RU2485550C1 - Устройство для измерения инфразвуковых колебаний среды - Google Patents

Устройство для измерения инфразвуковых колебаний среды Download PDF

Info

Publication number
RU2485550C1
RU2485550C1 RU2011153800/28A RU2011153800A RU2485550C1 RU 2485550 C1 RU2485550 C1 RU 2485550C1 RU 2011153800/28 A RU2011153800/28 A RU 2011153800/28A RU 2011153800 A RU2011153800 A RU 2011153800A RU 2485550 C1 RU2485550 C1 RU 2485550C1
Authority
RU
Russia
Prior art keywords
demodulator
sensing element
converter
analog
sensor
Prior art date
Application number
RU2011153800/28A
Other languages
English (en)
Inventor
Анатолий Константинович Барышников
Original Assignee
Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА") filed Critical Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП "ВНИИА")
Priority to RU2011153800/28A priority Critical patent/RU2485550C1/ru
Application granted granted Critical
Publication of RU2485550C1 publication Critical patent/RU2485550C1/ru

Links

Images

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)

Abstract

Изобретение относится к измерительной технике и может быть использовано для измерения инфразвуковых колебаний газообразной или жидкой среды. Сущность: устройство содержит последовательно соединенные чувствительный элемент (2), датчик перемещения (3) чувствительного элемента, полосовой усилитель (4) и демодулятор (5), подключенный к аналоговому выходу (6) устройства. К датчику перемещения (3) чувствительного элемента и демодулятору (5) подключен генератор (7). Чувствительный элемент (2) связан с окружающей средой и средой внутри корпуса (1). В устройство введены последовательно соединенные АЦП (8), микропроцессор (9) с цифровым портом (10), ЦАП (11), ключ (12), сумматор (13), усилитель (14) и преобразователь (15) электрического сигнала в механические колебания, связанный с чувствительным элементом. К демодулятору (5) и к сумматору (13) подключен фильтр (16). Вход АЦП (8) подключен к демодулятору (5), а ключ (12) управляющим входом подключен к микропроцессору (9). Технический результат: повышение точности измерения. 1 з.п. ф-лы, 2 ил.

Description

Изобретение относится к измерительной технике, в частности к области измерения инфразвуковых колебаний газообразной или жидкой среды.
Известно устройство для измерения инфразвуковых колебаний среды, содержащее корпус и чувствительный элемент, связанный с окружающей средой и средой внутри корпуса [1].
Наиболее близким техническим решением к предлагаемому (прототипом) является устройство для измерения инфразвуковых колебаний среды, содержащее корпус, чувствительный элемент, связанный с окружающей средой и средой внутри корпуса, и последовательно соединенные чувствительный элемент, датчик перемещения чувствительного элемента, полосовой усилитель и демодулятор, подключенный к аналоговому выходу устройства, а также генератор, подключенный к датчику перемещения чувствительного элемента и демодулятору [2].
Недостатком прототипа является то, что устройство не обеспечивает требуемой точности измерений из-за недостаточного динамического диапазона и отсутствия калибровки.
Техническим результатом, обеспечиваемым заявленным изобретением, является повышение точности измерения.
Технический результат достигается тем, что устройство для измерения инфразвуковых колебаний среды, содержащее корпус, чувствительный элемент, связанный с окружающей средой и средой внутри корпуса, последовательно соединенные чувствительный элемент, датчик перемещения чувствительного элемента, полосовой усилитель и демодулятор, подключенный к аналоговому выходу устройства, а также генератор, подключенный к датчику перемещения чувствительного элемента и демодулятору, дополнительно содержит последовательно соединенные аналого-цифровой преобразователь, микропроцессор с цифровым портом, цифроаналоговый преобразователь, ключ, сумматор, усилитель и преобразователь электрического сигнала в механические колебания, связанный с чувствительным элементом, а также фильтр, подключенный входом к демодулятору, а выходом - ко второму входу сумматора, причем вход аналого-цифрового преобразователя подключен к демодулятору, а управляющим входом ключ подключен к микропроцессору.
Технический результат достигается также тем, что преобразователь электрического сигнала в механические колебания выполнен в виде электромагнита, чувствительный элемент выполнен в виде подвижной мембраны из магнитного материала, являющейся одним из электродов емкостного датчика или связанной с первым электродом емкостного датчика, причем второй, неподвижный электрод емкостного датчика связан с корпусом и выполнен из немагнитного материала.
На фиг.1 представлено устройство, обеспечивающее требуемый технический результат.
Принятые обозначения: 1 - корпус; 2 - чувствительный элемент; 3 - датчик; 4 - полосовой усилитель; 5 - демодулятор; 6 - аналоговый выход устройства; 7 - генератор; 8 - аналого-цифровой преобразователь; 9 - микропроцессор; 10 - цифровой порт микропроцессора; 11 - цифроаналоговый преобразователь; 12 - ключ; 13 - сумматор; 14 - усилитель; 15 - преобразователь электрического сигнала в механические колебания; 16 - фильтр.
Устройство, представленное на фиг.1, содержит корпус 1, чувствительный элемент 2, связанный с окружающей средой и средой внутри корпуса 1, последовательно соединенные чувствительный элемент 2, датчик 3 перемещения чувствительного элемента 2, полосовой усилитель 4 и демодулятор 5, подключенный к аналоговому выходу 6 устройства, а также генератор 7, подключенный к датчику 3 перемещения чувствительного элемента 2 и демодулятору 5, последовательно соединенные аналого-цифровой преобразователь 8, микропроцессор 9 с цифровым портом 10, цифроаналоговый преобразователь 11, ключ 12, сумматор 13, усилитель 14 и преобразователь 15 электрического сигнала в механические колебания, связанный с чувствительным элементом 2, а также фильтр 16, подключенный входом к демодулятору 5, а выходом - ко второму входу сумматора 13, причем вход аналого-цифрового преобразователя подключен к демодулятору 5, а управляющим входом ключ 12 подключен к микропроцессору 9.
На фиг.2 представлен один из возможных примеров реализации устройства с емкостным датчиком 3 перемещения чувствительного элемента 2 (мембраны) и электромагнитным преобразователем 15 электрического сигнала в механические колебания мембраны 2, выполненной из магнитного материала и используемой в качестве первого электрода емкостного датчика 3 (в другом варианте исполнения первый электрод емкостного датчика может быть изолирован от мембраны и наклеен на нее, либо связан с мембраной промежуточным звеном). Второй электрод емкостного датчика 3 выполнен из немагнитного материала и неподвижен, связан механически с корпусом и изолирован от него, или в качестве второго электрода может быть использован корпус или другие детали конструкции.
Устройство, представленное на фиг.1, работает следующим образом. Чувствительный элемент 2 закреплен в корпусе 1 между окружающей средой и корпусом, содержащим опорную среду, так, что изменения давления окружающей среды приводят к смещению чувствительного элемента 2, в качестве которого могут быть использованы мембрана, сильфон или пластинка на подвесе. Смещение чувствительного элемента 2 относительно нейтрального положения приводит к изменению параметра (амплитуда, частота, фаза, длительность импульса) электрического сигнала на выходе датчика 3, на который электрический сигнал поступает от генератора 7. С выхода датчика 3 сигнал поступает через полосовой усилитель 4 на демодулятор 5, на который также подается опорный сигнал от генератора 7, благодаря чему на выходе демодулятора 5, подключенном к аналоговому выходу 6 устройства, формируется аналоговый сигнал, амплитуда которого зависит от смещения чувствительного элемента 2. С выхода демодулятора 5 аналоговый сигнал поступает на фильтр 16, формирующий требуемую частотную характеристику устройства и далее через сумматор 13 поступает на усилитель 14, обеспечивающий требуемую амплитуду сигнала для работы преобразователя 15 электрического сигнала в механические колебания. Преобразователь 15 электрического сигнала в механические колебания связан с чувствительным элементом 2 механически или воздействует на чувствительный элемент 2 через среду, вызывая его перемещения. Таким образом осуществляется отрицательная обратная связь, уменьшающая перемещение чувствительного элемента 2, увеличивающая динамический диапазон устройства и расширяющая частотный диапазон. Это повышает точность измерения в более широком диапазоне амплитуд входных инфразвуковых сигналов. С выхода демодулятора аналоговая информация поступает на аналого-цифровой преобразователь 8 и далее на микропроцессор 9, реализующий обмен с пользователем с помощью цифрового порта 10. Кроме того, для повышения точности измерений предусмотрена калибровка устройства эталонными синусоидальными инфразвуковыми сигналами. Для этого в памяти микропроцессора 9 размещен массив чисел, например цифровой образ синусоиды. При поступлении от пользователя через цифровой порт 10 команды «калибровка», содержащей задание амплитуды и частоты, числа цифрового массива умножаются на коэффициент, соответствующий заданной амплитуде и массив чисел выдается в цифроаналоговый преобразователь 11 с заданной частотой. При подаче от микропроцессора сигнала на управляющий вход ключа 12, ключ замыкается и подает калибровочный синусоидальный сигнал, сформированный на выходе цифроаналогового преобразователя 11, через сумматор 13 и усилитель 14 на преобразователь 15 электрического сигнала в механические колебания, формирующий эталонные синусоидальные инфразвуковые сигналы.
При изменении амплитуды и частоты калибровочных сигналов по напряжению на аналоговом выходе 6, известным характеристикам звеньев и известному напряжению и частоте калибровки проводится расчет амплитудной и амплитудно-частотной характеристик устройства.
Преобразователь 15 может быть установлен также с другой стороны чувствительного элемента 2, или на корпусе, или на деталях конструкции.
Устройство, представленное на фиг.2, работает следующим образом.
Смещение чувствительного элемента 2 (например, мембраны) относительно неподвижного электрода датчика 3 приводит к изменению емкости датчика и появлению сигнала на аналоговом выходе устройства. Усиленный сигнал с аналогового выхода поступает на преобразователь 15 электрического сигнала в механические колебания, выполненный в виде электромагнита, перемещающего мембрану (чувствительный элемент 2). Таким образом осуществляется отрицательная обратная связь, уменьшающая перемещение чувствительного элемента 2, увеличивающая динамический диапазон устройства и расширяющая частотный диапазон.
Источники информации
1. К.В.Кислов, Ю.А.Колесников, А.Ю.Марченков, Ю.О.Старовойт, Микробарометр, Авторское свидетельство SU 1769172 A1, G01V 1/16, G01L 23/00, 1990.
2. Микробарометр MB 2000, Техническое описание, Microbarometre MB 2000, Technical manual, Departement Analyse et Surveillance de L'Environnement (DASE), 1998.

Claims (2)

1. Устройство для измерения инфразвуковых колебаний среды, содержащее корпус, чувствительный элемент, связанный с окружающей средой и средой внутри корпуса, последовательно соединенные чувствительный элемент, датчик перемещения чувствительного элемента, полосовой усилитель и демодулятор, подключенный к аналоговому выходу устройства, а также генератор, подключенный к датчику перемещения чувствительного элемента и демодулятору, отличающееся тем, что дополнительно содержит последовательно соединенные аналого-цифровой преобразователь, микропроцессор с цифровым портом, цифроаналоговый преобразователь, ключ, сумматор, усилитель и преобразователь электрического сигнала в механические колебания, связанный с чувствительным элементом, а также фильтр, подключенный входом к демодулятору, а выходом - ко второму входу сумматора, причем вход аналого-цифрового преобразователя подключен к демодулятору, а управляющим входом ключ подключен к микропроцессору.
2. Устройство по п.1, отличающееся тем, что преобразователь электрического сигнала в механические колебания выполнен в виде электромагнита, чувствительный элемент выполнен в виде подвижной мембраны из магнитного материала, являющейся одним из электродов емкостного датчика или связанной с первым электродом емкостного датчика, причем второй, неподвижный электрод емкостного датчика, связан с корпусом и выполнен из немагнитного материала.
RU2011153800/28A 2011-12-28 2011-12-28 Устройство для измерения инфразвуковых колебаний среды RU2485550C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011153800/28A RU2485550C1 (ru) 2011-12-28 2011-12-28 Устройство для измерения инфразвуковых колебаний среды

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011153800/28A RU2485550C1 (ru) 2011-12-28 2011-12-28 Устройство для измерения инфразвуковых колебаний среды

Publications (1)

Publication Number Publication Date
RU2485550C1 true RU2485550C1 (ru) 2013-06-20

Family

ID=48786482

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011153800/28A RU2485550C1 (ru) 2011-12-28 2011-12-28 Устройство для измерения инфразвуковых колебаний среды

Country Status (1)

Country Link
RU (1) RU2485550C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717263C1 (ru) * 2019-06-13 2020-03-19 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Устройство для измерения инфразвуковых колебаний среды
RU2738765C1 (ru) * 2020-03-12 2020-12-16 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Устройство для измерения инфразвуковых колебаний среды
RU2738766C1 (ru) * 2020-03-12 2020-12-16 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Устройство для измерения инфразвуковых колебаний среды
RU2774291C1 (ru) * 2021-12-28 2022-06-16 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП ВНИИА") Устройство для измерения инфразвуковых колебаний среды

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2128850C1 (ru) * 1998-05-14 1999-04-10 Акционерное общество закрытого типа "АНЧАР" Трехкомпонентный приемник акустических колебаний
RU53459U1 (ru) * 2005-05-31 2006-05-10 Институт физической химии и электрохимии имени А.Н. Фрумкина Приемник акустических колебаний
RU2300122C1 (ru) * 2005-11-14 2007-05-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт импульсной техники" (ФГУП НИИИТ) Способ дистанционного определения параметров инфразвукового сигнала вблизи неопознанного источника сигнала

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2128850C1 (ru) * 1998-05-14 1999-04-10 Акционерное общество закрытого типа "АНЧАР" Трехкомпонентный приемник акустических колебаний
RU53459U1 (ru) * 2005-05-31 2006-05-10 Институт физической химии и электрохимии имени А.Н. Фрумкина Приемник акустических колебаний
RU2300122C1 (ru) * 2005-11-14 2007-05-27 Федеральное государственное унитарное предприятие "Научно-исследовательский институт импульсной техники" (ФГУП НИИИТ) Способ дистанционного определения параметров инфразвукового сигнала вблизи неопознанного источника сигнала

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2717263C1 (ru) * 2019-06-13 2020-03-19 Федеральное Государственное Унитарное Предприятие "Всероссийский Научно-Исследовательский Институт Автоматики Им.Н.Л.Духова" (Фгуп "Внииа") Устройство для измерения инфразвуковых колебаний среды
RU2738765C1 (ru) * 2020-03-12 2020-12-16 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Устройство для измерения инфразвуковых колебаний среды
RU2738766C1 (ru) * 2020-03-12 2020-12-16 Федеральное государственное унитарное предприятие «Всероссийский научно-исследовательский институт автоматики им.Н.Л.Духова» (ФГУП «ВНИИА») Устройство для измерения инфразвуковых колебаний среды
RU2774291C1 (ru) * 2021-12-28 2022-06-16 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова" (ФГУП ВНИИА") Устройство для измерения инфразвуковых колебаний среды

Similar Documents

Publication Publication Date Title
AU730847B2 (en) Impedance detection apparatus and method
AU729354B2 (en) Impedance-to-voltage converter
JP3578774B2 (ja) 容量性圧力感知方法及び装置
US8516894B2 (en) Electronic circuit for controlling a capacitive pressure sensor and capacitive pressure sensor system
CN114422923B (zh) 谐振式mems麦克风、声学成像仪和光声光谱检测仪
US20070080695A1 (en) Testing system and method for a MEMS sensor
US4738325A (en) Hall effect weight transducer
RU2485550C1 (ru) Устройство для измерения инфразвуковых колебаний среды
CN104781766A (zh) 对物体的触敏表面上的至少一个接触进行检测和定位的系统和方法
US3456508A (en) Vibrating diaphragm pressure sensor apparatus
RU2485455C1 (ru) Устройство для измерения инфразвуковых колебаний среды
Ponceau et al. Low-noise broadband microbarometers
JP4422066B2 (ja) 膜スチフネス測定装置および膜スチフネス測定方法
RU114172U1 (ru) Устройство для измерения инфразвуковых колебаний среды
CN104457967A (zh) 基于逆压电效应的水声传感器声压灵敏度测试方法及装置
Kisić et al. Performance analysis of a flexible polyimide based device for displacement sensing
Umapathy et al. Piezoelectric based resonance displacement sensor
US20050257598A1 (en) Device for calibrating a pressure sensor, in particular an infrasound pressure sensor
Esmaili et al. Liquid level measurement through capacitive pressure sensor
RU114523U1 (ru) Устройство для измерения инфразвуковых колебаний среды
CN111025381A (zh) 一种基于石墨烯的压阻地震检波器
Radcliffe et al. A novel design of a feedback-controlled optical microphone for aeroacoustics research
EP1301766A1 (en) Pressure transducer
RU2738765C1 (ru) Устройство для измерения инфразвуковых колебаний среды
JP2015175714A (ja) 超音波装置

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20201229