RU2483315C1 - Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов - Google Patents

Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов Download PDF

Info

Publication number
RU2483315C1
RU2483315C1 RU2011153348/28A RU2011153348A RU2483315C1 RU 2483315 C1 RU2483315 C1 RU 2483315C1 RU 2011153348/28 A RU2011153348/28 A RU 2011153348/28A RU 2011153348 A RU2011153348 A RU 2011153348A RU 2483315 C1 RU2483315 C1 RU 2483315C1
Authority
RU
Russia
Prior art keywords
phase
voltage
intensity
partial discharges
polymer insulators
Prior art date
Application number
RU2011153348/28A
Other languages
English (en)
Inventor
Вадим Алексеевич Голенищев-Кутузов
Александр Вадимович Голенищев-Кутузов
Леонид Иванович Евдокимов
Антон Юрьевич Черномашенцев
Original Assignee
Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") filed Critical Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ")
Priority to RU2011153348/28A priority Critical patent/RU2483315C1/ru
Application granted granted Critical
Publication of RU2483315C1 publication Critical patent/RU2483315C1/ru

Links

Images

Abstract

Изобретение относится к области электроизмерительной. Осуществляют пассивный прием электромагнитным и акустическим приемниками одновременно электромагнитного и акустического излучений от частичных разрядов, индикацию и совместную компьютерную обработку сигналов, согласно предлагаемому изобретению совместную компьютерную обработку сигналов осуществляют путем определения в каждом из дискретных интервалов фазового напряжения средних значений числа и интенсивности импульсов реального заряда, которые превышают допустимый порог для возникновения дефектов или их развития, при этом вначале электромагнитный и акустический приемники предварительно градуируют по чувствительности с учетом расстояния от источника измерения, затем для каждого типа полимерных изоляторов контактным способом определяют предельные значения интенсивности и числа частичных разрядов, характеризующие дефектное состояние высоковольтных полимерных изоляторов, далее регистрируют электромагнитные и акустические сигналы излучения от частичных разрядов, синхронизированные с фазой высокого напряжения, накапливают их по узким фазовым интервалам, затем это фазовое распределение числа импульсов и интенсивности (заряда) сравнивают с ранее записанным распределением аналогичных сигналов для эталонного полимерного изолятора, выделяют сигналы, превышающие уровень, безопасный для нормального функционирования полимерных изоляторов, а о состоянии высоковольтных полимерных изоляторов судят по трем диагностическим признакам, отличающим исправные полимерные изоляторы от дефектных: повышение числа частичных разрядов и их интенсивности за дискретный фазовый интервал; наличие мощных частичных разрядов, превышающих по интенсивности средние значения за фазовый интервал; сдвиг фазовых интервалов числа частичных разрядов с наибольшими интенсивностями. Технический результат заключается в возможности определения места возникновения дефекта. 4 з.п. ф-лы, 3 ил.

Description

Изобретение относиться к области электроизмерительной техники и может быть использовано для дистанционного контроля рабочего состояния высоковольтных полимерных изоляторов на основе измерения и анализа наборов характеристик частичных разрядов (ЧР).
Известны способы бесконтактной дистанционной диагностики состояния высоковольтных изоляторов путем измерения характеристик импульсов частичных разрядов с помощью приема электромагнитного излучения (патенты РФ №№2058559, 2359280, 2365928) или акустического излучения (патент США №4439723, патент РФ №2187438; В.П.Вдовико «Частичные разряды в диагностировании высоковольтного оборудования». Новосибирск, наука 2007). Особенностью этих способов является обработка сигналов частичных разрядов путем подсчета среднего количества импульсов и их интенсивности за определенные промежутки времени, а также изучение формы спектра отдельных частичных разрядов.
Известен способ дистанционной акустоэлектромагнитной диагностики состояния линейной изоляции контактной сети переменного тока железнодорожного транспорта посредством совместной регистрации акустического и электромагнитного излучения частичных разрядов, возникающих в изоляторах контактной сети, при этом дистанционно выявляются гирлянды с неисправными изоляторами по таким параметрам как число импульсов частичных разрядов и интенсивность их излучения с одновременным анализом спектральных характеристик регистрируемого излучения в частотном диапазоне до 200 МГц.
Недостатком известных способов является отсутствие реальной оценки интенсивности частичных разрядов (кажущегося заряда по ГОСТу 20074-83), поскольку в упомянутом ГОСТе метод расчета интенсивности справедлив только для контактного метода измерения характеристик частичных разрядов. До настоящего времени, как следует из проработанных нами источников информации, не предложено каких-либо способов определения соотношения между сигналами ЧР и реальным зарядом на дефекте, поскольку при электромагнитном дистанционном способе интенсивность сигналов, принимаемых антенной приемника, зависит от многих факторов: расстояние от изолятора, размер дефекта, фаза переменного напряжения.
Полимерные высоковольтные изоляторы имеют ряд существенных особенностей по сравнению с высоковольтными фарфоровыми изоляторами. Если в керамических изоляторах, как правило, сами частичные разряды не влияют на дальнейшее развитие дефектов, то для полимерных изоляторов характерно воздействие частичных разрядов, начиная с определенного уровня, на развитие дефекта, а следовательно, и на ухудшение рабочего состояния изолятора.
Причем как показали многочисленные эксперименты, в полимерных изоляторах интенсивность разрядов различна для дефектов, возникающих в стержне и внешней оболочке, поскольку они изготавливаются из различных по химическому составу и технологиям материалов. Также интенсивности частичных разрядов отличаются для различного типа изоляторов. Поэтому ранее предложенные дистанционные способы с использованием электромагнитного и акустического излучений с последующим анализом частоты следования импульсов ЧР и оценкой спектра отдельных импульсов без привязки параметров ЧР к фазе переменного напряжения малоинформативны для диагностики полимерных изоляторов.
Наиболее близким аналогом является способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов посредством совместной регистрации акустического и электромагнитного излучения частичных разрядов, возникающих в изоляторах, а оценка рабочего состояния выполняется по таким параметрам как число и интенсивность излучения (Голенищев-Кутузов А.В., Голенищев-Кутузов В.А., Маковеев А.А. «Разработка методики исследований и программного обеспечения контроля процессов пробоя высоковольтных изоляторов из полимерных материалов», IX Симпозиум «Электротехника 2030», доклад 4.40, 29-31 мая 2007 года).
Однако этот способ дистанционной диагностики не позволяет определять реальную величину частичного разряда и не учитывает процессы, приводящие к понижению изолирующих свойств.
Задачей предлагаемого изобретения является создание способа бесконтактной дистанционной диагностики и локации дефектов в высоковольтных полимерных изоляторах, обеспечивающего измерение интенсивности и числа частичных разрядов за определенные дискретные фазовые интервалы высокого напряжения, а также места их возникновения.
Технический результат достигается тем, что в способе бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов, при котором осуществляют пассивный прием электромагнитным и акустическим приемниками одновременно электромагнитного и акустического излучений от частичных разрядов, индикацию и совместную компьютерную обработку сигналов, согласно предлагаемому изобретению совместную компьютерную обработку сигналов осуществляют путем определения в каждом из дискретных интервалов фазового напряжения средних значений числа и интенсивности импульсов реального заряда, которые превышают допустимый порог для возникновения дефектов или их развития, при этом вначале электромагнитный и акустический приемники предварительно градуируют по чувствительности с учетом расстояния от источника измерения, затем для каждого типа полимерных изоляторов контактным способом определяют предельные значения интенсивности и числа частичных разрядов, характеризующие дефектное состояние высоковольтных полимерных изоляторов, далее регистрируют электромагнитные и акустические сигналы излучения от частичных разрядов, синхронизированные с фазой высокого напряжения, накапливают их по узким фазовым интервалам, затем это фазовое распределение числа импульсов и интенсивности сравнивают с ранее записанным распределением аналогичных сигналов для эталонного полимерного изолятора, выделяют сигналы, превышающие уровень, безопасный для нормального функционирования полимерных изоляторов, а о состоянии высоковольтных полимерных изоляторов судят по трем диагностическим признакам, отличающим исправные полимерные изоляторы от дефектных: повышение числа частичных разрядов и их интенсивности за дискретный фазовый интервал; наличие мощных частичных разрядов, превышающих по интенсивности средние значения за фазовый интервал; сдвиг фазовых интервалов числа частичных разрядов с наибольшими интенсивностями.
При этом осуществляют выделение одиночных, наиболее мощных, частичных разрядов с подачей информирующих сигналов об опасности для высоковольтной линии.
При этом сравнивают сдвиги фазовых интервалов, в которых число импульсов частичных разрядов и их суммарная интенсивность наиболее велика по сравнению с эталонным полимерным изолятором.
При этом определяют временные изменения фазового распределения интенсивности и числа импульсов в течение 5-10 часов через каждый час.
При этом определяют реальную интенсивность импульсов частичных разрядов путем расчета параметров электромагнитной антенны и расстояния между антенной и полимерным изолятором.
Таким образом, технический результат достигается тем, что для регистрации характеристик частичных разрядов используются два канала: электромагнитный и акустический. При этом сигналы частичных разрядов, детектируемых электромагнитным и акустическим антеннами, согласуются с фазой высокого напряжения и подсчет числа импульсов и их среднего значения интенсивности проводиться раздельно по каждому дискретному интервалу фазового напряжения. Кроме того, предусмотрено выделение одиночных наиболее мощных частичных разрядов с подачей информирующих сигналов об опасности для высоковольтной линии. Для определения конкретного значения фазы используется дополнительный электромагнитный датчик. По разности времени регистрации сигналов ЧР электромагнитным и акустическим датчиками определяют расстояние до изолятора, что необходимо для расчета затухания электромагнитного импульса на данной частоте (Щелкунов С.А., Фрис Г.Т. Антенны. Теория и практика. Сов. Радио М., 1955). Затем по параметрам антенны, величине затухания и интенсивности импульса на входе приемника рассчитывают по известным формулам (Г.А.Айзенберг, В.Г.Ямпольский «Антенны УКВ». М., 1977) значение реального заряда при частичном разряде. Кроме того, использование двух сигналов позволяет более точно определить место дефекта на контролируемом изоляторе и уменьшить одновременное влияние электромагнитных и акустических шумов.
Определение числа импульсов и значений их интенсивности (в единицах заряда) частичных разрядов, превышающих допустимый безопасный уровень эксплуатации для каждого типа полимерных изоляторов, выполняется путем сравнения с подобными характеристиками полимерного изолятора того же типа, принятого за эталон.
Сущность изобретения поясняется чертежами, где на фиг.1 изображена принципиальная схема устройства для осуществления предлагаемого способа бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов, на фиг.2 представлены результаты обработки сигналов ЧР для полимерного изолятора марки ЛК 70/35: а) - исправного изолятора, б) - изолятора, содержащего дефект в виде пробоя стержня.
Цифрами на фиг.1 обозначены:
1 - узконаправленная электромагнитная антенна,
2 - узконаправленная акустическая антенна,
3 - широкополосный усилитель,
4 - широкополосный усилитель,
5 - аналогово-цифровой преобразователь,
6 - аналогово-цифровой преобразователь,
7 - устройство обработки сигналов с блоком отображения информации и блоком памяти (персональный компьютер),
8 - двухканальный осциллограф.
Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов осуществляют посредством следующих операций.
Используя узконаправленные электромагнитную (1) и акустическую (2) антенны (фиг.1), принимают сигналы частичных разрядов в виде электромагнитных и акустических импульсов, соответственно, усиливают их с помощью широкополосных усилителей (3, 4). Затем импульсы частичных разрядов поступают в аналого-цифровые преобразователи (5, 6) и далее поступают в устройство (7) обработки сигналов с блоком отображения информации и блоком памяти (персональный компьютер). Непосредственное отображение усиленных сигналов частичных разрядов осуществляется двухканальным осциллографом (8).
Электромагнитный и акустический приемники с антеннами 1 и 2 предварительно градуируют по чувствительности с учетом расстояния от источника измерения. Затем для каждого типа полимерных изоляторов контактным способом, согласно ГОСТ 20074-83, определяются предельные значения интенсивности и числа частичных разрядов, характеризующие дефектное состояние. Далее, используя узконаправленные антенны 1 и 2, регистрируют электромагнитные и акустические сигналы излучения от частичных разрядов, синхронизированные с фазой высокого напряжения, накапливают их по узким фазовым интервалам в блоке памяти (персональном компьютере).
Затем это фазовое распределение числа импульсов и интенсивности (заряда) сравнивают с ранее записанным распределением аналогичных сигналов для эталонного полимерного изолятора. Выделяют по определенной компьютерной программе сигналы, превышающие безопасный для нормального функционирования уровень, выявляют изоляторы с дефектами и определяют возможность их дальнейшего функционирования.
Важным обстоятельством для полимерных изоляторов являются контрольные измерения в течение 5-10 часов через каждый час для установления факта изменения характеристик ЧР в этот период, что свидетельствует об увеличении размеров дефектов.
Полученные во время проведения экспериментов результаты позволили разработать три диагностических признака, отличающих исправные полимерные изоляторы от дефектных:
повышение числа частичных разрядов и их интенсивности за дискретный фазовый интервал;
наличие мощных частичных разрядов, превышающих по интенсивности, средние значения за фазовый интервал;
сдвиг фазовых интервалов числа частичных разрядов с наибольшими интенсивностями.
В экспериментах использовалась активная электромагнитная антенна, приемник, узконаправленная акустическая антенна, персональный компьютер с установленным программным обеспечением NI LabView 8.2. Сигналы, поступаемые с датчиков, обрабатывались в компьютере с помощью виртуальных приборов в среде LabView. Виртуальный прибор записывает данные с электромагнитного и акустического датчиков и синхронизирующий сигнал сетевого напряжения. Программа обеспечивает запись порядка 900 периодов сетевого напряжения в течение 18 секунд, сохраняя данные в виде двух массивов: непосредственно массив с сигналами ЧР и массив синхронизирующего сетевого переменного напряжения. После записи массивов данных для всех изоляторов, участвующих в измерении, запускается программа обработки данных. В программе обработки реализован принцип амплитудно-фазовой регистрации ЧР, регистрируется каждый разряд, его амплитуда и фаза возникновения. В начале работы в программе необходимо задать шаг приращения амплитуды. Программа разбивает сигнал с датчиков на отдельные периоды, синхронизируя их с периодом питающего сетевого напряжения 50 Гц. Результатом работы программы является массив данных, в котором каждому периоду соответствует подмассив с амплитудой и фазой возникновения каждого ЧР. В дальнейшем эти данные используются для построения фазовых диаграмм распределения ЧР.
Проведенные эксперименты показали соответствие ЧР, измеряемых различными датчиками, по фазе возникновения и амплитуде импульса. Далее с помощью компьютера и виртуальных проборов, разработанных в среде LabView, производилось накопление и обработка сигналов ЧР. Разработанная система регистрации ЧР состоит из двух программ: программа записи массива данных и программы обработки и представления результатов измерения. Разработанная программа позволяет делать выборку по числу ЧР и их интенсивности в определенных фазовых интервалах.
Для обоснования диагностических признаков на фиг.2 представлены результаты обработки сигналов ЧР для изоляторов марки ЛК 70/35 исправного изолятора (а) и изолятора, содержащего дефект в виде пробоя стержня (б). Верхние графики на фиг.2 представляют собой фазовые распределения интенсивностей (в единицах реального заряда) одиночных ЧР, нижние графики - распределение интенсивности ЧР, усредненных по фазовым интервалам. По осям абсцисс (верхние строки) представлены значения фазовых интервалов (в градусах) и числа ЧР в каждом фазовом интервале (нижние строки). Масштаб для фиг.2а: 1 деление равно 100 пКл, для фиг.2б: 1 деление равно 1000 пКл. Фазовые интервалы для максимального числа импульсов и интенсивностей ЧР практически совпадают. Они соответствуют интервалам фазовых углов 60-70 градусов для положительной полуволны и 230-260 градусов для отрицательной (фиг.2а и 2б).
Таким образом, сигналы ЧР в дефектном полимерном изоляторе более чем в 5 раз превышают сигналы в исправном изоляторе, при одинаковой величине прикладываемого напряжения.
Распределение числа импульсов ЧР по фазовым интервалам, а также их интенсивность, определенная с помощью акустического датчика, полностью соответствует приведенным выше данным.
Как показали наши эксперименты на серии полимерных изоляторов, как относительно бездефектных, так и с разнообразными дефектами стержня и оболочки, разработанный способ позволяет определить дефектные изоляторы и места расположения дефектов.

Claims (5)

1. Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов, при котором осуществляют пассивный прием электромагнитным и акустическим приемниками одновременно электромагнитного и акустического излучений от частичных разрядов, индикацию и совместную компьютерную обработку сигналов, отличающийся тем, что совместную компьютерную обработку сигналов осуществляют путем определения в каждом из дискретных интервалов фазового напряжения средних значений числа и интенсивности импульсов реального заряда, которые превышают допустимый порог для возникновения дефектов или их развития, при этом вначале электромагнитный и акустический приемники предварительно градуируют по чувствительности с учетом расстояния от источника измерения, затем для каждого типа полимерных изоляторов контактным способом определяют предельные значения интенсивности и числа частичных разрядов, характеризующие дефектное состояние высоковольтных полимерных изоляторов, далее регистрируют электромагнитные и акустические сигналы излучения от частичных разрядов, синхронизированные с фазой высокого напряжения, накапливают их по узким фазовым интервалам, затем это фазовое распределение числа импульсов и интенсивности сравнивают с ранее записанным распределением аналогичных сигналов для эталонного полимерного изолятора, выделяют сигналы, превышающие уровень, безопасный для нормального функционирования полимерных изоляторов, а о состоянии высоковольтных полимерных изоляторов судят по трем диагностическим признакам, отличающим исправные полимерные изоляторы от дефектных: повышение числа частичных разрядов и их интенсивности за дискретный фазовый интервал; наличие мощных частичных разрядов, превышающих по интенсивности средние значения за фазовый интервал; сдвиг фазовых интервалов числа частичных разрядов с наибольшими интенсивностями.
2. Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов по п.1, отличающийся тем, что осуществляют выделение одиночных, наиболее мощных, частичных разрядов с подачей информирующих сигналов об опасности для высоковольтной линии.
3. Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов по п.1, отличающийся тем, что сравнивают сдвиги фазовых интервалов, в которых число импульсов частичных разрядов и их суммарная интенсивность наиболее велика по сравнению с эталонным полимерным изолятором.
4. Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов по п.1, отличающийся тем, что определяют временные изменения фазового распределения интенсивности и числа импульсов в течение 5-10 ч через каждый час.
5. Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов по п.1, отличающийся тем, что определяют реальную интенсивность импульсов частичных разрядов путем расчета параметров электромагнитной антенны и расстояния между антенной и полимерным изолятором.
RU2011153348/28A 2011-12-26 2011-12-26 Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов RU2483315C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011153348/28A RU2483315C1 (ru) 2011-12-26 2011-12-26 Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011153348/28A RU2483315C1 (ru) 2011-12-26 2011-12-26 Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов

Publications (1)

Publication Number Publication Date
RU2483315C1 true RU2483315C1 (ru) 2013-05-27

Family

ID=48792013

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011153348/28A RU2483315C1 (ru) 2011-12-26 2011-12-26 Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов

Country Status (1)

Country Link
RU (1) RU2483315C1 (ru)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542674C1 (ru) * 2013-09-12 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уральский государственный университет путей сообщения" (УрГУПС) Способ распознавания неисправного изолятора
RU2566391C1 (ru) * 2014-08-28 2015-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов
WO2018160924A1 (en) * 2017-03-02 2018-09-07 Rosemount Inc. Trending functions for partial discharge
RU2679759C1 (ru) * 2018-03-21 2019-02-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") Способ бесконтактной дистанционной диагностики состояния высоковольтных изоляторов
CN110827270A (zh) * 2019-11-12 2020-02-21 南方电网科学研究院有限责任公司 复合绝缘子缺陷诊断方法及系统
CN111160315A (zh) * 2020-01-03 2020-05-15 云南电网有限责任公司电力科学研究院 一种支柱绝缘子固有频带的获取方法及装置
RU2726305C1 (ru) * 2019-12-06 2020-07-13 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для диагностики состояния высоковольтных изоляторов
US10794736B2 (en) 2018-03-15 2020-10-06 Rosemount Inc. Elimination of floating potential when mounting wireless sensors to insulated conductors
US10833531B2 (en) 2018-10-02 2020-11-10 Rosemount Inc. Electric power generation or distribution asset monitoring
US11067639B2 (en) 2017-11-03 2021-07-20 Rosemount Inc. Trending functions for predicting the health of electric power assets
RU2753811C1 (ru) * 2020-04-29 2021-08-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ) Способ и устройство бесконтактного дистанционного контроля технического состояния высоковольтных линейных изоляторов воздушных линий электропередач
RU2755924C1 (ru) * 2020-08-27 2021-09-23 Общество С Ограниченной Ответственностью "Форэнерго-Инжиниринг" (Ооо "Форэнерго-Инжиниринг") Способ и устройство индикации электрического состояния полимерных изоляторов
US11181570B2 (en) 2018-06-15 2021-11-23 Rosemount Inc. Partial discharge synthesizer
US11313895B2 (en) 2019-09-24 2022-04-26 Rosemount Inc. Antenna connectivity with shielded twisted pair cable
RU219627U1 (ru) * 2023-02-21 2023-07-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" Устройство мониторинга технического состояния высоковольтных изоляторов с модулем регистрации частичных разрядов

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU74714U1 (ru) * 2008-02-29 2008-07-10 Закрытое акционерное общество-Научно-производственное объединение "Логотех" (ЗАО НПО "Логотех") Устройство для диагностики изоляторов электротехнического оборудования
RU2007133044A (ru) * 2007-09-03 2009-03-10 Казанский государственный энергетический университет (КГЭУ) (RU) Способ бесконтактного и дистанционного контроля состояния гирлянд изоляторов воздушных высоковольтных линий электропередачи
RU104728U1 (ru) * 2011-01-31 2011-05-20 Открытое Акционерное Общество "Научно-Технический Центр Электроэнергетики" (Оао "Нтц Электроэнергетики") Устройство акустико-эмиссионной диагностики фарфоровых изоляторов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2007133044A (ru) * 2007-09-03 2009-03-10 Казанский государственный энергетический университет (КГЭУ) (RU) Способ бесконтактного и дистанционного контроля состояния гирлянд изоляторов воздушных высоковольтных линий электропередачи
RU2359280C2 (ru) * 2007-09-03 2009-06-20 Государственное образовательное учреждение высшего профессионального образования " Казанский государственный энергетический университет (КГЭУ) Способ бесконтактного и дистанционного контроля состояния гирлянд изоляторов воздушных высоковольтных линий электропередачи
RU74714U1 (ru) * 2008-02-29 2008-07-10 Закрытое акционерное общество-Научно-производственное объединение "Логотех" (ЗАО НПО "Логотех") Устройство для диагностики изоляторов электротехнического оборудования
RU104728U1 (ru) * 2011-01-31 2011-05-20 Открытое Акционерное Общество "Научно-Технический Центр Электроэнергетики" (Оао "Нтц Электроэнергетики") Устройство акустико-эмиссионной диагностики фарфоровых изоляторов

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2542674C1 (ru) * 2013-09-12 2015-02-20 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уральский государственный университет путей сообщения" (УрГУПС) Способ распознавания неисправного изолятора
RU2566391C1 (ru) * 2014-08-28 2015-10-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Казанский государственный энергетический университет" (ФГБОУ ВПО "КГЭУ") Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов
WO2018160924A1 (en) * 2017-03-02 2018-09-07 Rosemount Inc. Trending functions for partial discharge
US11448682B2 (en) 2017-03-02 2022-09-20 Rosemount Inc. Trending functions for partial discharge
US11067639B2 (en) 2017-11-03 2021-07-20 Rosemount Inc. Trending functions for predicting the health of electric power assets
US10794736B2 (en) 2018-03-15 2020-10-06 Rosemount Inc. Elimination of floating potential when mounting wireless sensors to insulated conductors
RU2679759C1 (ru) * 2018-03-21 2019-02-12 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" (ФГБОУ ВО "КГЭУ") Способ бесконтактной дистанционной диагностики состояния высоковольтных изоляторов
US11181570B2 (en) 2018-06-15 2021-11-23 Rosemount Inc. Partial discharge synthesizer
US10833531B2 (en) 2018-10-02 2020-11-10 Rosemount Inc. Electric power generation or distribution asset monitoring
US11313895B2 (en) 2019-09-24 2022-04-26 Rosemount Inc. Antenna connectivity with shielded twisted pair cable
CN110827270A (zh) * 2019-11-12 2020-02-21 南方电网科学研究院有限责任公司 复合绝缘子缺陷诊断方法及系统
CN110827270B (zh) * 2019-11-12 2022-10-28 南方电网科学研究院有限责任公司 复合绝缘子缺陷诊断方法及系统
RU2726305C1 (ru) * 2019-12-06 2020-07-13 Федеральное государственное бюджетное учреждение науки Институт проблем управления им. В.А. Трапезникова Российской академии наук Устройство для диагностики состояния высоковольтных изоляторов
CN111160315A (zh) * 2020-01-03 2020-05-15 云南电网有限责任公司电力科学研究院 一种支柱绝缘子固有频带的获取方法及装置
CN111160315B (zh) * 2020-01-03 2023-05-05 云南电网有限责任公司电力科学研究院 一种支柱绝缘子固有频带的获取方法及装置
RU2753811C1 (ru) * 2020-04-29 2021-08-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский национальный исследовательский технический университет им. А.Н. Туполева - КАИ" (КНИТУ-КАИ) Способ и устройство бесконтактного дистанционного контроля технического состояния высоковольтных линейных изоляторов воздушных линий электропередач
RU2755924C1 (ru) * 2020-08-27 2021-09-23 Общество С Ограниченной Ответственностью "Форэнерго-Инжиниринг" (Ооо "Форэнерго-Инжиниринг") Способ и устройство индикации электрического состояния полимерных изоляторов
RU219627U1 (ru) * 2023-02-21 2023-07-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Казанский государственный энергетический университет" Устройство мониторинга технического состояния высоковольтных изоляторов с модулем регистрации частичных разрядов

Similar Documents

Publication Publication Date Title
RU2483315C1 (ru) Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов
US8008926B2 (en) UHF partial discharge and location measuring device for high-voltage power devices
CN103529128A (zh) 一种疲劳裂纹在线检测系统及检测方法
US8091427B2 (en) Nondestructive inspection apparatus and nondestructive inspection method using guided wave
CN102369448B (zh) 用于定位部分放电的设备与方法
KR101317476B1 (ko) 케이블 온라인 부분 방전 진단 시스템 및 방법
RU2566391C1 (ru) Способ бесконтактной дистанционной диагностики состояния высоковольтных полимерных изоляторов
Reid et al. Simultaneous measurement of partial discharge using TEV, IEC60270 and UHF techniques
CN203572806U (zh) 一种疲劳裂纹在线检测系统
CN108414908B (zh) 一种阴极保护绝缘测试仪及其测试方法
JP6633006B2 (ja) 部分放電監視装置および部分放電監視方法
CN109030932A (zh) 一种高压直流输电线路电压等级识别方法
CN102365555B (zh) 用于定位部分放电的设备与方法
JP6789872B2 (ja) 分析方法、分析装置、およびプログラム
CN103926494B (zh) 一种干扰源的确定方法及装置
KR101538999B1 (ko) 부분방전 진단장치
KR20120012103A (ko) 가스절연 개폐장치의 부분방전원 자동 위치 표시장치
JP2019039845A (ja) 部分放電診断装置および部分放電診断方法
JP6244043B2 (ja) 非接地電力線センサを用いた電圧測定方法及びシステム
Golenishchev-Kutuzov et al. Remote testing of high-voltage insulators
JP5377723B2 (ja) 状態判定装置及び方法
CN112816835A (zh) 基于电声联合检测信号传播时延补偿的局部放电定位方法
Coenen et al. Localization of PD sources inside transformers by acoustic sensor array and UHF measurements
KR101882945B1 (ko) 실시간 절연상태 점검 시스템.
CN105445553A (zh) 一种精确获取变压器50Hz处短路阻抗值的方法

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20141227