RU2486628C1 - Method of processing nonmetallic materials - Google Patents

Method of processing nonmetallic materials Download PDF

Info

Publication number
RU2486628C1
RU2486628C1 RU2011150874/28A RU2011150874A RU2486628C1 RU 2486628 C1 RU2486628 C1 RU 2486628C1 RU 2011150874/28 A RU2011150874/28 A RU 2011150874/28A RU 2011150874 A RU2011150874 A RU 2011150874A RU 2486628 C1 RU2486628 C1 RU 2486628C1
Authority
RU
Russia
Prior art keywords
laser
processing
energy
laser radiation
laser pulse
Prior art date
Application number
RU2011150874/28A
Other languages
Russian (ru)
Inventor
Михаил Викторович Сахаров
Александр Федорович Коваленко
Алексей Александрович Воробьев
Михаил Владимирович Конюхов
Йонос Ионо Астраускас
Игорь Валерьевич Никитин
Арсений Эдуардович Запонов
Роман Дмитриевич Удинцев
Александр Сергеевич Чупятов
Original Assignee
Федеральное государственное военное образовательное учреждение высшего профессионального образования Военная академия Ракетных войск стратегического назначения имени Петра Великого МО РФ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное военное образовательное учреждение высшего профессионального образования Военная академия Ракетных войск стратегического назначения имени Петра Великого МО РФ filed Critical Федеральное государственное военное образовательное учреждение высшего профессионального образования Военная академия Ракетных войск стратегического назначения имени Петра Великого МО РФ
Priority to RU2011150874/28A priority Critical patent/RU2486628C1/en
Application granted granted Critical
Publication of RU2486628C1 publication Critical patent/RU2486628C1/en

Links

Abstract

FIELD: process engineering.
SUBSTANCE: in compliance with this invention proposed method consists in irradiating material surface with pulse laser rays. Note here that laser pulse power density is generated on the basis of relationship that relates material sublimation specific energy, material absorption index in laser wave-length and material reflection factor.
EFFECT: electric power savings.

Description

The invention relates to the field of technological processes and can be used for scribing semiconductor, ceramic and glassy materials.

A known method of processing non-metallic materials used for amorphization of silicon and consisting in irradiating them with a laser pulse [1]. There is also a known method of processing non-metallic materials used for annealing of ion-doped silicon [2]. The disadvantage of these methods is that the thermoelastic stresses arising in the materials can lead to spallation from the irradiated surface.

There is also a method of processing non-metallic materials used for annealing, which consists in irradiating them with a single rectangular laser pulse [3].

The disadvantage of this method is that the thermoelastic stresses arising in the material can lead to destruction of the material due to spallation from the irradiated surface.

Also known is a method of processing non-metallic materials [4], in which processing is carried out by irradiating materials with a laser pulse. The temporal shape of the pulse is described by a certain ratio, depending on the laser energy flux density, the constants b 1 and b 2 characterizing the front and decay of the laser pulse, the duration of the laser pulse, the current time from the onset of exposure, the energy density and the maximum value of the laser radiation flux density in momentum. The effect is achieved by forming a laser pulse, the temporary shape of which is described by the relation

q ( t ) = { b one t e - b 2 t ; 0 t τ ; 0 ; t > τ ,

Figure 00000001

where q (t) is the energy density of the laser radiation, W / m 2 ;

τ is the laser pulse duration, s;

b 1 and b 2 - constants characterizing the front and the decline of the laser pulse;

t is the current time from the onset of exposure, s.

A known method of laser processing of holes [5], in which the density of energy absorbed in the evaporated layer is equal to

W = z L u ρ , (one)

Figure 00000002

where z is the coordinate measured from the surface into the interior of the material;

ρ is the density of the material;

L u - latent heat of evaporation of a unit mass.

Equation (1) characterizes the stationary process of material evaporation under the action of laser radiation when it is absorbed in a very thin layer of the material (much less than the thickness of the vaporized layer) and does not take into account the absorption in the vapor of the material and the increase in the internal energy of the vapor. It is valid for a small range of laser radiation power densities, when absorption in the vapor of the material can be neglected. In addition, equation (1) cannot be used when the absorption of laser radiation occurs in the bulk of the material, for example, in a layer several millimeters thick.

In expression (1) in [5], the latent heat of evaporation L u characterizes the evaporation of the material from the surface of the light spot. The disadvantage of this method is the inability to determine the optimal value of the energy density of the laser radiation when processing materials having volumetric absorption of radiation with a wavelength at which the material is processed.

This method is selected as a prototype. The aim of the invention is to reduce energy costs in the processing of non-metallic materials by laser radiation. For example, glassy, ceramic, and semiconductor materials may exhibit volumetric absorption at the wavelength of the incident radiation. If the conditions are met:

χ > > a τ

Figure 00000003
and R n > > a τ
Figure 00000004
,

where χ is the absorption coefficient of the material;

a is the coefficient of thermal diffusivity of the material;

τ is the laser pulse duration;

R n is the radius of the spot of laser radiation,

then we can consider the problem of the evaporation of the material in a one-dimensional formulation and neglect the energy transfer in the material due to thermal conductivity. The power density of laser radiation in the material is determined by the equation [5]:

q (t, z) = (1-R) q 0 (t) e -χz ,

where R is the reflection coefficient of the material;

q 0 (t) is the power density of the laser radiation;

z is the coordinate measured from the surface into the interior of the material.

If the absorbed energy in the cross section z exceeds the specific sublimation energy of the material, that is, the condition

( one - R ) χ W e - χ z Q , (2)

Figure 00000005

where R is the reflection coefficient of the material;

W = 0 τ q ( t ) d t

Figure 00000006
- energy density of laser radiation;

q (t) is the power density of the laser radiation;

z is the coordinate measured from the surface into the interior of the material;

Q is the specific energy of sublimation of the material,

This will evaporate the absorbing layer of material. From (2) we obtain the relation for the thickness of the evaporated layer

z = one χ ln ( one - R ) χ W Q .

Figure 00000007

The mass of material vaporized per unit area is

m = z ρ ρ χ ln ( one - R ) χ W Q ,

Figure 00000008

where - ρ is the density of the material.

The specific (per unit of energy input) ablation of the mass of material will be

m At D = m ( one - R ) W = ρ ( one - R ) χ W ln ( one - R ) χ W Q . (3)

Figure 00000009

A study of the extremum of equation (3) shows that the specific ablation of the mass has a maximum at ( one - R ) χ W Q = e

Figure 00000010
(e is the base of the natural logarithm), and the value of m UD at the maximum point is constant for a specific type of material, and is

(m UD ) max ≈0.368ρ / Q.

In order to save energy costs, it is advisable to process materials with a laser energy density

W = e Q ( one - R ) χ .

Figure 00000011

The thickness of the evaporated layer will then be 1 / χ. An increase in groove depth during processing is obtained by the action of several pulses. Thus, the optimal processing regime of non-metallic materials with volumetric absorption at the wavelength of the laser is observed.

Literature

1. Boyazitov P.M. Amorphization and crystallization of silicon by subnanosecond laser pulses. Abstracts / TL of the All-Union Conference on the interaction of optical radiation with matter. Leningrad. March 11-18, 1988, from 24.

2. Kuzmenchenko T.A. et al. Laser annealing of ion-doped silicon by radiation with a wavelength of 2.94 microns. Leningrad. March 11-18, 1988, with. 29.

3. Bakeev A.A., Sobolev A.P., Yakovlev V.I. Studies of thermoelastic stresses arising in the absorbing layer of a substance under the action of a laser pulse. PMTF, - 1982. - No. 6. - p. 92-98.

4. Atamanyuk V.M., Kovalenko A.F., Levun I.V., Fedichev A.V. A method of processing non-metallic materials. RU 2211753 C2.

5. Laser equipment and technology. In 7 kn. Book 4. Laser processing of non-metallic materials: Textbook. manual for universities / A.G. Grigoryants, A.A. Sokolov; Ed. A.G. Gregorianets. - M .: Higher. school 1998 .-- 191 pp., Ill. ISBN 5-06-001453-3.

Claims (1)

  1. A method of processing non-metallic materials, which consists in irradiating the surface with laser radiation, characterized in that they form a laser pulse, the energy density of which is determined by the ratio
    W = e Q ( one - R ) χ ,
    Figure 00000012

    where Q is the specific energy of the sublimation of the material;
    e is the base of the natural logarithm;
    χ is the absorption coefficient of the material at the wavelength of the incident laser radiation;
    R is the reflection coefficient of the material.
RU2011150874/28A 2011-12-14 2011-12-14 Method of processing nonmetallic materials RU2486628C1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011150874/28A RU2486628C1 (en) 2011-12-14 2011-12-14 Method of processing nonmetallic materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011150874/28A RU2486628C1 (en) 2011-12-14 2011-12-14 Method of processing nonmetallic materials

Publications (1)

Publication Number Publication Date
RU2486628C1 true RU2486628C1 (en) 2013-06-27

Family

ID=48702422

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011150874/28A RU2486628C1 (en) 2011-12-14 2011-12-14 Method of processing nonmetallic materials

Country Status (1)

Country Link
RU (1) RU2486628C1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566138C2 (en) * 2014-02-13 2015-10-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации Laser processing of non-metallic materials
RU2573181C1 (en) * 2014-11-24 2016-01-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Laser processing of non-metallic plates
RU2574222C1 (en) * 2014-10-13 2016-02-10 Федеральное государственное казённое военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации Laser treatment method for non-metal plates
RU2582849C1 (en) * 2014-11-24 2016-04-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Method for laser punching through-hole in non-metal plate
RU2602402C1 (en) * 2015-08-14 2016-11-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Method of laser processing of nonmetallic plates
RU2624989C1 (en) * 2016-02-09 2017-07-11 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Method of laser processing of non-metallic plates

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2024441C1 (en) * 1992-04-02 1994-12-15 Владимир Степанович Кондратенко Process of cutting of nonmetal materials
RU2211753C2 (en) * 2000-12-22 2003-09-10 Военная академия Ракетных войск стратегического назначения им. Петра Великого Method for working non-metallic materials
RU2226183C2 (en) * 2002-02-21 2004-03-27 Алексеев Андрей Михайлович Method for cutting of transparent non-metal materials
US20050003633A1 (en) * 2003-07-02 2005-01-06 Texas Instruments Incorporated Method for reducing stress concentrations on a semiconductor wafer by surface laser treatment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2024441C1 (en) * 1992-04-02 1994-12-15 Владимир Степанович Кондратенко Process of cutting of nonmetal materials
RU2211753C2 (en) * 2000-12-22 2003-09-10 Военная академия Ракетных войск стратегического назначения им. Петра Великого Method for working non-metallic materials
RU2226183C2 (en) * 2002-02-21 2004-03-27 Алексеев Андрей Михайлович Method for cutting of transparent non-metal materials
US20050003633A1 (en) * 2003-07-02 2005-01-06 Texas Instruments Incorporated Method for reducing stress concentrations on a semiconductor wafer by surface laser treatment
US20060172509A1 (en) * 2003-07-02 2006-08-03 Mahle Richard L Method for reducing stress concentrations on a semiconductor wafer by surface laser treatment

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2566138C2 (en) * 2014-02-13 2015-10-20 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации Laser processing of non-metallic materials
RU2574222C1 (en) * 2014-10-13 2016-02-10 Федеральное государственное казённое военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации Laser treatment method for non-metal plates
RU2574327C1 (en) * 2014-11-10 2016-02-10 Федеральное государственное казенное военное образовательное учреждение высшего профессионального образования "Военная академия Ракетных войск стратегического назначения имени Петра Великого" Министерства обороны Российской Федерации Method for laser treatment of non-metallic materials
RU2573181C1 (en) * 2014-11-24 2016-01-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Laser processing of non-metallic plates
RU2582849C1 (en) * 2014-11-24 2016-04-27 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Method for laser punching through-hole in non-metal plate
RU2602402C1 (en) * 2015-08-14 2016-11-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Method of laser processing of nonmetallic plates
RU2624989C1 (en) * 2016-02-09 2017-07-11 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") Method of laser processing of non-metallic plates

Similar Documents

Publication Publication Date Title
Bauer et al. Heat accumulation in ultra-short pulsed scanning laser ablation of metals
Hebling et al. Observation of nonequilibrium carrier distribution in Ge, Si, and GaAs by terahertz pump–terahertz probe measurements
Rose-Petruck et al. Picosecond–milliångström lattice dynamics measured by ultrafast X-ray diffraction
Vurpillot et al. Thermal response of a field emitter subjected to ultra-fast laser illumination
Grun et al. Characteristics of ablation plasma from planar, laser‐driven targets
Kulp et al. Displacement of the sulfur atom in CdS by electron bombardment
Harilal et al. Electron density and temperature measurements in a laser produced carbon plasma
Lang et al. Pyroelectric, piezoelectric, and photoeffects in hydroxyapatite thin films on silicon
Vozzi et al. Cluster effects in high-order harmonics generated by ultrashort light pulses
Harilal Influence of spot size on propagation dynamics of laser-produced tin plasma
Sakka et al. Use of a long-duration ns pulse for efficient emission of spectral lines from the laser ablation plume in water
Gragossian et al. Laser ablation of aluminum from normal evaporation to phase explosion
Borghesi et al. Proton imaging: a diagnostic for inertial confinement fusion/fast ignitor studies
Bashir et al. Influence of ambient gas and its pressure on the laser-induced breakdown spectroscopy and the surface morphology of laser-ablated Cd
Kafalas et al. Fog droplet vaporization and fragmentation by a 10.6-μm laser pulse
Velikanov et al. Fe2+: ZnSe laser pumped by a nonchain electric-discharge HF laser at room temperature
Mannion et al. The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air
Fox Effect of water and paint coatings on laser‐irradiated targets
Colombier et al. Hydrodynamic simulations of metal ablation by femtosecond laser irradiation
Verhoff et al. Angular emission of ions and mass deposition from femtosecond and nanosecond laser-produced plasmas
Guo et al. Structural phase transition of aluminum induced by electronic excitation
US20010045416A1 (en) Quality control plasma monitor for laser shock processing
Amoruso et al. Features of plasma plume evolution and material removal efficiency during femtosecond laser ablation of nickel in high vacuum
Mondal et al. Direct observation of turbulent magnetic fields in hot, dense laser produced plasmas
Seka et al. Time-resolved absorption in cryogenic and room-temperature direct-drive implosions

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20151215