RU2487747C1 - Мембранное устройство - Google Patents

Мембранное устройство Download PDF

Info

Publication number
RU2487747C1
RU2487747C1 RU2011149738/05A RU2011149738A RU2487747C1 RU 2487747 C1 RU2487747 C1 RU 2487747C1 RU 2011149738/05 A RU2011149738/05 A RU 2011149738/05A RU 2011149738 A RU2011149738 A RU 2011149738A RU 2487747 C1 RU2487747 C1 RU 2487747C1
Authority
RU
Russia
Prior art keywords
stage
membrane
module
channels
disk
Prior art date
Application number
RU2011149738/05A
Other languages
English (en)
Other versions
RU2011149738A (ru
Inventor
Валерий Михайлович Шкинев
Борис Константинович Зуев
Ирина Валерьевна Роговая
Ирина Павловна Смирнова
Светлана Владимировна Моржухина
Татьяна Васильевна Данилова
Original Assignee
Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН) filed Critical Учреждение Российской академии наук Ордена Ленина и Ордена Октябрьской Революции Институт геохимии и аналитической химии им. В.И. Вернадского РАН (ГЕОХИ РАН)
Priority to RU2011149738/05A priority Critical patent/RU2487747C1/ru
Publication of RU2011149738A publication Critical patent/RU2011149738A/ru
Application granted granted Critical
Publication of RU2487747C1 publication Critical patent/RU2487747C1/ru

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

Изобретение относится к мембранной технике, может быть использовано в биотехнологии, геологии и анализе различных растворов. Мембранное устройство содержит многоступенчатый мембранный модуль, ступени которого состоят из верхнего, промежуточных и нижнего дисков и расположенных между ними мембран, патрубки подвода фильтруемого раствора и отвода фильтрата, соединенные каналами с внутренними полостями ступеней, многоканальный насос, соединенный трубками с патрубками каждой ступени модуля, и средства герметизации. Ступени модуля скреплены между собой. Нижняя поверхность верхнего диска и верхняя поверхность нижнего диска выполнены с кольцевыми выемками, сечение которых представляет собой прямоугольную трапецию, наклонная боковая сторона трапеции расположена с внутренней стороны выемок и имеет угол наклона не менее 45°. Верхняя поверхность промежуточных дисков соответствует конфигурации верхней поверхности нижнего диска, а их нижняя поверхность соответствует конфигурации нижней поверхности верхнего диска. Промежуточные диски выполнены с переливными каналами, расположенными на дне кольцевых выемок. Каналы подвода фильтруемого раствора и отвода фильтрата каждой ступени расположены под мембранами, а патрубки отвода фильтрата из камер каждой ступени сдвинуты по вертикали относительно друг друга не менее чем на 30°. Технический результат: повышение эффективности и надежности. 5 з.п. ф-лы, 6 ил.

Description

Изобретение относится к мембранной технике и может быть использовано в биотехнологии при производстве медицинских препаратов, содержащих оксидазы с применением нанотехнологии, в геологии, при изучении состава нано и микрокомпонентов природных вод, в анализе, для пробоподготовки и выделения нано и микрофракций частиц при анализе различных растворов, для разделения водорастроримых высокомолекулярных веществ, например гуминовых веществ.
В настоящее время мембранные методы широко используются в биотехнологии для выделения и концентрирования полимерных водорастворимых соединений.
Наиболее часто используются процессы диализа, однако они малопроизводительны и используются для удаления неорганических солей при концентрировании низкомолекулярных органических соединений.
Известно применение набора ячеек с перемешиванием, при этом каждая ячейка содержит корпус, полупроницаемый фильтр, дренажную систему, контрольные приборы [Дытнерский Ю.И. Баромембранные процессы.// Химия, M., 1986.
M.J.Matteson: Analytical Application of Filtration, in: Filtration: Princ. and Pract. New York, 1987 [1].
Однако для многих практических целей, например для изучения распределения металлов между различных по размеру и молекулярной массе компонентов природных вод, подобное разделение невозможно из-за образования геля или намывной мембраны на поверхности фильтра, из-за сложности в управлении и контроле за фильтрационным процессом.
Особенно часто данные отрицательные эффекты наблюдаются при работе с большими объемами природных вод с высоким содержанием твердых глинистых частиц.
Применялся также каскад ультрафильтрационных ячеек с мембранами в виде полых волокон для многостадийного разделения, в частности для изучения состояния следовых количеств элементов связанных с различными компонентами природных вод [T.D.Brock: Membrane Filtration: A User's Guide and Reference Manual, A Publication of Science Tech. Inc., Madison, 1983 [2].
Однако, мембраны в виде полых волокон очень чувствительны к присутствию твердых частиц, поэтому такие системы более подходят для разделения только растворимых в воде высокомолекулярных соединений.
Более универсальными являются ячейки с тангенциальным потоком раствора, в которых жидкость протекает между двумя расположенными друг над другом фильтрами, дают возможность предотвращать образование намывной мембраны на поверхности фильтра и обеспечивают быструю фильтрацию растворов [Шкинев В.М., Джераян Т.Г., Гомолицкий В.Н., Спиваков Б.Я. Аналитическое мембранное оборудования для непрерывного фракционирования частиц и макромолекул. // Наука производству. - 1998. - N2. - С.43-46. [3].
Шкинев В.М., Трофимов Д.А., Данилова Т.В., Роговая И.В., Моржухина С.В., Карандашев В.К., Спиваков Б.Я.. Армированные трековые мембраны в методах оценки качества природной и питьевой воды. // Журнал аналит. химии. - 2008. - Т.63. - N4. - С.363-370] [4].
Разделение компонентов биотехнологии требует не только предотвращения образования намывных мембран, но и устранения адсорбции разделяемых компонентов фильтрами, трубками и элементами конструкции ячеек, а также загрязнения анализируемых проб за счет контакта с указанными материалами.
Для минимизации таких явлений, особенно в каскадах, с набором ячеек, целесообразно использовать минимальной длины трубки, минимально необходимое число переходников, клапанов и т.п.. В таких каскадах лучше использовать ячейки с замкнутым объемом (для предотвращения изменения газового баланса) и простым отбором полученных фракций.
Наиболее близким техническим решением у предложенному является мембранное устройство для непрерывной фильтрации растворов, содержащее многоступенчатый мембранный модуль, ступени которого состоят из верхних и нижних дисков и расположенных между ними мембран с последовательно изменяемым в сторону уменьшения от ступени к ступени размером пор, средства герметизации, патрубки подвода фильтруемого раствора и отвода фильтрата, соединенные каналами с внутренними полостями ступеней, камеры для сбора образца на каждой ступени, многоканальный насос, соединенный трубками с патрубками подвода фильтруемого раствора и отвода фильтрата каждой ступени модуля, при этом ступени модуля скреплены между собой [Shkinev V.M. On-line, multi-stage membrane systems for separating natural - water componens and suspended solid materials. // An International Newsletter Membrane Technology. - 2001. - June. - N134. - P.8-10] [5].
Диски имеют плоскую поверхность и в нижней части дренажную систему, связанную с надмембранным пространством следующего диска.
Камера для сбора образца выполнена в теле верхнего диска ступени и закрывается нижним диском следующей ступени с уплотнением.
Для отбора образца имеется выход с краном.
Фракционируемый образец вводится из резервуара на первой фильтрационной ступени, где часть раствора движется вдоль поверхности мембраны и возвращается в резервуар, а часть проходит через мембрану (F-фильтрат). Фильтрат проникает в камеру следующего (находящегося выше) диска и также частично рециркулируется; процесс повторяется на каждой следующей ступени снабженной мембранами с меньшим размером пор.
Скорость процесса фильтрации регулируют с помощью специального вентиля на выходе раствора с первой ступени и скорость вращения головки насоса с целью оптимизации скорости фильтрации.
После разделения выделенные фракции накапливаются в камерах для сбора образца, из которых проводится отбор проб.
Недостатком данного устройства является недостаточная производительность при работе с растворами с высоким содержанием твердых частиц, возможность потерь раствора через многочисленные уплотнительные кольца при увеличении внутреннего давления, сложная конструкция камеры для сбора образца, значительное потребление материала при изготовлении и сложность изготовления коммуникаций в корпусе дисков.
Задачей предложенного изобретения является создание простого мембранного устройства для работы с растворами с высоким содержанием твердых частиц, позволяющего значительно снизить потери анализируемого раствора.
Поставленная задача решается тем, что в мембранном устройстве для непрерывной фильтрации растворов, содержащем многоступенчатый мембранный модуль, ступени которого состоят из верхнего, промежуточных и нижнего дисков и расположенных между ними мембран с последовательно изменяемым в сторону уменьшения от ступени к ступени размером пор, патрубки подвода фильтруемого раствора и отвода фильтрата, соединенные каналами с внутренними полостями ступеней, многоканальный насос, соединенный трубками с выше указанными патрубками каждой ступени модуля, и средства герметизации, при этом при этом ступени модуля скреплены между собой, нижняя поверхность верхнего диска и верхняя поверхность нижнего диска выполнены с кольцевыми выемками, сечение которых представляет собой прямоугольную трапецию, наклонная боковая сторона трапеции расположена с внутренней стороны выемок и имеет угол наклона не менее 45°, при этом верхняя поверхность промежуточных дисков полностью соответствует конфигурации верхней поверхности нижнего диска, а их нижняя поверхность полностью соответствует конфигурации нижней поверхности верхнего диска, промежуточные диски выполнены с переливными каналами, расположенными на дне кольцевых выемок, а каналы подвода фильтруемого раствора и отвода фильтрата каждой ступени расположены под мембранами, а патрубки отвода фильтрата из камер каждой ступени сдвинуты по вертикали относительно друг друга не менее чем на 30° и снабжены 3-х ходовыми вентилями для автономного отбора проб.
Предпочтительно, чтобы расстояние между верхнем торцом промежуточного диска и мембраной ступеней было не более 2-х мм, а каналы подачи фильтруемого раствора в ступени выполнены под углом к кольцевой выемки не менее 40°.
Целесообразно на выходе из камер ступеней установить детекторы определения концентрации определяемого вещества и скрепить ступени мембранного модуля между собой шпильками или скобами.
Предпочтительно устройство снабдить турбулизаторами в виде плоских сеток, расположенными между верхнем торцом промежуточного диска и мембраной каждой ступени.
На фиг.1 представлен общий вид мембранного устройства в разрезе;
На фиг.2 - вид сверху мембранного устройства;
На фиг.3 - нижний диск ступени.
На фиг.4 - верхний диск ступени.
На фиг.5 - промежуточный диск ступени..
На фиг.6 - схема движения потоков в прототипе.
Мембранное устройство для непрерывной фильтрации растворов содержит многоступенчатый мембранный модуль, ступени которого состоят из верхнего 1 (фиг.4), промежуточного 2 (фиг.5) и нижнего 3 (фиг.3) дисков, а также расположенных между ними мембран 4 с последовательно изменяемым в сторону уменьшения от ступени к ступени размером пор и средств герметизации.
Патрубки подвода фильтруемого раствора 5 соединены каналами 6 с нижним диском 3, а патрубки отвода фильтрата 7 соединены каналами 8 с верхним диском 1.
Модуль включает также многоканальный насос 9, соединенный трубками 10 и 11 с патрубками подвода фильтруемого раствора 5 и отвода фильтрата 7 каждой ступени модуля соответственно.
Ступени модуля скреплены между собой шпильками 12 или скобами (на чертеже не показаны).
Каждая ступень модуля содержит также камеру 13 для сбора образцов, выполненую в виде кольцевых выемок в нижнем 3 и промежуточных дисках.
Каждая ступень модуля содержит также камеру 13 для сбора образцов, выполненую в виде кольцевых выемок в нижнем 3 и промежуточных дисках 2 ступеней модуля, сечение которых представляет собой перевернутую прямоугольную трапецию. Наклонная боковая сторона трапеции расположена с внутренней стороны выемок и имеет угол наклона не менее 45°, а расстояние между площадкой центральной части выемки и мембраной 4 ступеней должно составлять не более 2-х мм. Каналы подвода фильтруемого раствора 6 в ступени могут быть выполнены под углом к кольцевой выемки не менее 40°.
Промежуточные диски 2 выполнены с переливными каналами 14, расположенными на дне кольцевых выемок, а каналы подвода фильтруемого раствора 6 и отвода фильтрата 8 каждой ступени расположены под мембранами 4.
Первая ступень мембранного модуля снабжена на выходе вентилем для регулирования давления 15 в системе.
Патрубки отвода фильтрата 7 из камер каждой ступени сдвинуты по вертикали относительно друг друга не менее чем на 30° и снабжены 3-х ходовыми вентилями 16 для автономного отбора проб.
На выходе из камер ступений установлены детекторы 17 для определения концентрации определяемого вещества.
Модуль дополнительно содержит турбулизаторы (на чертеже не показаны) в виде плоских сеток, расположенные между верхним торцом промежуточного диска 2 и мембраной 4 каждой ступени.
Устройство также содержит емкость для исходного раствора 18 (образца) и получаемого фильтрата 19.
Мембранное устройство работает следующим образом. Перед началом работы устройство заполняется водой и удаляются пузыри воздуха. Затем с использованием вентиля 15 на выходе раствора из первой ступени регулируется скорость фильтрации и скорость рециркуляции раствора путем изменения скорости прокачивания раствора образца насосом 9. После выбора скоростей движения растворов на первую ступень вводится образец из емкости 18. Частицы раствора с размером менее размера пор в мембранах 4 проникают в надмембранное пространство и подаются насосом 9 на следующую ступень фильтрации через переливные каналы 14. При этом на каждой ступени установки частицы проходят при рециркуляции через детекторы 17, трехходовые краны 16. В процессе фильтрации при необходимости возможен отбор пробы через кран 16 для дополнительного определения.
Основным преимуществом предлагаемой конструкции является возможность работы с растворами с высоким содержанием твердых частиц.
Показано, что при содержании 6 г твердого мелкозернистого материала в 100 мл раствора удается пропустить через устройство до 300 мл раствора, При использовании устройства по прототипу только 100 мл, а при использовании обычной ячейки с перемешиванием не более 50 мл.
Таким образом, предлагаемое устройство отличается большей производительностью при работе с концентрированными растворами, что, соответственно, дает возможность получать большее количество материала для анализа.
Работоспособность устройства подтверждается следующими примерами.
Пример 1. Для доочистки и концентрирования фермента L-лизин-α-оксидазы была применена последовательная непрерывная или каскадная ультрафильтрация. Выбор размеров пор в мембранах 3 определялся известными из литературы размерами молекул фермента. На первом этапе с использованием мембраны 3 с размерами пор 0,22 мкм проводилась условная стерилизация раствора и удаление механических примесей. Затем удаляли примеси белком с размером молекул более 500 kDa, после этого проводили более тонкую очистку раствора с мембранами 300 kDa и на последней стадии концентрировали фермент и промывали его фосфатным буферным раствором с использованием мембран с порами менее 50 kDa.
Данный процесс осуществлялся как в каскадном варианте, так и режиме непрерывной проточной фильтрации. Содержание фермента L-лизин-α-оксидазы определяли по методике, описанной в работе [5]. Получены сходные результаты.
Пример 2. Фракционирование образца гуминовых веществ с использованием предлагаемой конструкции 4 ступенчатого мембранного устройства и такого же устройства по прототипу. Использовали образец гуминовых веществ фирмы Merck, анализ водных растворов проводили окситермическим методом по методике. Использовали мембраны фирмы Владипор (Владимир, Россия) с размерами пор 0,2 мкм, 0,1 мкм, 500 и 300 килодальтон. Получены сходные результаты распределения органических компонентов в растворах.
Создано устройство для непрерывной последовательной фильтрации с более простой конструкцией за счет соединения камеры для сбора образца с надмембранным пространством и более простой системой коммуникаций, более простой в изготовлении.
В данном мембранном устройстве возможно введение между поверхностью конуса и мембраной турбулизаторов в виде плоской сетки, что улучшает условия работы мембран и уменьшает возможность образования намывных мембран. В конструкции прототипа это невозможно.
Заменена известная система на более производительную, простую в изготовлении и эксплуатации путем совмещения отдельно вынесенной камеры для сбора образца с надмембранным диском путем изменения поверхности дисков, а именно замены плоской поверхности на конусообразную с плоской вершиной, производство которой проще и требует меньшего количество материала.
Техническим результатом предлагаемого изобретения является возможность эффективного использования мембранной системы для фракционирования компонентов растворов устранения возможных потерь раствора через уплотняющие элементы (резиновые кольца), уменьшения затрат материала и более простого изготовления, а именно, отсутствие необходимости заделки отверстия для прохода раствора из надмембранного пространства в камеру отбора образца, устранения уплотнительного элемента, наиболее часто выходящего из строя при переборке устройства.

Claims (6)

1. Мембранное устройство для непрерывной фильтрации растворов, содержащее многоступенчатый мембранный модуль, ступени которого состоят из верхнего, промежуточных и нижнего дисков и расположенных между ними мембран с последовательно изменяемым в сторону уменьшения от ступени к ступени размером пор, патрубки подвода фильтруемого раствора и отвода фильтрата, соединенные каналами с внутренними полостями ступеней, многоканальный насос, соединенный трубками с вышеуказанными патрубками каждой ступени модуля, и средства герметизации, при этом ступени модуля скреплены между собой, отличающееся тем, что нижняя поверхность верхнего диска и верхняя поверхность нижнего диска выполнены с кольцевыми выемками, сечение которых представляет собой прямоугольную трапецию, наклонная боковая сторона трапеции расположена с внутренней стороны выемок и имеет угол наклона не менее 45°, при этом верхняя поверхность промежуточных дисков полностью соответствует конфигурации верхней поверхности нижнего диска, а их нижняя поверхность полностью соответствует конфигурации нижней поверхности верхнего диска, промежуточные диски выполнены с переливными каналами, расположенными на дне кольцевых выемок, каналы подвода фильтруемого раствора и отвода фильтрата каждой ступени расположены под мембранами, а патрубки отвода фильтрата из камер каждой ступени сдвинуты по вертикали относительно друг друга не менее чем на 30° и снабжены 3-х ходовыми вентилями для автономного отбора проб.
2. Мембранное устройство по п.1, отличающееся тем, что расстояние между верхним торцом промежуточного диска и мембраной ступеней не более 2 мм.
3. Мембранное устройство по п.1, отличающееся тем, что каналы подачи фильтруемого раствора в ступени выполнены под углом к кольцевой выемке не менее 40°.
4. Мембранное устройство по п.1, отличающееся тем, что на выходе из камер фильтрата ступени установлены детекторы определения концентрации определяемого вещества.
5. Мембранное устройство по п.1, отличающееся тем, что ступени мембранного модуля скреплены между собой шпильками или скобами.
6. Мембранное устройство по п.1, отличающееся тем, что оно дополнительно содержит турбулизаторы в виде плоских сеток, расположенные между верхним торцом промежуточного диска и мембраной каждой ступени.
RU2011149738/05A 2011-12-07 2011-12-07 Мембранное устройство RU2487747C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011149738/05A RU2487747C1 (ru) 2011-12-07 2011-12-07 Мембранное устройство

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011149738/05A RU2487747C1 (ru) 2011-12-07 2011-12-07 Мембранное устройство

Publications (2)

Publication Number Publication Date
RU2011149738A RU2011149738A (ru) 2013-06-20
RU2487747C1 true RU2487747C1 (ru) 2013-07-20

Family

ID=48784929

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011149738/05A RU2487747C1 (ru) 2011-12-07 2011-12-07 Мембранное устройство

Country Status (1)

Country Link
RU (1) RU2487747C1 (ru)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1674935A1 (ru) * 1989-06-10 1991-09-07 Тбилисский Региональный Отдел По Разработке Нового Оборудования, Средств Автоматизации, Мембранной Техники И Технологии Мембранный аппарат
RU2019279C1 (ru) * 1990-12-04 1994-09-15 Голов Владимир Александрович Мембранный плоскокамерный элемент
RU2183133C2 (ru) * 1996-03-04 2002-06-10 Вальмет-Райсио Ой Устройство для отделения, фильтровальная кассета и опорное кольцо
WO2008054207A1 (en) * 2006-10-31 2008-05-08 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Membrane distillation method for the purification of a liquid
US8029675B2 (en) * 2005-11-11 2011-10-04 Wolfgang Heinzl Membrane distillation process and membrane distillation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1674935A1 (ru) * 1989-06-10 1991-09-07 Тбилисский Региональный Отдел По Разработке Нового Оборудования, Средств Автоматизации, Мембранной Техники И Технологии Мембранный аппарат
RU2019279C1 (ru) * 1990-12-04 1994-09-15 Голов Владимир Александрович Мембранный плоскокамерный элемент
RU2183133C2 (ru) * 1996-03-04 2002-06-10 Вальмет-Райсио Ой Устройство для отделения, фильтровальная кассета и опорное кольцо
US8029675B2 (en) * 2005-11-11 2011-10-04 Wolfgang Heinzl Membrane distillation process and membrane distillation device
WO2008054207A1 (en) * 2006-10-31 2008-05-08 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Membrane distillation method for the purification of a liquid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHKINEV V.M. Multi-stage membrane systems for separating natural - water componens and suspended solid materials. An International Newsletter Membrane Technology, 2001, June, No.134, p.8-10. *
SHKINEV V.M. Multi-stage membrane systems for separating natural - water componens and suspended solid materials. An International Newsletter Membrane Technology, 2001, June, №134, p.8-10. *

Also Published As

Publication number Publication date
RU2011149738A (ru) 2013-06-20

Similar Documents

Publication Publication Date Title
US10905978B2 (en) Method and apparatus for processing and analyzing filtered particles
EP2092974B1 (en) A method and apparatus for membrane separation applying concentration polarization
US20200338499A1 (en) Permeate channel alterations for counter current filtration for use in cross-flow filtration modules useful in osmotic systems
US10350518B2 (en) Processes for filtering liquids using single pass tangential flow filtration systems and tangential flow filtration systems with recirculation of retentate
KR101917663B1 (ko) 다채널 펌프를 이용한 일렬 희석여과기
CN113800599A (zh) 一种水体颗粒物连续分级的过滤装置、过滤方法及过滤系统
RU2487747C1 (ru) Мембранное устройство
US7182866B2 (en) Apparatus and method for separating impurities from a stream
JP2020099256A (ja) 分離方法
CN114471163A (zh) 二次两级切向流分离纯化和浓缩外泌体的超滤装置及方法
EP3897982B1 (en) Microfluidic device
JP2007240304A (ja) 分画装置
CN105688442B (zh) 一种柱层析与膜过滤集成系统
RU2007137665A (ru) Способы мембранного разделения и системы для улучшенной регенерации пермеанта
CN216604777U (zh) 二次两级切向流分离纯化和浓缩外泌体的超滤装置
CN215559370U (zh) 原料提纯用反渗透过滤装置
US12007316B2 (en) Pulse-modulated periodic backflush for clearance of fouling layers in dead-end filtration systems
WO2024024337A1 (ja) 微小有用物質を含む液の精製濃縮装置及びそれを用いた微小有用物質を含む精製濃縮液の製造方法
KR20240038924A (ko) 미소 유용 물질의 분리 정제 방법과 분리 정제 장치
CN208517015U (zh) 一种渗滤液超滤设备
WO1994009889A1 (en) Liquid treatment apparatus
CN106317166A (zh) 高效过滤层析混合机制分离蛋白装置
CN2618611Y (zh) 便携式大输液配滤装置
US20200363300A1 (en) Pulse-modulated periodic backflush for clearance of fouling layers in dead-end filtration systems
JPH04118032A (ja) ジェット流型濾過器