RU2488102C1 - Способ определения теплопроводности твердого тела активным методом теплового неразрушающего контроля - Google Patents

Способ определения теплопроводности твердого тела активным методом теплового неразрушающего контроля Download PDF

Info

Publication number
RU2488102C1
RU2488102C1 RU2012106323/28A RU2012106323A RU2488102C1 RU 2488102 C1 RU2488102 C1 RU 2488102C1 RU 2012106323/28 A RU2012106323/28 A RU 2012106323/28A RU 2012106323 A RU2012106323 A RU 2012106323A RU 2488102 C1 RU2488102 C1 RU 2488102C1
Authority
RU
Russia
Prior art keywords
solid
solid body
thermal
thermal conductivity
heat
Prior art date
Application number
RU2012106323/28A
Other languages
English (en)
Inventor
Денис Федорович Карпов
Михаил Васильевич Павлов
Антон Александрович Синицын
Владимир Иванович Игонин
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Вологодский государственный технический университет" (ВоГТУ)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Вологодский государственный технический университет" (ВоГТУ) filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Вологодский государственный технический университет" (ВоГТУ)
Priority to RU2012106323/28A priority Critical patent/RU2488102C1/ru
Application granted granted Critical
Publication of RU2488102C1 publication Critical patent/RU2488102C1/ru

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

Изобретение относится к стационарным способам определения теплопроводности плоских однослойных конструкций и может быть использовано в строительстве и теплоэнергетике. Сущность заявленного способа заключается в формировании требуемого теплового режима твердого тела бесконтактным односторонним неразрушающим тепловым воздействием на поверхность последнего с помощью источника инфракрасного излучения в лабораторно-экспериментальных условиях. Момент наступления стационарного теплового режима твердого тела устанавливают аналитическим методом. При достижении стационарного теплового режима температурные поля поверхностей твердого тела одновременно регистрируют с помощью бесконтактного измерителя температуры и зеркального отражателя, в поле зрения которого попадает задняя поверхность твердого тела. Плотность теплового потока, идущего в направлении к лицевой поверхности твердого тела от источника инфракрасного излучения, фиксируют тепломером, установленным на лицевой поверхности исследуемого твердого тела. Экспериментально-расчетное определение коэффициента теплопроводности твердого тела производят в зоне стационарного теплового режима по уравнению теплопроводности для плоской пластины. Технический результат: повышение точности измерений коэффициента теплопроводности. 3 ил., 1 табл.

Description

Изобретение относится к стационарным способам определения теплопроводности плоских однослойных конструкций. Разработанный способ может применяться в строительстве и теплоэнергетике при проведении тепловых испытаний однородных и неоднородных строительных объектов, теплопроводных и теплоизоляционных материалов.
Способ включает бесконтактное одностороннее неразрушающее тепловое воздействие на исследуемое твердое тело с помощью источника инфракрасного излучения, аналитическое установление момента наступления стационарного теплового режима твердого тела, регистрацию температурных полей лицевой и задней поверхностей твердого тела с помощью бесконтактного измерителя температуры, нахождение тепломером плотности теплового потока, идущего в направлении к лицевой поверхности твердого тела от источника инфракрасного излучения, экспериментально-расчетное определение коэффициента теплопроводности твердого тела по уравнению теплопроводности для плоской пластины при стационарном тепловом режиме.
Известен способ определения теплопроводности строительных материалов и изделий, заключающийся в создании стационарного теплового потока, проходящего через плоский образец определенной толщины и направленного перпендикулярно к лицевым (наибольшим) граням образца. По данным измерений плотности теплового потока и разности температур противоположных лицевых граней находят термическое сопротивление образца. Коэффициент теплопроводности рассчитывают как отношение толщины образца к разности термических сопротивлений образца и пространств между лицевыми гранями образца и рабочими поверхностями плит прибора [ГОСТ 7076-99. Метод определения теплопроводности и термического сопротивления при стационарном тепловом режиме. - Взамен ГОСТ 7076-87; Введ. 01.04.2000. - М., 2000 - 12 с.].
К недостаткам рассмотренного способа следует отнести трудности, связанные с учетом термических сопротивлений, возникающих в местах контакта образца с поверхностями нагревателя и холодильника. Требуемое число образцов составляет не менее пяти, их форма и размеры должны соответствовать геометрическим параметрам поверхностей плит измерительного устройства. Кроме того, датчики температур, расположенные на рабочих поверхностях плит нагревателя и холодильника, измеряют температуру образца локально, частично описывая тепловое состояние поверхностей исследуемого тела, что является недопустимым при изучении теплопроводности неоднородных конструкций.
Известен способ теплового неразрушающего контроля теплофизических характеристик твердых материалов, включающий в себя многократное импульсное тепловое воздействие на теплоизолированную поверхность исследуемого материала и регистрацию частоты следования тепловых импульсов, подаваемых в моменты наступления заданных соотношений температур в двух контрольных точках поверхности тела. Для реализации рассматриваемого способа твердый материал выполнен в форме круга, где в центре и на окружности закреплены термодатчики, регистрирующие температуру тела при его импульсном нагревании. По одной из заявленных формул рассчитывают коэффициент теплопроводности твердого материала [Патент РФ 2184954, кл. G01N 25/18, 2002].
Недостатком данного способа является сложность исполнения теплофизического эксперимента в виду его нестационарности. Основная трудность возникает в регистрации моментов наступления заданных соотношений температур в двух контрольных точках материала по причине непрерывного изменения температурного поля. Дополнительно усложняет способ этап обработки полученных результатов, включающий расчет числа подаваемых импульсов, частоты их следования и т.п., а также само уравнение, которое является нетривиальным по своей форме.
Наиболее близким способом к заявленному изобретению является способ неразрушающего контроля комплекса теплофизических характеристик твердых строительных материалов, который включает измерение температуры и плотности теплового потока на исследуемой поверхности ограждающей конструкции здания посредством установки датчиков измерения температуры на внутреннюю и наружную поверхности ограждающей конструкции здания и датчика измерения теплового потока - на ее наружную поверхность. Данные измерений заносятся в электронный блок памяти, затем по известным математическим зависимостям определяют комплекс теплофизических характеристик ограждающей конструкции здания, к которым также относится коэффициент теплопроводности [Патент РФ 2421711, кл. G01N 25/00, 2011].
Недостатком данного способа является локальное нахождение температур поверхностей строительного материала, которое ограничивает область применения способа только для изучения однородных строительных конструкций. Процесс определения теплопроводности ограждающей конструкции здания происходит в реальных условиях, которые по своей сути являются неуправляемыми и непостоянными. Это может привести к грубым погрешностям в исследовании теплопроводных свойств материала. Кроме того, реальная конструкция имеет соответствующие габариты, которые технически усложняют организацию и проведение наблюдений, а также могут нарушить синхронность самих измерений. Недостаточно проработаны условия и время выхода твердого строительного материала на стационарный тепловой режим с максимальной плотностью теплового потока и постоянными температурами поверхностей.
Целью изобретения является повышение точности и упрощение измерений коэффициента теплопроводности твердого тела активным методом теплового неразрушающего контроля при стационарном тепловом режиме, расширение границ его применения на исследование теплопроводных свойств неоднородных однослойных конструкций.
Поставленная цель достигается тем, что формирование требуемого теплового режима твердого тела осуществляют бесконтактным односторонним неразрушающим тепловым воздействием на поверхность последнего с помощью источника инфракрасного излучения в лабораторно-экспериментальных условиях. Момент наступления стационарного теплового режима твердого тела устанавливают аналитическим методом. При достижении стационарного теплового режима температурные поля поверхностей твердого тела одновременно регистрируют с помощью бесконтактного измерителя температуры и зеркального отражателя, в поле зрения которого попадает задняя поверхность твердого тела. Плотность теплового потока, идущего в направлении к лицевой поверхности твердого тела от источника инфракрасного излучения, фиксируют тепломером, установленным на лицевой поверхности исследуемого твердого тела. Экспериментально-расчетное определение коэффициента теплопроводности твердого тела производят в зоне стационарного теплового режима по уравнению теплопроводности для плоской пластины.
На фиг.1 показана принципиальная схема реализации способа.
На фиг.2 показана реализация заявленного способа определения теплопроводности твердого тела на примере силикатного кирпича.
На фиг.3 показаны некоторые результаты бесконтактного одностороннего неразрушающего теплового контроля температурных полей лицевой и задней поверхностей силикатного кирпича.
Источник инфракрасного излучения 1 зафиксирован на вращающемся механизме с углом поворота 90° (фиг.1). Исследуемое твердое тело 2 в форме параллелепипеда толщиной δ расположено на расстоянии h от источника инфракрасного излучения 1 при условии h≤5δ. Центральная ось излучателя 1 и твердого тела 2 совпадают. На лицевой поверхности твердого тела 2 при x=0 закреплен преобразователь плотности теплового потока 3, подключенный к измерителю плотности теплового потока (далее ИПТП) тепломера (условно не показан). Последний регистрирует плотность теплового потока q, идущего от источника инфракрасного излучения 1. Зеркальный отражатель 4 с углом вращения 180° установлен в таком положении, при котором задняя поверхность твердого тела 2 с координатой x=δ полностью попадает в его поле зрения. Для локализации лучистого теплообмена между объектами окружающей среды и задней поверхностью твердого тела 2 на расстоянии s от последнего размещен светопоглощающий экран 5 при условии s≤10δ. По центру на расстоянии от источника инфракрасного излучения 1 на штативе (условно не показан) закреплен бесконтактный измеритель температуры 6, в обзор которого попадает как лицевая сторона, так и отражение задней поверхности твердого тела 2 от зеркального отражателя 4.
Устройство для реализации предложенного способа работает следующим образом.
Источник инфракрасного излучения 1 проецирует на лицевую поверхность твердого тела 2 при x=0 поток электромагнитного излучения, где он преобразуется во внутреннюю энергию. Последнее приводит к бесконтактному нагреву лицевой поверхности твердого тела 2 во времени. Градиент температур, возникший по направлению вдоль оси 0Х вследствие неравномерного распределения температур в твердом теле 2, формирует достаточное условие для движения потока теплоты теплопроводностью сквозь твердое тело 2 к его задней поверхности при x=δ. Величину плотности теплового потока q регистрирует преобразователь плотности теплового потока 3, который передает сигнал на компьютер через ИПТП тепломера (условно не показаны). Зеркальный отражатель 4 с помощью отраженного теплового излучения отображает температурное поле задней поверхности твердого тела 2. Часть инфракрасного излучения от нагретого твердого тела 2 поступает на поверхность светопоглощающего экрана 5 без последующих отражений. При установлении стационарного теплового режима в твердом теле 2 благодаря вращательному механизму источник инфракрасного излучения 1 поворачивают на 90° в горизонтальное положение. С помощью бесконтактного измерителя температуры 6, установленного на штативе (условно не показан), производят одновременную съемку температурного поля лицевой и задней поверхностей твердого тела 2.
Если начальный момент времени принять равным нулю, то время, за которое твердое тело 2 выйдет на стационарный режим, вычисляют по формуле:
τ = δ 2 a ,                                  ( 1 )
Figure 00000001
где δ - толщина твердого тела 2; а - температуропроводность твердого тела 2.
Пусть t0 и tδ - средние значения температур поверхностей или отдельных участков твердого тела 2 соответственно в координатах x=0 и x=δ при установившемся тепловом режиме с момента времени τ. Тогда для определения коэффициента теплопроводности твердого тела 2 может быть использовано уравнение теплопроводности для плоской стенки при стационарном тепловом режиме:
λ = q δ t 0 t δ ,                                  ( 2 )
Figure 00000002
где q - плотность теплового потока на лицевой поверхности твердого тела 2 при x=0 по данным ИПТП; δ - толщина твердого тела 2.
Достоинством предложенного способа является бесконтактное нахождение температурных полей поверхностей твердого тела, при помощи которых возможно определение теплопроводности, как отдельных элементов, так и всей конструкции в целом, независимо от величины теплотехнической однородности последней. Условия эксперимента не зависят от внешних факторов окружающей среды и полностью определяются режимом теплообмена между источником инфракрасного излучения и твердым телом. Бесконтактный измеритель температуры и зеркальный отражатель, в поле зрения которого попадает задняя поверхность твердого тела, позволяют одновременно оценивать температурное состояние обеих поверхностей твердого тела, что повышает точность проводимых измерений. Аналитическое выражение для установления начального момента стационарного теплового режима твердого тела (1) имеет простой математический вид, что позволяет сэкономить до минимума время проведения замеров и обеспечить высокую надежность полученных экспериментальных результатов.
Пример конкретной реализации способа.
Определим коэффициент теплопроводности твердого тела 2 на примере 3-пустотного силикатного кирпича марки M150 (ГОСТ 379-95) толщиной δ=0,120 м (фиг.2). Температуропроводность силикатного кирпича 2 равна a=5,3·10-7 м2/с. В качестве источника инфракрасного излучения 1 использован электрический инфракрасный излучатель марки Эколайн 10R суммарной мощностью 3 кВт, расположенный на расстоянии h=0,6 м от лицевой поверхности исследуемого объекта 2. На лицевой поверхности кирпича 2 закреплен преобразователь плотности теплового потока 3 ПТП-0,25, подключенный к измерителю плотности теплового потока ИПП-2. Зеркальный отражатель 4 из обычного стекла закреплен на деревянном кронштейне. На расстоянии s=1,2 м от задней поверхности силикатного кирпича 2 расположен черный экран 5.
По формуле (1) начало стационарного теплового режима для силикатного кирпича 2 τ=27170 с (по результатам эксперимента τ'=30000 с; среднее изменение температур лицевой и задней поверхностей силикатного кирпича 2 на интервале времени [τ; τ'] с в соответствии с показаниями термопар ТХА при погрешности измерений ±2,5°C составило 0,3°C, что можно считать стационарным режимом).
После наступления стационарного теплового режима с помощью тепловизора SDS HotFind-D получены термограммы поверхностей силикатного кирпича 2, которые впоследствии обработаны в прикладном программном обеспечении SATReport2009 при следующих параметрах: температура и относительная влажность воздуха соответственно 25,9°C и 15%; среднее расстояние от фокусирующего кольца тепловизора до поверхности исследуемого объекта 2 2,3 м; излучательная способность поверхности силикатного кирпича 2 0,91, зеркального отражателя 4 (стекла) 0,91. Некоторые результаты тепловизионной съемки представлены на фиг.3.
В таблице приведены результаты определения коэффициента теплопроводности силикатного кирпича 2, согласно выражению (2).
Таблица
Коэффициент теплопроводности силикатного кирпича
№ п/п q, Вт/м2 δ, м t0, °C tδ, °C λ, Вт/(м·°C)
1 387 0,120 98,8 39,9 0,788
2 97,5 40,2 0,810
3 94,1 41,1 0,876
Среднее значение, Вт/(м·°C) 0,825
Результаты измерений (таблица) показали, что относительное отклонение коэффициента теплопроводности силикатного кирпича марки М150 (ГОСТ 379-95) от нормативного значения (СП 23-101-2004) равно 5,2%. По способу, предложенному в патенте РФ 2421711, кл. G01N 25/00, 2011, полученный результат расходится с нормативной величиной на 31%.

Claims (1)

  1. Способ определения теплопроводности твердого тела активным методом теплового неразрушающего контроля, включающий установку на поверхности твердого тела тепломера и расчет коэффициента теплопроводности материала по уравнению теплопроводности для плоской пластины, отличающийся тем, что формирование требуемого теплового режима твердого тела осуществляют бесконтактным односторонним неразрушающим тепловым воздействием на поверхность твердого тела с помощью источника инфракрасного излучения в лабораторно-экспериментальных условиях, момент наступления стационарного теплового режима твердого тела устанавливают по формуле:
    τ = δ 2 a ,
    Figure 00000003

    где δ - толщина твердого тела;
    a - температуропроводность твердого тела,
    при достижении стационарного теплового режима температурные поля поверхностей твердого тела одновременно регистрируют с помощью бесконтактного измерителя температуры и зеркального отражателя, в поле зрения которого попадает задняя поверхность твердого тела.
RU2012106323/28A 2012-02-21 2012-02-21 Способ определения теплопроводности твердого тела активным методом теплового неразрушающего контроля RU2488102C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012106323/28A RU2488102C1 (ru) 2012-02-21 2012-02-21 Способ определения теплопроводности твердого тела активным методом теплового неразрушающего контроля

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012106323/28A RU2488102C1 (ru) 2012-02-21 2012-02-21 Способ определения теплопроводности твердого тела активным методом теплового неразрушающего контроля

Publications (1)

Publication Number Publication Date
RU2488102C1 true RU2488102C1 (ru) 2013-07-20

Family

ID=48791256

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012106323/28A RU2488102C1 (ru) 2012-02-21 2012-02-21 Способ определения теплопроводности твердого тела активным методом теплового неразрушающего контроля

Country Status (1)

Country Link
RU (1) RU2488102C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020139266A1 (en) * 2018-12-28 2020-07-02 Tusas- Turk Havacilik Ve Uzay Sanayii Anonim Sirketi A measurement mechanism

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2224245C2 (ru) * 2002-04-02 2004-02-20 Мурманский государственный технический университет Способ определения теплофизических характеристик материалов
US7364697B2 (en) * 1996-10-09 2008-04-29 Symyx Technologies, Inc. System for infrared spectroscopic imaging of libraries
JP2009236528A (ja) * 2008-03-26 2009-10-15 Kawashima Koki Kk 赤外線照射装置及び赤外線照射検査装置
RU2379668C1 (ru) * 2008-10-13 2010-01-20 Государственное образовательное учреждение высшего профессионального образования "Вологодский государственный технический университет" (ВоГТУ) Способ теплового неразрушающего контроля рабочего тела
RU2421711C2 (ru) * 2009-07-29 2011-06-20 Государственное образовательное учреждение высшего профессионального образования "Волгоградский государственный архитектурно-строительный университет" (ВолгГАСУ) Способ неразрушающего контроля комплекса теплофизических характеристик твердых строительных материалов

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7364697B2 (en) * 1996-10-09 2008-04-29 Symyx Technologies, Inc. System for infrared spectroscopic imaging of libraries
RU2224245C2 (ru) * 2002-04-02 2004-02-20 Мурманский государственный технический университет Способ определения теплофизических характеристик материалов
JP2009236528A (ja) * 2008-03-26 2009-10-15 Kawashima Koki Kk 赤外線照射装置及び赤外線照射検査装置
RU2379668C1 (ru) * 2008-10-13 2010-01-20 Государственное образовательное учреждение высшего профессионального образования "Вологодский государственный технический университет" (ВоГТУ) Способ теплового неразрушающего контроля рабочего тела
RU2421711C2 (ru) * 2009-07-29 2011-06-20 Государственное образовательное учреждение высшего профессионального образования "Волгоградский государственный архитектурно-строительный университет" (ВолгГАСУ) Способ неразрушающего контроля комплекса теплофизических характеристик твердых строительных материалов

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ГОСТ 7076-99. МЕТОД ОПРЕДЕЛЕНИЯ ТЕПЛОПРОВОДНОСТИ И ТЕРМИЧЕСКОГО СОПРОТИВЛЕНИЯ ПРИ СТАЦИОНАРНОМ ТЕПЛОВОМ РЕЖИМЕ. *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020139266A1 (en) * 2018-12-28 2020-07-02 Tusas- Turk Havacilik Ve Uzay Sanayii Anonim Sirketi A measurement mechanism
CN113167751A (zh) * 2018-12-28 2021-07-23 Tusas-土耳其航空航天工业公司 测量机构
US11852600B2 (en) 2018-12-28 2023-12-26 Tusas—Turk Havacilik Ve Uzay Sanayii Anonim Sirketi Thermal contact resistance measurement mechanism

Similar Documents

Publication Publication Date Title
Montanini Quantitative determination of subsurface defects in a reference specimen made of Plexiglas by means of lock-in and pulse phase infrared thermography
US9835506B2 (en) Self-calibrated flow meter
Zeng et al. Absolute peak slope time based thickness measurement using pulsed thermography
US9772298B2 (en) Method and apparatus for determining thermal conductivity and thermal diffusivity of a heterogeneous material
WO2012167403A1 (zh) 脉冲红外热波技术测厚方法
Yamada et al. Noncontact monitoring of surface temperature distribution by laser ultrasound scanning
Kruczek et al. In situ measurement of thermal diffusivity in anisotropic media
US20170184526A1 (en) Thermographic Examination Means and Method for Non-Destructive Examination of a Near-Surface Structure at a Test Object
CN103644854A (zh) 一种基于激光扫描热波成像技术的膜厚检测方法
Kosugi et al. Accuracy evaluation of surface temperature profiling by a laser ultrasonic method
CN111751314A (zh) 基于太赫兹的涂层厚度检测方法和装置
US7060991B2 (en) Method and apparatus for the portable identification of material thickness and defects along uneven surfaces using spatially controlled heat application
CN105466495B (zh) 一种同时获取壁内部非均匀温度场及壁厚的测量方法
RU2488102C1 (ru) Способ определения теплопроводности твердого тела активным методом теплового неразрушающего контроля
Li et al. Rectification of depth measurement using pulsed thermography with logarithmic peak second derivative method
JP6127019B2 (ja) 半透明材料の熱拡散率の測定方法
Ihara et al. New ultrasonic thermometry and its applications to temperature profiling of heated materials
CN106546353B (zh) 一种均匀材质构件内部温度场的超声测量方法
RU2502989C1 (ru) Способ определения температуропроводности твердого тела при нестационарном тепловом режиме
CN109470772B (zh) 一种基于超声的内部热源强度大小和位置的无损测量方法
Zhang et al. A transient method for total emissivity determination
RU2262686C1 (ru) Способ теплового неразрушающего контроля
CN109990907A (zh) 一种目标体的红外参数测定装置及测定方法
RU2460063C1 (ru) Способ определения теплопроводности и температуропроводности твердого тела при нестационарном тепловом режиме
CN106679818B (zh) 光滑表面温度分布的测量装置及方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140222