO* (374 п.о.) |
|
*Амплифицированная кодирующая последовательность включает ген IGKC |
Таблица 15 | ||||||
Комбинации праймеров и шаблонов 2-го этапа PCR (сплайсинга перекрывания-удлинения) для конструирования генов, кодирующих DVD, из 992 и 1024 | ||||||
IGHV | IGKV | |||||
DVD | Шаблон | Праймеры | Продукт (п.о.) | Шаблон | Праймеры | Продукт (п.о.) |
992L1024 | 992HO H01024 | 992_5'VH 3'JH | 766 | 992KO KO1024 | 992_5'VK Kappa3' | 1040 |
1024L992 | HO992 1024HO | 1024_5'VH 3'JH | 766 | KO992 1024KO | 1024_5'VK Kappa3' | 1040 |
ПРИМЕР 20: Токсикологическое исследование на обезьянах Cynomolgus с 6-недельным внутривенным введением комбинации антител и эрбитукса
Цель исследования: Цель исследования заключалась в том, чтобы определить токсичность испытуемого продукта, смеси антител 992+1024, в результате внутривенного введения обезьянам cynomolgus один раз в неделю на протяжении 6 недель.
Поскольку в клинической практике токсичность является фактором, ограничивающим дозу ингибиторов EGFR наподобие эрбитукса и вектибикса, авторы изобретения сочли важным на раннем этапе оценить переносимость смеси антител 992+1024 в клинически приемлемой дозе. Эта необходимость дополнительно подчеркивается тем фактом, что композиция 992+1024, по-видимому, действует через иной механизм, чем другие продукты, нацеленные на EGFR. Потенциально это чревато новыми неблагоприятными побочными эффектами или утяжелением побочных эффектов, наблюдаемых при лечении другими ингибиторами EGFR.
Группы из трех самок обезьян cynomolgus получали еженедельные внутривенные дозы смеси антител 992+1024 (4/2,7 и 12/8 мг/кг) или эрбитукса (12/8 мг/кг) на протяжении 6 недель. Первые дозы 4 и 12 мг/кг представляли собой загрузочные дозы, а дозы 2,7 и 8 мг/кг поддерживающие дозы, которые были введены 5 раз. Доза 12/8 мг/кг эквивалентна дозе эрбитукса для человека, принятой в клинической практике.
Схема исследования | ||||
Номер группы | Описание группы | Уровень дозы (мг/кг/день) |
Объем дозы (мл/кг) |
Число животных (самки) |
1 | Контроль | 0 | 19/12# | 1-3 |
2 | 992+1024 низкая доза | 4,2/2,7# | 19/12# | 4-6 |
3 | 992+1024 высокая доза | 12,6 /8# | 19/12# | 7-9 |
4 | Эрбитукс | 12,6/8# | 19/12# | 10-12 |
#Первое значение соответствует загрузочной дозе, второе значение - поддерживающей дозе, которую вводили животным, начиная с 8-го дня исследования. |
По ходу исследования были прослежены указанные ниже параметры: смертность, клинические признаки, вес тела, потребление пищи, гематологические показатели, клиническая химия, вес органов, макроскопические находки.
Результаты
Смертность: На протяжении всего исследования не было ни одного непредусмотренного летального исхода.
Клинические признаки: Неблагоприятных клинических явлений, связанных с лечением, не наблюдалось.
Вес тела: Лечение композицией 992+1024 или эрбитуксом не оказывало какого-либо влияния на вес тела.
Потребление пищи: Заметных влияний на потребление пищи не обнаружено.
Гематология: Не выявлено каких-либо изменений гематологических параметров, которые можно было бы предположительно связать с лечением композицией 992+1024 или эрбитуксом.
Клиническая химия: Не обнаружено никаких изменений в параметрах клинической химии, которые можно было бы предположительно связать с применением любого испытуемого продукта.
На 4-й неделе исследования у одного животного в группе 992+1024 (4,2/2,7 мг/кг) было обнаружено повышение уровня аспарагиновой аминотрансферазы и аланиновой аминотрансферазы по сравнению с исходными показателями до начала лечения. Эти показатели вернулись к норме на 6-й неделе. Учитывая отсутствие подобных эффектов у других животных, получавших лечение, можно говорить о том, что токсикологическое значение увеличения уровня ферментов печени неизвестно.
Вес органов: Не было обнаружено каких-либо различий в весе органов у животных, получавших лечение, и у контрольных животных, которые могли бы иметь токсикологическое значение.
Макроскопические находки: При некропсии не было обнаружено каких-либо единообразных явлений, которые позволили бы предположить влияние композиции 992+1024 или эрбитукса.
Предварительное заключение: Предварительные данные свидетельствуют о том, что смесь антител 992+1024 была хорошо переносима в протестированных дозах, и никаких неблагоприятных эффектов, связанных с лечением, не наблюдалось.
ПРИМЕР 21: Ингибирование роста клеточных линий рака легких
Известно, что клеточные линии рака легких экспрессируют EGFR с мутациями в домене тирозинкиназы (Steiner et al. Clin Cancer Res 13.5 (2007): 1540-51). Способность комбинации двух антител 992 и 1024 ингибировать рост клеточных линий рака легких НСС827 и HI975, несущих разные мутации EGFR, была исследована способом, похожим на тот, что был использован в примере 6.
Результаты
Как можно видеть по данным, представленным в таблице 16 и таблице 17, комбинация антител 992 и 1024 способна ингибировать рост обеих линий раковых клеток. Комбинация превосходит моноклональные антитела 992, 1024 и вектибикс.
Таблица 16 | ||
Значения IC50 и максимального ингибирования роста клеточной линии НСС827 указанными антителами | ||
НСС827 | IC50 (мкг/мл) | Максимальное ингибирование |
Эрбитукс | 0,013 | 80% |
Вектибикс | 0,100 | 60% |
992 | 0,050 | 80% |
1024 | 0,034 | 40% |
992+1024 | 0,031 | 80% |
Таблица 17 | ||
Значения IC50 и максимального ингибирования роста клеточной линии Н1975 указанными антителами | ||
Н1975 | IC50 (мкг/мл) | Максимальное ингибирование |
Эрбитукс | 0,010 | 30% |
Вектибикс | 0,141 | 30% |
992 | 0,056 | 30% |
1024 | - | 0% |
992+1024 | 0,024 | 30% |
Claims (20)
1. Композиция антител для лечения и/или профилактики заболеваний, связанных со сверхэкспрессией EGFR, содержащая по меньшей мере 2 различные молекулы антител против EGFR человека, в которой
a. указанную первую молекулу антитела против EGFR выбирают из группы, состоящей из антитела, содержащего CDR1, CDR2 и CDR3 тяжелой цепи (SEQ ID NO: 40) и легкой цепи (SEQ ID NO: 72) антитела 992, и антитела, содержащего последовательности VL (аминокислоты 3-109 из SEQ ID NO: 72) и VH (аминокислоты 3-124 из SEQ ID NO: 40) антитела 992, и
b. указанную вторую молекулу антитела против EGFR выбирают из группы, состоящей из антитела, содержащего CDR1, CDR2 и CDR3 тяжелой цепи (SEQ ID NO: 41) и легкой цепи (SEQ ID NO: 73) антитела 1024, и антитела, содержащего последовательности VL (аминокислоты 3-114 из SEQ ID NO: 73) и VH (аминокислоты 3-120 из SEQ ID NO: 41) антитела 1024.
a. указанную первую молекулу антитела против EGFR выбирают из группы, состоящей из антитела, содержащего CDR1, CDR2 и CDR3 тяжелой цепи (SEQ ID NO: 40) и легкой цепи (SEQ ID NO: 72) антитела 992, и антитела, содержащего последовательности VL (аминокислоты 3-109 из SEQ ID NO: 72) и VH (аминокислоты 3-124 из SEQ ID NO: 40) антитела 992, и
b. указанную вторую молекулу антитела против EGFR выбирают из группы, состоящей из антитела, содержащего CDR1, CDR2 и CDR3 тяжелой цепи (SEQ ID NO: 41) и легкой цепи (SEQ ID NO: 73) антитела 1024, и антитела, содержащего последовательности VL (аминокислоты 3-114 из SEQ ID NO: 73) и VH (аминокислоты 3-120 из SEQ ID NO: 41) антитела 1024.
2. Композиция по п.1, содержащая антитело, содержащее последовательности VL (аминокислоты 3-109 из SEQ ID NO: 72) и VH (аминокислоты 3-124 из SEQ ID NO: 40) антитела 992, и антитело, содержащее последовательности VL (аминокислоты 3-114 из SEQ ID NO: 73) и VH (аминокислоты 3-120 из SEQ ID NO: 41) антитела 1024.
3. Композиция по п.1, в которой первое и второе антитела против EGFR не ингибируют связывание друг друга с EGFR человека.
4. Композиция по п.1, в которой по меньшей мере одно из антител способно увеличивать максимальную способность связывания другого антитела с EGFR человека.
5. Композиция по п.1, в которой доля первого антитела по отношению ко второму антителу в композиции составляет от 5 до 95%, например от 10 до 90%, предпочтительно от 20 до 80%, более предпочтительно от 30 до 70%, более предпочтительно от 40 до 60%, например от 45 до 55%, например приблизительно 50%.
6. Композиция по п.1, в которой первое и второе антитела относятся к изотипу IgG1 или IgG2.
7. Композиция по п.1, которая приводит к интернализации рецептора.
8. Композиция по п.1, которая приводит к регрессии опухолей A431NS in vivo.
9. Композиция по п.1, которая способна индуцировать терминальную дифференциацию клеток A431NS in vivo.
10. Композиция по п.1, которая способна активировать экспрессию опухолевого инволюкрина in vivo.
11. Биспецифическая молекула, связывающая EGFR человека, которая представляет собой антитело или его фрагмент и содержит CDR1, CDR2 и CDR3 тяжелой цепи (SEQ ID NO: 40) и CDR1, CDR2 и CDR3 легкой цепи (SEQ ID NO: 72) антитела 992 и CDR1, CDR2 и CDR3 тяжелой цепи (SEQ ID NO: 41) и CDR1, CDR2 и CDR3 легкой цепи (SEQ ID NO: 73) антитела 1024.
12. Биспецифическая молекула по п.11, представляющая собой антитело с двойным вариабельным доменом.
13. Биспецифическая молекула по п.11, представляющая собой биспецифический фрагмент Fab или биспецифический scFV.
14. Применение композиции антитела по пп.1-10 или биспецифической молекулы по пп.11-13 для изготовления лекарственного средства для лечения, облегчения или профилактики одного или более симптомов, связанных с раком, у млекопитающих.
15. Применение композиции антитела по пп.1-10 или биспецифической молекулы по пп.11-13 для изготовления лекарственного средства для уменьшения передачи сигнала EGFR, уничтожения клеток, экспрессирующих EGFR, индукции апоптоза в клетках, экспрессирующих EGFR, ингибирования пролиферации клеток, экспрессирующих EGFR, индуцирования дифференциации опухолевых клеток in vivo и/или индуцирования интернализации EGFR.
16. Композиция по пп.1-10 для применения в качестве лекарственного средства для лечения, облегчения или профилактики одного или более симптомов, связанных с раком, у млекопитающих.
17. Биспецифическая молекула по пп.11-13 для применения в качестве лекарственного средства для лечения, облегчения или профилактики одного или более симптомов, связанных с раком, у млекопитающих.
18. Композиция по пп.1-10 для применения в качестве лекарственного средства для уменьшения передачи сигнала EGFR, уничтожения клеток, экспрессирующих EGFR, индукции апоптоза в клетках, экспрессирующих EGFR, ингибирования пролиферации клеток, экспрессирующих EGFR, индуцирования дифференциации опухолевых клеток in vivo и/или индуцирования интернализации EGFR.
19. Биспецифическая молекула по пп.11-13 для применения в качестве лекарственного средства для уменьшения передачи сигнала EGFR, уничтожения клеток, экспрессирующих EGFR, индукции апоптоза в клетках, экспрессирующих EGFR, ингибирования пролиферации клеток, экспрессирующих EGFR, индуцирования дифференциации опухолевых клеток in vivo и/или индуцирования интернализации EGFR.
20. Фармацевтическая композиция для лечения и/или профилактики заболеваний, связанных с экспрессией EGFR, содержащая композицию по любому из пп.1-10 или биспецифическую связывающую молекулу по любому из пп.11-13 в терапевтически эффективном количестве.
Applications Claiming Priority (9)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200700317 | 2007-03-01 | ||
DKPA200700317 | 2007-03-01 | ||
US90477307P | 2007-03-05 | 2007-03-05 | |
US60/904,773 | 2007-03-05 | ||
DKPA200701016 | 2007-07-10 | ||
DKPA200701016 | 2007-07-10 | ||
US92972707P | 2007-07-11 | 2007-07-11 | |
US60/929,727 | 2007-07-11 | ||
PCT/DK2008/050047 WO2008104183A2 (en) | 2007-03-01 | 2008-02-27 | Recombinant anti-epidermal growth factor receptor antibody compositions |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2013119724/10A Division RU2013119724A (ru) | 2007-03-01 | 2013-04-26 | Композиции рекомбинантных антител против рецептора эпидермального фактора роста |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2009136340A RU2009136340A (ru) | 2011-04-10 |
RU2488596C2 true RU2488596C2 (ru) | 2013-07-27 |
Family
ID=38376130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2009136340/10A RU2488596C2 (ru) | 2007-03-01 | 2008-02-27 | Композиции рекомбинантных антител против рецептора эпидермального фактора роста |
Country Status (2)
Country | Link |
---|---|
RU (1) | RU2488596C2 (ru) |
ZA (1) | ZA200905341B (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2624862C2 (ru) * | 2015-10-20 | 2017-07-07 | Общество с ограниченной ответственностью "Эпитек" | Пептид-иммуноген, используемый в терапевтической вакцине для лечения метастатического рака молочной железы |
-
2008
- 2008-02-27 RU RU2009136340/10A patent/RU2488596C2/ru active
-
2009
- 2009-07-30 ZA ZA200905341A patent/ZA200905341B/xx unknown
Non-Patent Citations (2)
Title |
---|
FRIEDMAN L.M. et al., "Synergistic down-regulation of receptor tyrosine kinases by combinations of mAbs: Implications for cancer immunotherapy", PNAS (2005), 102(6):1915-1920. SPIRIDON C.I. et al., "Targeting Multiple Her-2 Epitopes with Monoclonal Antibodies Results in Improved Antigrowth Activity of a Human Breast Cancer Cell Line in Vitro and in Vivo", Clinical Cancer Research (2002), 8:1720-1730 1725. * |
PERERA R.M. et al., "Treatment of Human Tumor Xenografts with Monoclonal Antibody 806 in Combinationwith a Prototypical Epidermal Growth Factor Receptor - Specific Antibody Generates Enhanced Antitumor Activity", Clin Cancer Res (2005); 11(17): 6390, реферат. МОИСЕЕНКО В.М. Моноклональные антитела в лечении злокачественных опухолей. Практическая онкология (2003), 4(3): 148-155. * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2624862C2 (ru) * | 2015-10-20 | 2017-07-07 | Общество с ограниченной ответственностью "Эпитек" | Пептид-иммуноген, используемый в терапевтической вакцине для лечения метастатического рака молочной железы |
Also Published As
Publication number | Publication date |
---|---|
RU2009136340A (ru) | 2011-04-10 |
ZA200905341B (en) | 2010-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI481412B (zh) | 重組抗表皮生長因子受體抗體組成物 | |
TWI426083B (zh) | 重組抗表皮生長因子受體抗體組成物 | |
RU2488596C2 (ru) | Композиции рекомбинантных антител против рецептора эпидермального фактора роста | |
AU2013200209B9 (en) | Recombinant anti-epidermal growth factor receptor antibody compositions | |
AU2013200210A1 (en) | Recombinant anti-epidermal growth factor receptor antibody compositions | |
HK1134826B (en) | Recombinant anti-epidermal growth factor receptor antibody compositions |