RU2487920C1 - Способ получения биодизельного топлива из илов водоемов и/или осадков канализационных очистных сооружений - Google Patents
Способ получения биодизельного топлива из илов водоемов и/или осадков канализационных очистных сооружений Download PDFInfo
- Publication number
- RU2487920C1 RU2487920C1 RU2011147907/04A RU2011147907A RU2487920C1 RU 2487920 C1 RU2487920 C1 RU 2487920C1 RU 2011147907/04 A RU2011147907/04 A RU 2011147907/04A RU 2011147907 A RU2011147907 A RU 2011147907A RU 2487920 C1 RU2487920 C1 RU 2487920C1
- Authority
- RU
- Russia
- Prior art keywords
- biodiesel
- extract
- mixture
- methanol
- volume
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/30—Fuel from waste, e.g. synthetic alcohol or diesel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P30/00—Technologies relating to oil refining and petrochemical industry
- Y02P30/20—Technologies relating to oil refining and petrochemical industry using bio-feedstock
Landscapes
- Liquid Carbonaceous Fuels (AREA)
- Fats And Perfumes (AREA)
- Treatment Of Sludge (AREA)
Abstract
Изобретение относится к способу получения биодизельного топлива из илов и/или осадков очистных сооружений, включающему предварительную обработку сырья, экстракцию липидной фракции, переэтерификацию липидной фракции, разделение полученных фракций и осушение биодизеля. Дезинтеграцию клеток сырья осуществляют механическим способом, для экстракции липидов используют метод Фолча, включающий экстракцию липидов смесью хлороформ-метанол (2:1 по объему), с последующей промывкой экстракта раствором KCl (0.88%) и, после расслоения и удаления верхней фазы, смесью 0.88% раствора KCl-метанол (1:1, по объему), раствор KCl и смесь добавляют из расчета ¼ часть от полученного и оставшегося объема экстракта, соответственно, готовый экстракт липидов осушают, пропуская через слой безводного Na2SO4, затем проводят переэтерификацию сухого экстракта смесью метанол/кислотный катализатор, где метанол смешан с катализатором в соотношении 50:1, по объему, биодизель экстрагируют из реакционной смеси гексаном, экстракт биодизеля осушают, пропуская через слой безводного Na2SO4. Технический результат - получение биодизеля дешевым и простым способом за счет переработки илов и/или осадков очистных сооружений. 1 табл., 2 пр.
Description
Изобретение относится к способу получения биодизельного топлива из илов эвтрофных водоемов и/или первичных осадков канализационных очистных сооружений, путем реакции переэтерификации липидной фракции со спиртом в присутствии катализатора.
В настоящее время, основной способ утилизации осадков сточных вод и донных осадков (илов) заключается в механическом обезвоживании и складировании обезвоженных осадков на иловых картах, где в течение длительного времени протекает их биодеградация. Данный способ утилизации илов и осадков сточных вод приводит к длительному и, как правило, безвозвратному отчуждению значительных земельных ресурсов и не отвечает современным экологическим требованиям.
Известна технология круглогодичной переработки загрязнений сточных вод, ила и других отходов с самодостаточным для автономной работы очистного сооружения производством электро- и тепловой энергии, которое обеспечивается биогазом-метаном, выработанным при взаимодействии биомассы ВВР Эйхорния со сточными водами [патент РФ №95567, МПК В09В 3/00, опубл. 10.07.2010 г.]. Однако вышеуказанный комплекс позволяет получать только один ценный продукт, а именно биогаз-метан, который используется для обеспечения автономной работы очистного сооружения.
Известно устройство для получения углеводородов из бытового мусора и/или органических отходов, включая экскременты человека или животных [патент РФ №2202589, МПК C10G 1/10, опубл. 20.04.2003]. Согласно изобретению способ включает две стадии крекинга, которые протекают при температуре 350-600°С и 600-1200°С, соответственно, т.е. требуют значительных энергетических затрат.
Известен способ и устройство переработки бытовых отходов и промышленных органических отходов [патент РФ №2392543, МПК F23G 5/027, опубл. 20.06.2010], состоящий из двух стадий пиролиза (низкотемпературной и высокотемпературной), разделения продуктов пиролиза на фракции и переработки каждой фракции с получением полезных продуктов. Данный способ имеет достаточно высокую производительность и позволяет получать газообразное, жидкое и твердое топливо. Однако, на проведение процесса пиролиза и разделения продуктов реакции на фракции требуются значительные энергетические затраты, поэтому экономический эффект в данном случае не является очевидным.
Наиболее близким по технической сущности и достигаемому результату к заявляемой группе изобретений является способ получения биодизельного топлива из микроводорослей [Demirbas A., 2009. Production of Biodiesel from Algae Oils. Energy Sources, 31, Part A, 163-168]. Способ получения биодизеля из микроводорослей включает в себя: производство исходного сырья, измельчение, экстракцию липидной фракции гексаном, переэтерификацию выделенных липидов. Свойства биодизеля, полученного по этой технологии, в основном, удовлетворяют требованиям европейских стандартов по биодизелыюму топливу EN 14214, EN 14213.
Однако, существенным недостатком данной технологии является высокая стоимость исходного сырья - биомассы микроводорослей, которую, как правило, выращивают в специализированных биореакторах и затраты па культивирование биомассы значительно повышают стоимость биодизеля.
Техническим результатом изобретения является снижение стоимости биодизельного топлива, которое достигается за счет использования в качестве исходного сырья илов водоемов и/или первичных осадков канализационных очистных сооружений, не требующих затрат на их производство и решение проблемы утилизации осадков канализационных сооружений и/или водоемов.
Технический результат достигается тем, что в способе получения биодизельного топлива из илов и/или осадков очистных сооружений, включающем предварительную обработку сырья, экстракцию липидной фракции, переэтерификацию липидпой фракции, разделение полученных фракций и осушение биодизеля, новым является то, что в качестве сырья используют илы водоемов и/или осадки очистных сооружений, дезинтеграцию клеток сырья осуществляют механическим способом, для экстракции липидов используют метод Фолча, включающий экстракцию липидов смесью хлороформ-метанол (2:1 по объему), с последующей промывкой экстракта раствором KCl (0.88%) и, после расслоения и удаления верхней фазы, смесью 0.88% раствора KCl-метанол (1:1, по объему), раствор KCl и смесь добавляют из расчета ¼ часть от полученного и оставшегося объема экстракта, соответственно, готовый экстракт липидов осушают, пропуская через слой безводного Na2SO4 затем проводят переэтерификацию сухого экстракта смесью метанол/кислотный катализатор, где метанол смешан с катализатором в соотношении 50:1, по объему, биодизель экстрагируют из реакционной смеси гексаном, экстракт биодизеля осушают, пропуская через слой безводного Na2SO4.
Заявляемый способ получения биодизельного топлива из плов водоемов и/или осадков очистных сооружений, отличается от прототипа тем, что применяется беззатратное сырье, дезинтеграцию сырья осуществляют механическим способом, экстракцию липидов осуществляют по методу Фолча, включающем экстракцию липидов смесью хлороформ-метанол (2:1 по объему), с последующей промывкой экстракта раствором KCl (0.88%) и, после расслоения и удаления верхней фазы, смесью 0.88% раствора KCl-метанол (1:1, по объему), готовый экстракт липидов осушают, пропуская через слой безводного Na2SO4 затем проводят переэтерификацию сухого экстракта смесью метанол/кислотный катализатор, где соотношение метанола и катализатора в смеси составляет 50:1, по объему, биодизель экстрагируют из реакционной смеси гексаном, экстракт биодизеля осушают, пропуская через слой безводного Na2SO4, все это позволяет сделать вывод о соответствии заявляемого технического решения критерию «новизна».
Признаки отличающий заявляемое техническое решение от прототипа не выявлены в других технических решениях при изучении данных и смежных областей техники, а все вместе отличительные признаки заявляемого технического решения позволяют получить биодизельное топливо, состав которого удовлетворяет требованиям европейских стандартов по биодизельному топливу (EN 14214, EN 14213) и тем самым обеспечивают заявляемому решению соответствие критерию «изобретательский уровень».
Способ переработки илов водоемов и/или первичных осадков канализационных очистных сооружений включает в себя следующие этапы: предварительную подготовку сырья, экстракцию липидной фракции, осушение полученного экстракта, реакцию переэтерификации сложных липидов, выделенных из осадков экстрагированием, которая протекает при температуре 85°С. В результате реакции образуются два ценных продукта - метиловые эфиры жирных кислот (биодизелыюе топливо) и глицерин. Разделение продуктов реакции переэтерификации осуществляют отстаиванием, либо экстрагированием биодизеля из реакционной смеси гексаном и осушение биодизеля.
Способ переработки осадков реализуется следующим образом.
Илы и/или первичные осадки канализационных очистных сооружений подвергают предварительной обработке. Она включает в себя: подсушивание, измельчение, механическое перетирание для разрушения клеток и клеточных остатков.
Далее осуществляют извлечение (экстракцию) из подготовленного сырья липидной фракции по методу Фолча, который включает в себя экстракцию липидов из подготовленного сырья смесью хлороформ: метанол (2:1 по объему) с последующей промывкой экстракта раствором KCl (0.88%) и, после расслоения и удаления верхней фазы, смесью 0.88% раствора KCl-метанол (1:1, по объему). Промывание экстракта указанными растворами необходимо для удаления из экстракта ряда веществ нелипидной природы (Сахаров, аминокислот и т.д.), которые, как правило, всегда экстрагируются (наряду с липидами) смесями растворителей, содержащих спирт (в нашем случае метанол). Для этого к обработанному сырью добавляют метанол (в соотношении 3 мл/г), стеклянные бусы, и гомогенизируют механически в течение 10 мин. Затем добавляют двойной объем хлороформа (6 мл) и продолжают гомогенизацию в течение 5-10 мин. Экстракт сливают, к оставшемуся осадку приливают 5 мл смеси хлороформ-метанол (2:1, по объему) и повторяют гомогенизацию. Полученные экстракты переносят в мерный цилиндр. К экстракту добавляют 0.88% раствор KCl, из расчета ¼ часть от полученного объема экстракта, после расслоения убирают верхнюю фазу. Экстракт промывают повторно смесью 0.88% раствора KCl-метанол (1:1, по объему) из расчета ¼ часть от оставшегося объема экстракта. Готовый экстракт липидов осушают, пропуская через слой безводного Na2SO4 и собирают в колбу. Растворители упаривают на роторном вакуумном испарителе при температуре 37°С.
Проводят метанолиз липидного экстракта (реакция переэтерификации): к сухому экстракту добавляют молярный избыток (соотношение липиды/смесь 1:2, по объему) смеси метанола и концентрированной H2SO4 (50:1, по объему), в присутствии бензола при температуре 85°С, в течение двух часов. По окончании реакции в колбу добавляют двойной объем воды, и метиловые эфиры жирных кислот трижды экстрагируют из реакционной смеси гексаном. Гексановый экстракт дважды промывают дистиллированной водой и осушают, пропуская через слой безводного Na2SO4. Гексан отгоняют на роторном вакуумном испарителе.
Контроль качества биодизельного топлива проводят на газовом хроматографе с масс-спектрометрическим детектором с колонкой HP-FFAP. Условия анализа следующие: несущий газ - гелий, ввод без деления потока, капиллярная колонка НР-FFAP длиной 30 м и внутренним диаметром 0.25 мм. Применяют следующий температурный режим: подъем от 100 до 190°С со скоростью 3°С/мин, затем 5 мин изотермально, второй подъем температуры от 190 до 230°С со скоростью 10°С/мин и 20 мин изотермально; температура ввода - 250°С, интерфейса - 280°С; энергия ионизации детектора - 70 эВ, сканирование в диапазоне 45-450 атомных единиц.
Расчет эксплуатационных характеристик биодизельного топлива (цетановое число, йодное число, теплотворная способность) проводят на основании полученных результатов о составе и содержании жирных кислот в липидной фракции осадков по следующим формулам:
1. Цетановое число
Цетановые числа (СМ) метиловых эфиров жирных кислот рассчитывают по уравнению
где db - число двойных связей в молекуле; n - число атомов углерода в молекуле.
Цетановое число биодизеля рассчитывают как сумму цетановых чисел метиловых эфиров ЖК с учетом их процентного содержания в пробе.
2. Йодное число
Йодные числа (IN) метиловых эфиров жирных кислот рассчитывают по уравнению:
где db - число двойных связей в молекуле; WFAME - молекулярная масса эфира жирной кислоты; W12 - молекулярная масса йода.
Йодное число биодизеля рассчитывают как сумму йодных чисел метиловых эфиров ЖК с учетом их процентного содержания в пробе.
3. Теплотворная способность
Теплотворную способность (Q, кал) метиловых эфиров жирных кислот рассчитывают по уравнению:
где С - содержание углерода, %; Н - содержание водорода, %; О - содержание кислорода, %; S - содержание серы, %; W - содержание влаги, % (стремится к нулю). Теплотворную способность биодизеля, рассчитывают как сумму теплот сгорания метиловых эфиров ЖК с учетом их процентного содержания в пробе.
Пример 1
Проводилась переработка илов малого водохранилища Бугач, расположенного в окрестностях г.Красноярска, в объеме 20 г, имеющих влажность 72%.
Экстракция липидной фракции осуществлялась из сырой массы илов по методу Фолча.
Получение биодизельного топлива проводили по реакции переэтерификации при температуре 85°С в течение 2 часов. В качестве катализатора реакции использовали концентрированную серную кислоту. Катализатор смешивали с метанолом (1:50 по объему). Смесь метанол/катализатор добавляли к липидам в объемном соотношении 2:1.
Разделение продуктов реакции (биодизеля и глицерина) осуществляли экстрагированием биодизеля из реакционной смеси гексаном. Извлечение глицерина не проводили.
Контроль качества биодизельного топлива проводили на газовом хроматографе с масс-спектрометрическим детектором (модель 6890/5975С, "Agilent Technologies", США) с колонкой HP-FFAP.
В результате переработки было получено биодизельное топливо (0.5 г) и глицерин. Эксплуатационные характеристики биодизеля (цетановое число, йодное число, теплотворная способность) удовлетворяют требованиям европейских стандартов по биодизельному топливу EN 14214, EN 14213 (табл.1).
Пример 2
Проводилась переработка первичных осадков канализационных очистных сооружений левобережья г.Красноярска, в объеме 3 кг, имеющих влажность 95%.
Экстракция липидной фракции осуществлялась из сырой массы первичных осадков по методу Фолча.
Получение биодизельного топлива проводили по реакции переэтерификации при температуре 85°С в течение 2 часов. В качестве катализатора реакции использовали концентрированную серную кислоту. Катализатор смешивали с метанолом (1:50 по объему). Смесь метанол/катализатор добавляли к липидам в объемном соотношении 2:1.
Разделение продуктов реакции (биодизеля и глицерина) осуществляли экстрагированием биодизеля из реакционной смеси гексаном. Извлечение глицерина не проводили.
Контроль качества биодизельного топлива проводили на газовом хроматографе с масс-спектрометрическим детектором (модель 6890/5975С, "Agilent Technologies", США) с колонкой HP-FFAP.
В результате переработки было получено биодизельное топливо (16.5 г) и глицерин. Эксплуатационные характеристики биодизеля (цетановое число, йодное число, теплотворная способность) удовлетворяют требованиям европейских стандартов по биодизельному топливу EN 14214, EN 14213 (табл.1).
Преимущества заявляемого способа получения биодизельного топлива из илов и/или осадков очистных сооружений заключаются в следующем:
- применяется беззатратное сырье;
- для экстракции применяется двухкомпонентная смесь, позволяющая более полно извлекать липиды из сырья;
- в реакции переэтерификации в качестве катализатора используется кислота, что исключает возможность образования побочных продуктов реакции (мыльных компонентов);
- осушение конечного продукта осуществляется с помощью высокоэффективного поглотителя влаги.
Таблица 1 | |||
Сравнение свойств биодизеля, полученного из илов водоема и первичных осадков канализационных очистных сооружений с требованиями европейских стандартов для биодизельного топлива. | |||
Характеристика | Илы | Первичные осадки | Стандарт |
Цетановое число | 80.6 | 76.6 | min 511 |
Йодное число | 41.4 | 40.7 | max 1201 |
Теплотворная способность (MJ/kg) | 37.4 | 37.4 | min 352 |
1 Европейский стандарт по биодизельному топливу EN 14214 | |||
2 Европейский стандарт по биодизельному топливу EN 14213 |
Claims (1)
- Способ получения биодизельного топлива из илов и/или осадков очистных сооружений, включающий предварительную обработку сырья, экстракцию липидной фракции, переэтерификацию липидной фракции, разделение полученных фракций и осушение биодизеля, отличающийся тем, что в качестве сырья используют илы водоемов и/или осадки очистных сооружений, дезинтеграцию клеток сырья осуществляют механическим способом, для экстракции липидов используют метод Фолча, включающий экстракцию липидов смесью хлороформ-метанол 2:1 по объему, с последующей промывкой экстракта раствором KCl (0,88%) и после расслоения и удаления верхней фазы смесью 0,88%-ного раствора KCl-метанол 1:1 по объему раствор KCl и смесь добавляют из расчета ¼ часть от полученного и оставшегося объема экстракта соответственно, готовый экстракт липидов осушают, пропуская через слой безводного Na2SO4, затем проводят переэтерификацию сухого экстракта смесью метанол/кислотный катализатор, где метанол смешан с катализатором в соотношении 50:1 по объему, биодизель экстрагируют из реакционной смеси гексаном, экстракт биодизеля осушают, пропуская через слой безводного Na2SO4.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011147907/04A RU2487920C1 (ru) | 2011-11-24 | 2011-11-24 | Способ получения биодизельного топлива из илов водоемов и/или осадков канализационных очистных сооружений |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011147907/04A RU2487920C1 (ru) | 2011-11-24 | 2011-11-24 | Способ получения биодизельного топлива из илов водоемов и/или осадков канализационных очистных сооружений |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011147907A RU2011147907A (ru) | 2013-05-27 |
RU2487920C1 true RU2487920C1 (ru) | 2013-07-20 |
Family
ID=48789197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011147907/04A RU2487920C1 (ru) | 2011-11-24 | 2011-11-24 | Способ получения биодизельного топлива из илов водоемов и/или осадков канализационных очистных сооружений |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2487920C1 (ru) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7638314B2 (en) * | 2003-10-02 | 2009-12-29 | Mississippi State University | Production of biodiesel and other valuable chemicals from wastewater treatment plant sludges |
RU2385900C1 (ru) * | 2008-07-01 | 2010-04-10 | Государственное научное учреждение Всероссийский научно-исследовательский институт мясной промышленности имени В.М. Горбатова Российской академии сельскохозяйственных наук | Способ получения жидкого биотоплива |
RU2009105665A (ru) * | 2006-07-19 | 2010-08-27 | АНДЖЕЛИС Наццарено ДЕ (IT) | Совмещенный способ получения биотоплива из различных типов сырья и родственных продуктов |
-
2011
- 2011-11-24 RU RU2011147907/04A patent/RU2487920C1/ru not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7638314B2 (en) * | 2003-10-02 | 2009-12-29 | Mississippi State University | Production of biodiesel and other valuable chemicals from wastewater treatment plant sludges |
RU2009105665A (ru) * | 2006-07-19 | 2010-08-27 | АНДЖЕЛИС Наццарено ДЕ (IT) | Совмещенный способ получения биотоплива из различных типов сырья и родственных продуктов |
RU2385900C1 (ru) * | 2008-07-01 | 2010-04-10 | Государственное научное учреждение Всероссийский научно-исследовательский институт мясной промышленности имени В.М. Горбатова Российской академии сельскохозяйственных наук | Способ получения жидкого биотоплива |
Non-Patent Citations (3)
Title |
---|
DEMIBRAS A. Production of biodiesel from aglae oils. Energy sources. Vol.31, issue 2, 2008 p.163-168. * |
KUCHKINA A.Yu., GLADYSHEV M.I., SUSHCHIK N.N., KRAVCHUK E.S., KALACHOVA G.S. Biodiesel production from sediments of a eutrophic reservior. Biomass and Biodiesel. 35 (2011), 2280-2284 (available online 21.03.2011). * |
KUCHKINA A.Yu., GLADYSHEV M.I., SUSHCHIK N.N., KRAVCHUK E.S., KALACHOVA G.S. Biodiesel production from sediments of a eutrophic reservior. Biomass and Biodiesel. 35 (2011), 2280-2284 (available online 21.03.2011). DEMIBRAS A. Production of biodiesel from aglae oils. Energy sources. Vol.31, issue 2, 2008 p.163-168. * |
Also Published As
Publication number | Publication date |
---|---|
RU2011147907A (ru) | 2013-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mukhtar et al. | Current status and challenges in the heterogeneous catalysis for biodiesel production | |
Jain et al. | A review on assessment of biodiesel production methodologies from Calophyllum inophyllum seed oil | |
Samorì et al. | Extraction of hydrocarbons from microalga Botryococcus braunii with switchable solvents | |
Suganya et al. | Optimization and kinetic studies on algal oil extraction from marine macroalgae Ulva lactuca | |
Caetano et al. | Spent coffee grounds for biodiesel production and other applications | |
KR101134294B1 (ko) | 미세조류로부터 오일 추출 및 바이오디젤 전환 방법 | |
Wang et al. | Integration process of biodiesel production from filamentous oleaginous microalgae Tribonema minus | |
Park et al. | Acid-catalyzed hot-water extraction of lipids from Chlorella vulgaris | |
Suganya et al. | Ultrasound-enhanced rapid in situ transesterification of marine macroalgae Enteromorpha compressa for biodiesel production | |
SundarRajan et al. | An insight into carbon balance of product streams from hydrothermal liquefaction of Scenedesmus abundans biomass | |
Zhu et al. | Comparison of the lipid content and biodiesel production from municipal sludge using three extraction methods | |
Deng et al. | Co-production of hydrochar, levulinic acid and value-added chemicals by microwave-assisted hydrothermal carbonization of seaweed | |
Tran et al. | An effective acid catalyst for biodiesel production from impure raw feedstocks | |
Vishnupriya et al. | Kinetic and thermodynamic studies on the extraction of bio oil from Chlorella vulgaris and the subsequent biodiesel production | |
Khan et al. | Investigation of waste banana peels and radish leaves for their biofuels potential | |
Barik et al. | Utilization of kitchen food waste for biodiesel production | |
Ngatcha et al. | Microalgae biomass pre-treatment with deep eutectic solvent to optimize lipid isolation in biodiesel production | |
Babayigit et al. | Direct liquid–liquid lipid extraction method for biodiesel production from sewage and petrochemical industry sludges | |
Zeng et al. | Jatropha curcas L. oil extracted by switchable solvent N, N-dimethylcyclohexylamine for biodiesel production | |
ES2454668T3 (es) | Procedimiento de obtención de una fracción enriquecida en ésteres de ácidos grasos funcionalizados a partir de semillas de plantas oleaginosas | |
M Azimatun Nur et al. | Utilization of microalgae cultivated in palm oil mill wastewater to produce lipid and carbohydrate by employing microwave-assisted irradiation | |
Sharmiladevi et al. | Processing of Gracilaria edulis and Ulva lactuca for bioethanol and bio-oil production: an integrated approach via fermentation and hydrothermal liquefaction | |
RU2013157357A (ru) | Пригодный для использования в двигателе сложный метиловый эфир жирных кислот (биодизель) из встречающейся в природе тины морских микроводорослей и морские микроводоросли, культивируемые в открытых соляных прудах наряду с ценными добавками побочных продуктов | |
RU2487920C1 (ru) | Способ получения биодизельного топлива из илов водоемов и/или осадков канализационных очистных сооружений | |
CN102352270B (zh) | 一种生物油分级得到的轻质馏分制备燃料的工艺 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20161125 |