RU2486503C1 - Способ определения местоположения и размеров неоднородных образований на стенках трубопровода - Google Patents
Способ определения местоположения и размеров неоднородных образований на стенках трубопровода Download PDFInfo
- Publication number
- RU2486503C1 RU2486503C1 RU2011148389/28A RU2011148389A RU2486503C1 RU 2486503 C1 RU2486503 C1 RU 2486503C1 RU 2011148389/28 A RU2011148389/28 A RU 2011148389/28A RU 2011148389 A RU2011148389 A RU 2011148389A RU 2486503 C1 RU2486503 C1 RU 2486503C1
- Authority
- RU
- Russia
- Prior art keywords
- pipeline
- reflected
- accordance
- waves
- inhomogeneous
- Prior art date
Links
Images
Landscapes
- Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Использование: для диагностики состояния трубопроводов. Сущность: заключается в том, что осуществляют излучение акустического сигнала звукового диапазона в стенку трубопровода, граничащую со средой, окружающей трубопровод или протекающей внутри трубопровода, регистрацию отраженных от неоднородного образования, преломленных и прошедших сквозь него звуковых волн и определение местоположения и размеров неоднородных образований на основе временного, амплитудного, частотного и скоростного анализов зарегистрированных волн. Технический результат: обеспечение простой, достоверной и эффективной диагностики неоднородных образований на внутренней и наружной поверхностях трубопроводов, позволяющей определить местоположение и размеры неоднородностей с достаточно высокой точностью. 18 з.п. ф-лы, 6 ил.
Description
Изобретение относится к способам неразрушающего контроля и предназначено для диагностики состояния трубопроводов, используемых при добыче или для транспортировки нефти или газа, а именно для обнаружения и определения размеров различных типов неоднородных образований (структурных неоднородностей) на внутренних и внешних поверхностях стенки трубопровода.
Известно, что транспортировка газов или жидкостей по трубопроводам может быть затруднена либо заблокирована вследствие образования твердых фракций, глинистых суспензий или вязких жидкостей, таких как гидраты, деготь и т.п., на внутренней поверхности стенки трубопровода. Своевременная локализация и определение размеров образований такого рода является основой для эффективного предотвращения негативных последствий.
Процесс добычи нефти и газа зачастую включает в себя бурение подземных пород, установку обсадной колонны скважины, цементирование, дальнейшую перфорацию и разрыв пласта для образования и стимуляции течения в скважину. Возможна ситуация, при которой поток может вымыть частицы из матрицы породы и образовать каверны за обсадной колонной скважины. Другим характерным дефектом магистральных трубопроводов является коррозия или эрозия стенки трубопровода, приводящая к потере металла. При этом стенка трубопровода частично замещается корродирующим либо другим материалом, что может быть рассмотрено как неоднородность.
Для диагностики состояния магистральных трубопроводов используют, в основном, ультразвуковой контроль с передачей в стенку трубопровода зондирующих импульсов ультразвуковых колебаний. В современных внутритрубных снарядах-дефектоскопах используют как контактное, так и бесконтактное возбуждение ультразвуковых волн в стенке трубопровода. Так, известны способы внутритрубного ультразвукового контроля, включающие непрерывное перемещение дефектоскопа с электроакустическим преобразователем вдоль стенки трубопровода, генерирование электроакустическим преобразователем импульсов ультразвуковых колебаний, передачу импульсов ультразвуковых колебаний в стенку трубопровода, возбуждение ультразвуковых колебаний в стенке трубопровода, отражение ультразвуковых колебаний от неоднородностей материала стенки трубопровода, передачу отраженных ультразвуковых колебаний от стенки трубопровода к электроакустическому преобразователю, запись отраженных ультразвуковых колебаний и определение по результатам измерений характера, размеров и местоположения дефектов в стенке трубопровода (см., например, патент РФ №2153163 - бесконтактная передача импульсов, или патент РФ №2156455 - контактная передача импульсов).
К недостаткам указанных способов относится длительность подготовки трубопровода к пропуску внутритрубных дефектоскопов, высокая стоимость инспекции и непригодность многих трубопроводов к пропуску внутритрубных дефектоскопов. Кроме того, ультразвук распространяется на недостаточно большое расстояние, а на волновое поле оказывают значительное влияние мелкие неоднородности на поверхности, такие как шероховатость, трещиноватость и т.д. Кроме того, известные способы предназначены для обнаружения дефектов самой поверхности трубопроводов, таких как коррозия, трещины, дефекты сварных швов, и не предусматривают возможности выявления и характеристики неоднородных образований на поверхности стенки трубопровода в околотрубном пространстве (внутри и снаружи трубопровода).
Технический результат, достигаемый при реализации изобретения, заключается в обеспечении простой, достоверной и эффективной диагностики неоднородных образований на внутренней и наружной поверхностях трубопроводов, позволяющей определить местоположение и размеры неоднородностей с достаточно высокой точностью.
Указанный технический результат достигается тем, что осуществляют излучение акустического сигнала звукового диапазона в стенку трубопровода, граничащую со средой, окружающей трубопровод или протекающей внутри трубопровода, и регистрацию отраженных от неоднородного образования, преломленных и прошедших сквозь него звуковых волн. Местоположение и размеры неоднородных образований определяют на основе временного, амплитудного, частотного и скоростного анализов зарегистрированных волн.
О наличии неоднородного образования можно судить по наличию в принятом сигнале отраженной от него или преломленной и прошедшей сквозь него волны, а о его местоположении судят по времени прихода отраженной волны.
Длина неоднородного образования вдоль трубы может быть определена из разницы между временами прихода волны, отраженной от первой границы между средой и неоднородностью, и волны, отраженной от второй границы между неоднородностью и средой, фазовой компоненты сигнала и скорости среды.
Ширина неоднородного образования может быть определена из соотношения между энергиями прямой, отраженной и преломленной волн.
Длина и ширина неоднородного образования могут быть также определены по амплитудно-частотным спектрам измеренных прямой, отраженной от неоднородности и проходящей сквозь нее волн.
Ширину неоднородного образования можно определять по частоте среза прямой, отраженной и проходящей волн.
Ширина неоднородного образования на внутренней или наружной поверхности трубы может быть также определена по разнице давлений в среде, протекающей соответственно внутри или снаружи трубопровода до и после неоднородного образования.
Для излучения акустического сигнала используют по меньшей мере один передающий преобразователь, который может быть расположен как на наружной поверхности трубопровода, так и на его внутренней поверхности.
Прямые, отраженные и преломленные звуковые волны регистрируют посредством по меньшей мере одного приемного преобразователя, расположенного на наружной или на втутренней поверхности трубопровода.
Передающий преобразователь одновременно может являться приемным преобразователем.
Передающий и/или приемный преобразователь может быть пьезоэлектрическим, магнитострикционным, механическим, электрическим, электромагнитным.
Для передачи зарегистрированных акустических сигналов на обработку могут быть использованы проводные средства (электрические или оптические кабели) или беспроводные.
Изобретение поясняется чертежами, где на фиг.1 приведена принципиальная схема возможного расположения неоднородностей на стенках трубопровода; на фиг.2 - схема системы контроля за образованием нежелательной неоднородности в трубопроводе; на фиг.3а и 3б - примеры систем измерений для определения местоположения неоднородности; на фиг.3в - пример измеренного сигнала; на фиг.4 - пример системы измерений для определения длины неоднородности; на фиг.5 - амплитудно-частотный спектр сигнала для однородной структуры и структуры с неоднородностью, на фиг.6 - спектр отраженного сигнала и сигнала, прошедшего сквозь неоднородность, для изгибных мод.
На фиг.1 схематично показан трубопровод 1, содержащий первую среду 2 внутри и окруженный второй средой 3. Среды 2 и 3 имеют неоднородности 4, которые находятся в контакте с внутренней или внешней поверхностями трубопровода 1 снаружи или внутри трубопровода. Неоднородности необязательно симметричны относительно центральной оси трубопровода 1, хотя на фиг.1 в качестве примера показан симметричный случай. Трубопровод 1 может быть любого полого профиля и состоять из различных твердых материалов. Среда 2, среда 3 и неоднородность 4 может быть газом, жидкостью или твердой фракцией.
В зависимости от размеров неоднородности вся приведенная на фиг.1 система имеет различные уникальные характеристики и реагирует по-разному, если ее подвергнуть внешнему возбуждению. Предлагаемый способ обнаружения, локализации и определения размеров неоднородностей основан на анализе акустических волн, распространяющихся в системе. Алгоритм, основанный на временном, амплитудном, частотном и скоростном анализах отраженных, преломленных и проходящих звуковых волн (объемных, головных, мод), может предоставить информацию о локализации и размерах неоднородностей.
Система измерений состоит из массива акустических трансдьюсеров (преобразователей), работающих для отправки и получения акустических сигналов/волновых форм во времени.
Массив трансдьюсеров состоит как минимум из двух трансдьюсеров, как минимум один из которых должен работать как источник, а другой - как приемник акустических сигналов.
Трансдьюсер может работать и как источник, и как приемник.
Акустический трансдьюсер может быть любым прибором, излучающим акустический сигнал или возбуждающим акустические волны/колебания на звуковых частотах в случае, если он работает как источник.
Акустический трансдьюсер может быть любым прибором, способным измерять акустический сигнал, если он работает в качестве приемника.
Акустический трансдьюсер может быть пьезоэлектрическим, магнитострикционным, механическим, электрическим, электромагнитным, например гидрофон, молот.
Полученный с помощью акустического трансдьюсера массив данных должен быть передан на один и тот же обрабатывающий модуль. Это может быть сделано средствами проводных (например, электрических, оптических кабелей) или беспроводных (акустических, электрических, электромагнитных) методов.
Массив акустических трансдьюсеров должен быть размещен вдоль трубопровода и расположен внутри или снаружи трубопровода в любом месте, где возможно зарегистрировать сигнал/волну, представляющую интерес (радиальное положение каждого трансдьюсера может быть различным).
Массив акустических трансдьюсеров может быть размещен временно (например, он может представлять собой акустический прибор, такой как DSI или Sonic Scanner (приборы Шлюмберже)) или постоянно (может быть прикреплен к стенке трубы).
Система контроля нежелательных образований в трубопроводе представлена на фиг.2. Например, массив акустических трансдьюсеров размещен равномерно внутри или снаружи трубопровода. Система работает последовательно: в первый момент первый трансдьюсер 5 работает как источник, остальные трансдьюсеры 6 - как приемники; во второй момент времени следующий (например, второй) трансдьюсер 6 работает как источник, остальные - как приемники; и т.д. Кроме того, может быть предложен любой оптимальный алгоритм работы данной системы.
Ниже приведены варианты реализации изобретения для локализации и оценки размеров неоднородности.
Для обработки сигнала и интерпретации применяются стандартные активные методы прохождения, отражения (а также комбинированные), метод импеданса и спектральный.
Неоднородность может быть обнаружена путем идентификации в измеренном записанном сигнале отраженной от нее или преломленной и прошедшей сквозь нее волн. В случае отсутствия неоднородности этих волн не будет. Следовательно, вывод о существовании неоднородности может быть сделан по наличию данных волн.
Времена измеряются по записанному сигналу распространения волн к неоднородности и отраженной от нее в комбинации с параметрами скорости сред, в которых распространяются эти волны, определяют местоположение неоднородности (расстояние до источника). На фиг.3а и фиг.3б показана потенциальная схема измерения, где 1 - трубопровод, 4 - неоднородность, 7 - источник, 8 - приемник; а на фиг.3в показан измеренный сигнал, где 9 - прямая волна, 10 - отраженная волна.
Длина неоднородности вдоль трубопровода может быть определена из разницы между временами прибытия волны (измеряются по записанному сигналу), отраженной от первой границы между средой и неоднородностью, и волны, отраженной от второй границы (неоднородность-среда), фазовой компоненты сигнала и скоростей сред. Схема на фиг.4 иллюстрирует потенциальный путь измерений и пример измеренного акустического сигнала, где 1 - трубопровод, 4 - неоднородность, 7 - источник, 8 - приемник, 11 - волна, отраженная от первой границы «среда-неоднородность», 12 - волна, отраженная от второй границы «неоднородность-среда».
Ширина неоднородности может быть определена из соотношения между энергиями прямой, отраженной и преломленной волн. При некоторой аппроксимации (в предположение, что звуковое поле состоит из плоской волны, размеры малы по сравнению с длиной волны звука, пренебрежении сжимаемостью, …) площадь сечения неоднородности может быть посчитана из отношения амплитуд прямой и отраженной волн (см, например, Е.Скучик. Основы акустики. Том. 1. М.: Мир, 1976, 520 стр. Стр.472, пункт 3.2. Труба со скачком поперечного сечения.).
Длина и ширина неоднородности могут быть определены по амплитудно-частотным спектрам измеренных прямой, отраженной от неоднородности и проходящей сквозь нее волн. Экстремумы на измеренных амплитудно-частотных спектрах соответствуют собственным частотам рассматриваемой механической системы, которые могут быть рассчитаны на основе эквивалентной математической модели. Размеры неоднородности определяются путем решения обратной задачи. Например, для получения натурных данных необходимо возбудить в трубопроводе при помощи монопольного источника волну Стоунли и при помощи дипольного источника изгибную волну, записать сигнал и преобразовать его в амплитудно-частотный спектр. Для описания эквивалентной математической модели - рассмотреть задачу собственных радиальных и изгибных колебаний трубы с неоднородностью. Решение обратной задачи может быть получено приближенно аналитически либо численно итеративными методами. Фиг.5, где 4 - неоднородность, 7, 8 - источник/приемник, иллюстрирует пример спектра сигнала для однородной структуры и для структуры с неоднородностью. Пики спектров соответствуют собственным частотам радиальных колебаний.
Предельная частота (частота среза) (если таковая имеется) прямой, отраженной и проходящей волн зависит от ширины неоднородности. Например, ширина неоднородности, близкой к цилиндрической геометрии, может быть оценена аналитически по частоте среза, найденной из дисперсионного соотношения (см. Л.Ф.Лепендин. Акустика. М.: Высшая школа, 1978. 448 с. стр.330, уравнение (VI.2.13)) для задачи распространения нормальных волн в трубе. Фиг.6 иллюстрирует пример спектров отраженного сигнала и сигнала, который прошел сквозь неоднородность для изгибных мод; на фиг.6 показаны среда (вода) 2, неоднородность (гидрат) 4, источник 7, первый приемник 13, второй приемник 14.
Если среда 1 является текущей жидкостью, то ширина неоднородности внутри трубопровода может быть оценена на основании разницы давлений в жидкости до и после неоднородности. То же самое действительно, если среда 2 является жидкостью, и неоднородность находится снаружи трубопровода.
Во всех вышеописанных случаях отраженная, преломленная и проходящая волны могут включать объемные, головные волны и нормальные моды (волны).
Claims (19)
1. Способ определения местоположения и размеров неоднородных образований на стенках трубопровода, включающий излучение акустического сигнала звукового диапазона в стенку трубопровода, граничащую со средой, окружающей трубопровод или протекающей внутри трубопровода, регистрацию отраженных от неоднородного образования, преломленных и прошедших сквозь него звуковых волн и определение местоположения и размеров неоднородных образований на основе временного, амплитудного, частотного и скоростного анализа зарегистрированных волн.
2. Способ по п.1, в соответствии с которым о наличии неоднородного образования судят по наличию в принятом сигнале отраженной от него или преломленной и прошедшей сквозь нее волны, а о его местоположении судят по времени прихода отраженной волны.
3. Способ по п.1, в соответствии с которым длину неоднородного образования вдоль трубы определяют из разницы между временами прихода волны, отраженной от первой границы между средой и неоднородностью, и волны, отраженной от второй границы между неоднородностью и средой, фазовой компоненты сигнала и скорости среды.
4. Способ по п.1, в соответствии с которым ширину неоднородного образования определяют из соотношения между энергиями прямой, отраженной и преломленной волн.
5. Способ по п.1, в соответствии с которым длину и ширину неоднородного образования может быть определена по амплитудно-частотным спектрам измеренных прямой, отраженной от неоднородности и проходящей сквозь нее волн.
6. Способ по п.1, в соответствии с которым ширину неоднородного образования определяют по частоте среза прямой, отраженной и проходящей волн.
7. Способ по п.1, в соответствии с которым ширину неоднородного образования на внутренней поверхности трубы определяют по разнице давлений в протекающей внутри трубопровода среде до и после неоднородного образования.
8. Способ по п.1, в соответствии с которым ширину неоднородного образования на наружной поверхности трубы определяют по разнице давлений в протекающей снаружи трубопровода среде до и после неоднородного образования.
9. Способ по п.1 или 2, в соответствии с которым акустический сигнал излучают посредством по меньшей мере одного передающего преобразователя, расположенного на наружной поверхности трубопровода.
10. Способ по п.1, в соответствии с которым акустический сигнал излучают посредством по меньшей мере одного передающего преобразователя, расположенного на внутренней поверхности трубопровода.
11. Способ по п.1, в соответствии с которым прямые, отраженные и преломленные звуковые волны регистрируют посредством по меньшей мере одного приемного преобразователя, расположенного на наружной поверхности трубопровода.
12. Способ по п.1, в соответствии с которым прямые, отраженные и преломленные звуковые волны регистрируют посредством по меньшей мере одного приемного преобразователя, расположенного на внутренней поверхности трубопровода.
13. Способ по п.9 или 10, в соответствии с которым передающий преобразователь одновременно является приемным преобразователем.
14. Спосб по п.9 или 10, в соответствии с которым передающий преобразователь является пьезоэлектрическим, магнитострикционным, механическим, электрическим, электромагнитным.
15. Способ по п.11 или 12, в соответствии с которым приемный преобразователь является пьезоэлектрическим, магнитострикционным, механическим, электрическим, электромагнитным.
16. Способ по п.1, в соответствии с которым зарегистрированные акустические сигналы передают на обработку посредством проводных методов.
17. Способ по п.16, в соответствии с которым передачу зарегистрированных сигналов осуществляют посредством электрических кабелей.
18. Способ по п.16, в соответствии с которым передачу зарегистрированных сигналов осуществляют посредством оптических кабелей.
19. Способ по п.1, в соответствии с которым зарегистрированные акустические сигналы передают на обработку посредством беспроводных методов.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011148389/28A RU2486503C1 (ru) | 2011-11-29 | 2011-11-29 | Способ определения местоположения и размеров неоднородных образований на стенках трубопровода |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011148389/28A RU2486503C1 (ru) | 2011-11-29 | 2011-11-29 | Способ определения местоположения и размеров неоднородных образований на стенках трубопровода |
Publications (2)
Publication Number | Publication Date |
---|---|
RU2011148389A RU2011148389A (ru) | 2013-06-10 |
RU2486503C1 true RU2486503C1 (ru) | 2013-06-27 |
Family
ID=48702354
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2011148389/28A RU2486503C1 (ru) | 2011-11-29 | 2011-11-29 | Способ определения местоположения и размеров неоднородных образований на стенках трубопровода |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2486503C1 (ru) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3810384A (en) * | 1971-02-01 | 1974-05-14 | D Evans | Ultrasonic pipeline inspection device |
US5587534A (en) * | 1994-10-28 | 1996-12-24 | The United States Of America As Represented By The Secretary Of Commerce | Wall thickness and flow detection apparatus and method for gas pipelines |
RU2089896C1 (ru) * | 1994-05-24 | 1997-09-10 | Николай Николаевич Горохов | Способ исследования дефектов трубопровода и устройство для его осуществления |
RU2139468C1 (ru) * | 1998-08-04 | 1999-10-10 | Черняев Константин Валерьевич | Устройство для измерения и неразрушающего контроля материала трубопровода |
RU2148808C1 (ru) * | 1999-06-24 | 2000-05-10 | Власов Анатолий Николаевич | Способ внутритрубной дефектоскопии магистральных трубопроводов |
RU2153163C1 (ru) * | 1999-11-29 | 2000-07-20 | Долгих Владимир Иванович | Способ внутритрубной ультразвуковой диагностики состояния трубопровода |
RU2212660C1 (ru) * | 2001-12-25 | 2003-09-20 | ЗАО "Нефтегазкомплектсервис" | Способ внутритрубного ультразвукового контроля |
RU2344338C1 (ru) * | 2007-05-16 | 2009-01-20 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) | Способ определения толщины отложений на внутренней поверхности трубопроводов |
-
2011
- 2011-11-29 RU RU2011148389/28A patent/RU2486503C1/ru not_active IP Right Cessation
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3810384A (en) * | 1971-02-01 | 1974-05-14 | D Evans | Ultrasonic pipeline inspection device |
RU2089896C1 (ru) * | 1994-05-24 | 1997-09-10 | Николай Николаевич Горохов | Способ исследования дефектов трубопровода и устройство для его осуществления |
US5587534A (en) * | 1994-10-28 | 1996-12-24 | The United States Of America As Represented By The Secretary Of Commerce | Wall thickness and flow detection apparatus and method for gas pipelines |
RU2139468C1 (ru) * | 1998-08-04 | 1999-10-10 | Черняев Константин Валерьевич | Устройство для измерения и неразрушающего контроля материала трубопровода |
RU2148808C1 (ru) * | 1999-06-24 | 2000-05-10 | Власов Анатолий Николаевич | Способ внутритрубной дефектоскопии магистральных трубопроводов |
RU2153163C1 (ru) * | 1999-11-29 | 2000-07-20 | Долгих Владимир Иванович | Способ внутритрубной ультразвуковой диагностики состояния трубопровода |
RU2212660C1 (ru) * | 2001-12-25 | 2003-09-20 | ЗАО "Нефтегазкомплектсервис" | Способ внутритрубного ультразвукового контроля |
RU2344338C1 (ru) * | 2007-05-16 | 2009-01-20 | Государственное Образовательное Учреждение Высшего Профессионального Образования "Дагестанский Государственный Технический Университет" (Дгту) | Способ определения толщины отложений на внутренней поверхности трубопроводов |
Also Published As
Publication number | Publication date |
---|---|
RU2011148389A (ru) | 2013-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2485388C2 (ru) | Устройство и блок датчиков для контроля трубопровода с использованием ультразвуковых волн двух разных типов | |
US10473624B2 (en) | Shear wave sensors for acoustic emission and hybrid guided wave testing | |
US10253615B2 (en) | Method and a system for ultrasonic inspection of well bores | |
JPH07318336A (ja) | パイプラインを超音波で検査するための方法及び装置 | |
US20090231954A1 (en) | Micro-Annulus Detection Using Lamb Waves | |
CN107430096B (zh) | 用于检查管道的装置和方法 | |
US10585069B2 (en) | Detection, monitoring, and determination of location of changes in metallic structures using multimode acoustic signals | |
US11143016B2 (en) | Method for evaluating a material on a remote side of a partition using ultrasonic measurements | |
EP2195611A1 (en) | Acoustic thickness measurements using gas as a coupling medium | |
Cawley | Guided waves in long range nondestructive testing and structural health monitoring: Principles, history of applications and prospects | |
CN112154324B (zh) | 使用多模声学信号来检测、监控和确定金属结构中变化的位置 | |
EP3530875A1 (en) | Method and system of evaluating cement bonds through tubing | |
GB2533378B (en) | Plug integrity evaluation method | |
Klieber et al. | Visualization of leaky ultrasonic Lamb wave experiments in multilayer structures | |
RU2486503C1 (ru) | Способ определения местоположения и размеров неоднородных образований на стенках трубопровода | |
KR101826917B1 (ko) | 다중 채널 초음파를 이용한 장거리 배관 진단 방법 | |
KR100966543B1 (ko) | 유도 초음파를 이용한 배관 내부 침적층 평가 장치 | |
EP4086620A1 (en) | Method and device for checking the wall of a pipeline for flaws | |
Singh et al. | Guided Wave Inspection Using Magnetostrictive Principle For Cement Coated Pipe Lines And Rundown Pipe Lines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | The patent is invalid due to non-payment of fees |
Effective date: 20191130 |