RU2483052C2 - Способ получения олигомеров высших линейных альфа-олефинов - Google Patents

Способ получения олигомеров высших линейных альфа-олефинов Download PDF

Info

Publication number
RU2483052C2
RU2483052C2 RU2011135117/04A RU2011135117A RU2483052C2 RU 2483052 C2 RU2483052 C2 RU 2483052C2 RU 2011135117/04 A RU2011135117/04 A RU 2011135117/04A RU 2011135117 A RU2011135117 A RU 2011135117A RU 2483052 C2 RU2483052 C2 RU 2483052C2
Authority
RU
Russia
Prior art keywords
olefins
zeolite
oligomers
oligomerization
ene
Prior art date
Application number
RU2011135117/04A
Other languages
English (en)
Other versions
RU2011135117A (ru
Inventor
Усеин Меметович Джемилев
Борис Иванович Кутепов
Нелля Геннадиевна Григорьева
Сергей Владимирович Бубённов
Михаил Леонардович Павлов
Альфира Наилевна Хазипова
Анастасия Анатольевна Маяк
Original Assignee
Учреждение Российской Академии Наук Институт Нефтехимии И Катализа Ран
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Учреждение Российской Академии Наук Институт Нефтехимии И Катализа Ран filed Critical Учреждение Российской Академии Наук Институт Нефтехимии И Катализа Ран
Priority to RU2011135117/04A priority Critical patent/RU2483052C2/ru
Publication of RU2011135117A publication Critical patent/RU2011135117A/ru
Application granted granted Critical
Publication of RU2483052C2 publication Critical patent/RU2483052C2/ru

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Изобретение относится к способу получения олигомеров высших линейных α-олефинов путем каталитической олигомеризации линейных α-олефинов С614. В качестве катализатора используют гранулированный без связующих веществ цеолит Y-БС в Н-форме в количестве 5-30% мас. по отношению к α-олефину. Реакцию проводят при 130-200°C без растворителя. Степень ионного обмена Na+ на Н+ в цеолите HY-БС составляет 0,4÷0,93. Способ позволяет: упростить олигомеризацию α-олефинов; снизить энерго- и материалоемкость процесса олигомеризации; синтезировать олигомеры α-олефинов, в составе которых присутствуют, в основном, соединения с алкилнафтеновой структурой; получить олигомеры с расширенным молекулярно-массовым распределением. 1 з.п. ф-лы, 2 ил., 2 табл.

Description

Изобретение относится к области нефтехимического синтеза, а именно к способу получения олигомеров высших линейных α-олефинов С614.
Олигомеры высших линейных α-олефинов широко используются в качестве основы для получения синтетических смазочных масел различного назначения [1. О.Н.Цветков. Поли-α-олефиновые масла: Химия, технология и применение. - М.: изд-во "Техника", ТУМА ГРУПП, 2006, 192 с.; 2. Патент US №4912280, 1990].
Известные промышленные технологии получения поли-α-олефинов базируются на использовании в качестве катализаторов хлорида алюминия и фторида бора или их комплексов с различными соединениями [1; 3. С.В.Котов, И.К.Моисеев, А.В.Шабанова. - Нефтехимия, 2003, Т.43, №5, с.323]. После отделения катализатора, включающего стадии нейтрализации и промывки, олигомеризат разделяют на отдельные фракции, которые затем гидрируют для получения стабильного к окислению продукта. Недостатками способов олигомеризации с использованием традиционных каталитических систем являются многостадийность, образование большого количества отходов и побочных продуктов (хлоридов или фторированных олигомеров), высокая токсичность и коррозионная активность катализаторов.
Среди гетерогенных катализаторов в олигомеризации α-олефинов с числом атомов углерода 6 и выше использовали фосфат бора, оксид бора на Al2O3,
Figure 00000001
[4. A.Tada, H.Suzuka, Y.Imizu. Chemistry letters, 1987, p.423-424]; гетерополикислоты, нанесенные на носители [5. П.С.Мамедова, Д.Б.Тагиев, М.К.Муншиева, С.М.Зульфугарова, Х.Т.Кахраманова. ЖПХ, т.69, №1, 1996, с.69-73]; фосфорную кислоту на носителе [6. Пат. US №6884914, 2005; 7. Amo de Klerk. Ind. Eng. Chem. Res., 45, 2006, p.578-584]; смешанные оксиды металлов NiO, SiO2, Al2O3, TiO, Na2O [8. Пат. US №5849972, 1998]; оксиды металлов VI группы (предпочтительно Cr) на широкопористом SiO2 [9. Пат. US №4827073, 1989]; модифицированные кислотные глины - монтмориллонит [10. Пат. US №5171909, 1992; 11. Пат. US №5202040, 1993; 12. John F.Knifton, John R.Sanderson. Catalysis Letters, 1994, 28, p.223-230] и бейделит [13. Jerome P.G.Pater, Pierre A.Jacobs, J.A.Martens. Journal of catalysis, 1998, 179, p.477-482]; аморфный гель оксидов кремния и алюминия с отношением SiO2/Al2O3 от 30 до 500 [14. Пат. US №5049536, 1991].
Примером успешного использования цеолитов в процессах олигомеризации олефинов является реализованный в промышленности процесс MOGD фирмы Mobil, предназначенный для получения полимердистиллята из легких олефинов С35. В качестве катализатора этого процесса используют цеолит ZSM-5 [15. Пат. US №4504693, 1983; 16. R.J.Guann, L.A.Green, S.A.Tabak, F.J.Krambeck. Ind. Eng. Chem. Res., 1988, 27, p.565]. В конце XX века начали активно вести исследования по олигомеризации высших α-олефинов в присутствии цеолитных катализаторов.
В работе [17. Пат. US №4417088, 1983; 18. A.Miller. Ind. Eng. Chem. Res., 1984, 23, p.118] олигомеризацию алкенов C8 и выше проводят в присутствии среднепористых цеолитов ZSM-5, ZSM-11 и некоторых других, модифицированных цинком для повышения их активности и стабильности. Для получения олигомеров с разветвленной структурой рекомендуется проводить реакции в жидкой фазе при повышенном давлении. Показано, что олигомеризация дец-1-ена в присутствии Zn-ZSM-5 (1% Zn) при 204°C и 26 атм проходит с образованием димеров (75-80%) и тримеров (11%). Конверсия дец-1-ена составляет 46%. При взаимодействии с катализатором (Zn-ZSM-5) смеси дец-1-ена и тетрадец-1-ена при 232°C и давлении 27,6 атм образуется смесь олигомеров С20, C24, С28. Конверсия олефинов составляет 30% (для C10), 20% (для С14). Фракцию с температурой кипения выше 329°C выделяли и после гидрирования получали продукт с температурой застывания -6,7°C и индексом вязкости 105.
Кроме цеолита ZSM-5 для олигомеризации олефинов C2-12 предложено использовать другие кристаллические алюмосиликаты, структура которых содержит 10-членные кислородные кольца: структурного типа TON (например, ZSM-22, Theta-1, NU-10), MTT (ZSM-23, EU-13 и др.), FER (ZSM-35, FU-9 и др.), AEL (например, SAPO-1) [19. Заявка US №2004/0030212 A1, 2004; 20. Пат. EP №2072484 A1].
Однако в работах [4; 12; 21. A. de Klerk. Ind. Eng. Chem. Res., 2005, 44, p.3887-3893] показано, что цеолит H-ZSM-5 проявляет низкую каталитическую активность при олигомеризации гекс-1-ена и более высокомолекулярных олефинов (дец-1-ена, тетрадец-1-ена). Более эффективны в этой реакции широкопористые цеолиты с 12-членными кольцами, такие как фожазит и морденит.
В патенте [22. Пат. US №4029719, 1977] для приготовления катализаторов олигомеризации линейных олефинов С624 использовали цеолиты, например цеолит X, модифицированный щелочными и щелочноземельными металлами или металлами VIII-группы и активированные затем путем их обработки органическими или неорганическими основаниями с последующим удалением этих соединений азотом при температуре от 250 до 450°C. Из приведенных в патенте примеров следует, что конверсия окт-1-ена в присутствии цеолита X, модифицированного катионами Ni, при 180°C составляет 12,8-27%. Продуктами реакции являются димеры окт-1-ена.
Недостатком данного способа олигомеризации является низкая активность цеолитного катализатора.
Для димеризации α-олефинов С424 предлагается использовать цеолиты структурного типа FAU (цеолиты Х и Y) в катион-декатионированной форме, модифицированные двух- или трехвалентными металлами (Fe, Cu, Co, Ni, La, Ca, Ba, Zn и др.) [23. Пат.US №4912280, 1990]. В олигомеризации тетрадецена-1 наиболее высокую активность проявили цеолиты, модифицированные солями Fe (конверсия α-олефина 55%) и La (конверсия - 51%). Самой низкой активностью обладали Ca - (конверсия - 20%) и Cu - форма (конверсия - 24%) цеолита Y. Продуктами реакции были, в основном, димеры (до 95%). Реакцию проводили при 180°C в течение 4 часов при массовом содержании катализатора, равном 4%.
Недостатком данного способа является низкая активность катализатора. В работе [24. N.G.Grigor'eva, S.V.Bubennov, B.I.Kutepov. Catalysis in Industry, 2011, V.3, №2, p.148-154] показано, что высокую активность в олигомеризации окт-1-ена проявляют цеолиты Y, Beta и ZSM-12, под действием которых конверсия олефина достигает 90-96%. Основными продуктами превращения окт-1-ена в присутствии цеолитов Y, Beta и ZSM-12 являются олигомеры, среди которых преобладают димеры. Наиболее селективно димеры октена образуются на цеолите ZSM-12 (селективность до 100% мас.). Недостатками данного способа является получение олигомеров с низкой молекулярной массой - в основном, димеров октена.
Активность, селективность и стабильность работы цеолита Y в олигомеризации a-олефинов зависят от условий реакции. При изучении олигомеризации гекс-1-ена в присутствии ультрастабильного цеолита Y (Si/Al=25) в различных растворителях в газовой, жидкой и суперкритической фазах установлено, что наиболее высокие значения конверсии и селективности по олигомерам достигаются в жидкой фазе в октане [13]. Соотношение гекс-1-ен: октан составляет 30:70, температура реакции - 200°C, давление - 5 МПа. При этом конверсия гекс-1-ена достигает 93%, селективность образования олигомеров - 62%. Среди олигомеров преобладают димеры. Образуется значительное количество побочных продуктов: 13% насыщенных углеводородов С6 и 23% соединений, образующихся в результате крекинга (С35, С711).
Недостатками данного способа являются низкая селективность образования олигомеров, большое количество низкокипящих побочных продуктов (С311). Кроме того, используется значительное количество растворителя, что усложняет способ и увеличивает объемы аппаратуры.
Ультрастабильный цеолит Y исследовали также в олигомеризации олефинов C12-C18 [12]. На примере олигомеризации тетрадец-1-ена показано, что конверсия олефинов возрастает с увеличением отношения Si/Al катализатора. Образец цеолита Y с отношением Si/Al=60 при 180°C обеспечивает конверсию тетрадец-1-ена, равную 79,8%. В продуктах реакции содержится 84-93% димеров, остальное - более высококипящие олигомеры. Согласно патенту этих же авторов [25. Пат. US №5120891, 1992] конверсия додец-1-ена при 180°C в присутствии ультрастабильного цеолита Y (Si/Al=60) составляет 87,9%. Супердеалюминирование цеолита Y достигается путем гидротермальной обработки, обработки минеральными кислотами, этилендиаминтетрауксусной кислотой или другими агентами.
К недостаткам данного способа можно отнести:
1) введение дополнительной трудоемкой и энергозатратной операции по деалюминированию цеолита Y;
2) недостаточно широкое молекулярно-массовое распределение олигомеров α-олефинов, что ограничивает области применения полученных продуктов.
Задачей настоящего изобретения является упрощение способа олигомеризации линейных α-олефинов С614 и получение олигомеров с числом мономерных звеньев 2-5.
Решение этой задачи достигается тем, что способ олигомеризации высших линейных α-олефинов С614 осуществляют в присутствии гранулированного без связующих веществ цеолита Y в Н-форме (HY-БС). Цеолит Y, как отмечено выше, относится к структурному типу FAU.
Степень декатионирования цеолита HY-БС может составлять 40-93%. Реакцию проводят в присутствии 5-30% мас. катализатора (HY-БС), при 130-200°C, без растворителя. Конверсия α-олефинов составляет 71,4-100%. Основными продуктами реакции являются олигомеры, в составе которых присутствуют соединения со степенью олигомеризации от 2 до 5. Кроме олигомеров в реакционной массе содержатся изомеры исходных α-олефинов, образующиеся в результате перемещения двойной связи и структурных изменений углеводородной цепи, и при температуре 200°C появляется небольшое количество продуктов крекинга.
Цеолит Y-БС синтезирован в виде гранул без связующих веществ; его гранулы представляют собой единые сростки цеолитных кристаллов и обладают близкой к 100% степенью кристалличности. Пористая структура гранул состоит из микропористой структуры самого цеолита и мезопористой структуры, сформировавшейся между сростками кристаллов. Применение цеолита Y-БС в реакциях олигомеризации олефинов неизвестно.
Существенным преимуществом цеолита HY-БС перед деалюминированными цеолитами Y является высокая Бренстедовская кислотность, что обеспечивает его высокую активность в процессе олигомеризации. Деалюминированные цеолиты Y обычно обладают низкой кислотностью, поскольку в результате ультрастабилизации концентрация и сила кислотных центров резко уменьшаются. Кроме того, известно, что в ходе ультрастабилизации микропористых цеолитов Y происходит их частичная аморфизация и степень кристалличности существенно уменьшается. Цеолит HY-БС имеет комбинированную микро-мезопористую кристаллическую структуру, которая высокостабильна и не разрушается в процессе декатионирования.
Следует отметить, что химическую структуру олигомеров, полученных на цеолитных катализаторах, никогда не изучали, полагая, по-видимому, что она также, как и в случае использования кислот Льюиса, представлена олефинами. Изучение структуры полученных димеров окт-1-ена методами ИК- и ЯМР-спектроскопии (рис.1-2) показало, что в них преобладают алифатические циклические соединения. На нафтеновый характер соединений указывает высокая спектральная плотность в диапазоне спектра 13С 12-50 м.д. Незначительное количество ненасыщенных соединений представлено, в основном, олефинами с три- и тетразамещенными двойными связями. Их присутствие подтверждается наличием слабых сигналов в области 120-140 м.д. спектра 13С, характеризующих атомы углерода при три- (120, 140 м.д.) и тетразамещенных двойных связях (120, 130 м.д.). В ЯМР 1H-спектре димеров октена-1 присутствуют сигналы протонов метальных -СН3 (0,91 м.д.) и метиленовых -СН2-групп. Наличие в спектре сигналов в области 1,6-2,1 м.д. свидетельствует о присутствии нафтеновых структур, а также групп с двойными связями =С-СН2- или =С-. Присутствие в составе димеров октена небольшого количества непредельных соединений подтверждается присутствием в спектре ЯМР 1H очень слабых сигналов в области 4,7-5,4 м.д. (вероятно, протоны групп -C=H<, =CH-, =CH2). Из соотношения интегральных интенсивностей полос, характеризующих метальные и метиленовые группы, следует, что углеводородные цепи являются разветвленными, а не линейными.
В ИК-спектре димеров присутствуют интенсивные полосы поглощения в области 1379 см-1 и 1469 см-1, характерные для групп СН3 и CH2, а также полоса 723 см-1, соответствующая высшим деформационным С-Н колебаниям в неразветвленных цепочках -(СН2)n-. На присутствие незначительного количества соединений, содержащих транс-дизамещенную двойную связь, указывает полоса поглощения 966 см-1.
С использованием методов количественной спектроскопии ЯМР 1H и 13С образцы димеров октена охарактеризованы по более крупным структурным фрагментам: определены количество нафтеновых циклов в молекуле, содержание атомов углерода в «узлах» углеродного скелета, средняя длина алкильных цепей. Из полученных данных следует, что основное количество атомов углерода сосредоточено в насыщенных структурных фрагментах парафиновых и нафтеновых. На присутствие в молекулах димеров длинных алкильных цепей указывают сигналы атомов углерода δC=14,1; 22,7; 32,2; 29,7. Алкильные цепи олигомеров октена являются разветвленными, поскольку в спектре присутствуют также сигналы атомов углерода с химическим сдвигом, равным 19,4; 27,6; 37,4; 39,7, относящиеся к изоалкильным цепям и значительное количество третичных алифатических углеводородов.
Физико-химические свойства полученных олигомеров высших α-олефинов (температура застывания, температура вспышки, вязкость) близки к характеристикам поли-α-олефинов, синтезированных в присутствии традиционных катализаторов (табл.1).
Таблица 1
Физико-химические свойства олигомеров окт-1-ена, синтезированных в присутствии цеолита HY-БС и AlCl3
Показатели Олигомеры окт-1-ена Гидрированные олигомеры окт-1-ена
Катализатор HY-БС НУ-БС HY-БС AlCl3
Состав, % мас. димеры - 100 тримеры - 100 димеры - 50
тримеры - 44 тетрамеры + пентамеры - 6
димеры - 100 тримеры - 100
Температура застывания, °C -83 -61 -58 -70 -66
Температура вспышки, °C 125 181 144 120 168
Вязкость при 20°C, сСт 4,3 29,9 17,1 - -
Вязкость при 40°C, сСт 2,8 13,3 8,68 - -
Вязкость при 100°C, сСт 1,10 2,61 1,14 1,19 2,64
Йодное число 2,2 1,74 2,82 - 0,2
Использование предлагаемого способа позволяет:
1. Упростить способ олигомеризации α-олефинов за счет исключения стадии деалюминирования цеолита Y.
2. Снизить энерго- и материалоемкость процесса олигомеризации.
3. Синтезировать олигомеры α-олефинов, в составе которых присутствуют, в основном, соединения с алкилнафтеновой структурой. Незначительное количество непредельных соединений (0,7-3%) позволяет ускорить процесс гидрирования, уменьшить расход водорода или даже исключить эту стадию из технологической схемы.
4. Получить олигомеры с расширенным молекулярно-массовым распределением, поскольку степень олигомеризации синтезированных углеводородов изменяется от 2 до 5.
Предлагаемый способ олигомеризации осуществляют следующим образом.
Используют α-олефины C6-C14, выпускаемые Нижнекамским нефтехимическим комбинатом: гекс-1-ен (ТУ-2411-059-05766801-96), окт-1-ен (ТУ-2411-057-05766801-96), дец-1-ен (ТУ 2411-057-05766801-96), фракция C12-C14 (ТУ-2411-058-05766801-96).
В качестве катализатора используют гранулированный без связующих веществ цеолит Y-БС, синтезированный в Na-форме по методу, приведенному в [27. Патент РФ №2412903 С1. Опубл. 27.02.2011 г. Бюл. №6]. Декатионированием из раствора NH4NO3 и последующим прокаливанием при 540°C цеолит NaY-БС переводили в Н-форму с различной степенью декатионирования ионов Na+ на H+ - 40-93% (степень декатионирования указана в долях перед обозначением образца цеолита). В процессе ионного обмена с промежуточными термообработками аморфизация кристаллического каркаса цеолита не происходит. Удельная поверхность образцов, определяемая методом ртутной порометрии, составляет 4-7,5 м2/г, а объем пор 0,21-0,32 см3/г. Транспортные поры, в основном, представлены порами с радиусом 50-100 нм и 100-1000 нм.
Олигомеризацию α-олефинов проводят в металлическом автоклаве. В автоклав загружают α-олефин и катализатор, герметично закрывают и помещают в термостатируемый шкаф, где автоклав непрерывно вращается при выбранной температуре. По окончании реакции реакционную массу охлаждают, отфильтровывают от нее катализатор. Состав продукта анализируют методом газожидкостной и жидкостной хроматографии. Условия ГЖХ-анализа: хроматограф HRGS 5300 Mega Series "Carlo Erba" с пламенно-ионизационным детектором; стеклянная капиллярная колонка с SE-30 длиной 25 м, температура анализа 50-280°C с программированным нагревом 8°C/мин, температура детектора 250°C, температура испарителя 300°C, газ носитель - гелий со скоростью подачи 30 мл/мин. Условия ВЭЖХ-анализа: хроматограф HP-1090, полистирольная колонка Pigel 50Å, скорость подачи толуола 0,8 мл/мин, скорость ленты 1,5 см-1, рефрактометрический детектор.
Изобретение иллюстрируется следующими примерами.
Пример 1. В металлический автоклав загружают 10 мл (0,064 моль) окт-1-ена, затем добавляют 1,44 г (20% мас. в расчете на олефин) цеолита 0,93HY-БС, автоклав герметично закрывают и помещают в термостатируемый шкаф. Реакцию проводят при температуре 180°C 4 ч при непрерывном вращении автоклава. После окончания реакции реакционную массу охлаждают, отфильтровывают катализатор. От полученного олигомеризата отгоняют непрореагировавшие изомеры окт-1-ена. Получают 5,6 г олигомеризата, представляющего собой прозрачную, бесцветную жидкость. Состав олигомеров (% мас.): димеры - 69,2; тримеры - 23,5; тетрамеры - 6,0; пентамеры - 1,3. Конверсия окт-1-ена - 100%.
Остальные примеры приведены в табл. 2 аналогично примеру 1.
Таблица 2
Олигомеризация α-олефинов в присутствии цеолита HY-БС
№ п/п α-олефин Катализатор Кол-во катализатора, % мас. Т, °C Время, ч Конверсия, % мас. Состав, %
олигомеры изомеры Продукты крекинга
n=2 n=3 n=4 n=5
3 C6 0,93HY-БС 10 180 5 100 52,6 23,9 6,1 1,1 16,3 -
4 C8 0,4HY-БС 20 180 6 100 41,1 15,5 5,9 1,0 36,5 -
5 -||-||- 0,8HY-БС 20 180 5 100 54,1 18,4 4,6 1,2 21,7 -
6 -||-||- 0,93HY-БС 20 180 4 100 56,3 19,1 4,9 1,1 18,6 -
7 -||-||- -||-||- 10 180 5 98,5 53,9 20,0 5,8 0,9 19,4 -
8 -||-||- -||-||- 5 180 6 78,9 49,8 10,3 3,7 0,5 35,7 -
9 -||-||- -||-||- 20 130 5 71,4 43,7 12,0 4,1 0,8 40,2 -
10 -||-||- -||-||- 30 180 4 100 57,4 17,3 6,4 1,3 17,6 0,2
11 С10 -||-||- 20 180 5 99,8 56,8 18,9 7,4 0,9 16,0 -
12 фракция C12-C14 -||-||- 10 200 5 98,9 58,2 8,3 3,5 0,5 29,3 0,2
Цифры перед названием катализатора обозначают степень ионного обмена Na+ на H+;
n - степень олигомеризации

Claims (2)

1. Способ получения олигомеров высших α-олефинов взаимодействием линейных α-олефинов С614 с катализатором на основе цеолита структурного типа FAU, отличающийся тем, что в качестве катализатора используют гранулированный без связующих веществ цеолит Y-БС в Н-форме в количестве 5-30 мас.% по отношению к α-олефину и реакцию проводят при 130-200°C без растворителя.
2. Способ по п.1, отличающийся тем, что степень ионного обмена Na+ на H+ в цеолите HY-БС составляет 0,4÷0,93.
RU2011135117/04A 2011-08-22 2011-08-22 Способ получения олигомеров высших линейных альфа-олефинов RU2483052C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011135117/04A RU2483052C2 (ru) 2011-08-22 2011-08-22 Способ получения олигомеров высших линейных альфа-олефинов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011135117/04A RU2483052C2 (ru) 2011-08-22 2011-08-22 Способ получения олигомеров высших линейных альфа-олефинов

Publications (2)

Publication Number Publication Date
RU2011135117A RU2011135117A (ru) 2013-02-27
RU2483052C2 true RU2483052C2 (ru) 2013-05-27

Family

ID=48792118

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011135117/04A RU2483052C2 (ru) 2011-08-22 2011-08-22 Способ получения олигомеров высших линейных альфа-олефинов

Country Status (1)

Country Link
RU (1) RU2483052C2 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697885C1 (ru) * 2019-02-14 2019-08-21 Федеральное государственное бюджетное научное учреждение Уфимский федеральный исследовательский центр Российской академии наук Способ получения олигомеров пент-1-ена в присутствии аморфного мезопористого алюмосиликата asm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417087A (en) * 1982-04-30 1983-11-22 Chevron Research Company Fluidized oligomerization
US5120891A (en) * 1990-09-26 1992-06-09 Texaco Chemical Company Process for oligomerizing olefins using a super-dealuminated Y-zeolite
RU2180320C1 (ru) * 2000-11-01 2002-03-10 Закрытое акционерное общество Холдинговая компания "ЮСТ" Способ получения синтетического цеолита типа y
RU2412903C1 (ru) * 2009-08-03 2011-02-27 Открытое акционерное общество "Салаватнефтеоргсинтез" СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТА ТИПА NaY ВЫСОКОЙ ФАЗОВОЙ ЧИСТОТЫ

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4417087A (en) * 1982-04-30 1983-11-22 Chevron Research Company Fluidized oligomerization
US5120891A (en) * 1990-09-26 1992-06-09 Texaco Chemical Company Process for oligomerizing olefins using a super-dealuminated Y-zeolite
RU2180320C1 (ru) * 2000-11-01 2002-03-10 Закрытое акционерное общество Холдинговая компания "ЮСТ" Способ получения синтетического цеолита типа y
RU2412903C1 (ru) * 2009-08-03 2011-02-27 Открытое акционерное общество "Салаватнефтеоргсинтез" СПОСОБ ПОЛУЧЕНИЯ ГРАНУЛИРОВАННОГО БЕЗ СВЯЗУЮЩЕГО ЦЕОЛИТА ТИПА NaY ВЫСОКОЙ ФАЗОВОЙ ЧИСТОТЫ

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2697885C1 (ru) * 2019-02-14 2019-08-21 Федеральное государственное бюджетное научное учреждение Уфимский федеральный исследовательский центр Российской академии наук Способ получения олигомеров пент-1-ена в присутствии аморфного мезопористого алюмосиликата asm

Also Published As

Publication number Publication date
RU2011135117A (ru) 2013-02-27

Similar Documents

Publication Publication Date Title
CA1257613A (en) Production of lubricant range hydrocarbons from light olefins
Zhu et al. Catalytic cracking of 1-butene to propene and ethene on MCM-22 zeolite
CA1304420C (en) Olefin oligomerization
US7456329B2 (en) Polyolefins from non-conventional feeds
CA2141568A1 (en) Oligomerization of olefins
WO2007048871A1 (en) Process for dimerizing olefins
CA2182994A1 (en) Oligomerization and catalysts therefor
JP2009529528A (ja) イソブテンを含む原料油のオリゴマー化
CN104302393A (zh) 用于将低级脂肪族醚转化成芳族化合物和低级烯烃的方法
CA2035775A1 (en) High viscosity index lubricants from lower alkene oligomers
US10583422B2 (en) Catalyst with improved activity/selectivity for light naphtha aromatization
US20120271085A1 (en) Method for producing distillate from a hydrocarbon feed, comprising alcohol condensation
US5000840A (en) Catalytic dewaxing lubricating oil stock derived from oligomerized olefin
US7393991B2 (en) Process for producing internal olefin
AU613954B2 (en) Olefin oligomerization
AU596615B2 (en) Process for the manufacture of high viscosity lubricating oils
RU2483052C2 (ru) Способ получения олигомеров высших линейных альфа-олефинов
US7718580B2 (en) Internal-olefin composition and base oil comprising the composition for oil drilling
EP1746150B1 (en) Alkylaryl sulfonate detergent mixture derived from linear olefins
RU2483053C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ОЛИГОМЕРОВ ВЫСШИХ ЛИНЕЙНЫХ α-ОЛЕФИНОВ
RU2547653C1 (ru) Способ приготовления катализатора для получения компонента буровых растворов, катализатор и способ получения компонента буровых растворов
EP2876147B1 (en) Method for oligomerising alkenes using the itq-39 zeolite
RU2487112C2 (ru) СПОСОБ ПОЛУЧЕНИЯ ОЛИГОМЕРОВ ВЫСШИХ ЛИНЕЙНЫХ α-ОЛЕФИНОВ
Corma et al. Oligomerization of alkenes
CA1281746C (en) Direct catalytic alkylation of mononuclear aromatics with lower alkanes

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20130823