RU2482881C1 - Способ получения биоинженерной конструкции для замещения костных дефектов - Google Patents

Способ получения биоинженерной конструкции для замещения костных дефектов Download PDF

Info

Publication number
RU2482881C1
RU2482881C1 RU2012120883/15A RU2012120883A RU2482881C1 RU 2482881 C1 RU2482881 C1 RU 2482881C1 RU 2012120883/15 A RU2012120883/15 A RU 2012120883/15A RU 2012120883 A RU2012120883 A RU 2012120883A RU 2482881 C1 RU2482881 C1 RU 2482881C1
Authority
RU
Russia
Prior art keywords
bone
bone defect
defect replacement
sodium
medicine
Prior art date
Application number
RU2012120883/15A
Other languages
English (en)
Inventor
Наталья Юрьевна Анисимова
Федор Витальевич Доненко
Михаил Валентинович Киселевский
Original Assignee
Федеральное государственное бюджетное учреждение "Российский онкологический научный центр имени Н.Н. Блохина" Российской академии медицинских наук (ФГБУ "РОНЦ им. Н.Н. Блохина" РАМН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение "Российский онкологический научный центр имени Н.Н. Блохина" Российской академии медицинских наук (ФГБУ "РОНЦ им. Н.Н. Блохина" РАМН) filed Critical Федеральное государственное бюджетное учреждение "Российский онкологический научный центр имени Н.Н. Блохина" Российской академии медицинских наук (ФГБУ "РОНЦ им. Н.Н. Блохина" РАМН)
Priority to RU2012120883/15A priority Critical patent/RU2482881C1/ru
Application granted granted Critical
Publication of RU2482881C1 publication Critical patent/RU2482881C1/ru

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Abstract

Изобретение относится к медицине и ветеринарии, а именно к реконструктивной хирургии, предназначено для применения в области трансплантологии, травматологии, хирургии и онкологии. Описан способ получения биоинженерной конструкции для замещения костных дефектов, основой которой является кость, анатомически соответствующая замещаемой, которую деиммунизируют в 5-10% растворе, приготовленном из сухой смеси хлорита натрия, перхлората натрия, натрия хлорида в соотношении 7:2:1 и дистиллированной воды; покрывают гетерогенным имплантируемым гелем и колонизируют мультипотентными мезенхимальными стромальными клетками, выделенными из костного мозга реципиента методом иммуномагнитной сепарации. Способ обеспечивает замещение костных дефектов значительных по площади, высокую прочность, быструю фиксацию и репарацию конструкции в зоне имплантации, не приводит к развитию реакции отторжения. 1 табл., 4 ил.

Description

Изобретение относится к медицине и ветеринарии, а именно к реконструктивной хирургии, предназначено для применения в области трансплантологии, травматологии, хирургии и онкологии.
Известен способ получения биоинженерной конструкции для закрытия костных дефектов с восстановлением в них костной ткани, при котором используется синтетическая основа, выделение стромальных клеток из жировой ткани или костного мозга реципиента с последующим культивированием, после чего клетки пассируют на поверхность многофункционального, биосовместимого, нерезорбируемого покрытия гибридного имплантата, представляющего собой пористую мембрану из политетрафторэтилена с размерами пор 200-500 мкм, и инкубируют в остеогенной среде в течение 14 дней (патент РФ №2416434).
Недостатки указанного аналога: синтетическая основа конструкции не имеет анатомических особенностей кости; поверхность конструкции колонизируют клетками-предшественниками костной ткани, не способными сформировать фиксирующую соединительнотканную капсулу и капиллярную сеть; при повреждении биоактивного покрытия политетрафторэтилен основы конструкции не способен обеспечить адгезию клеток на своей поверхности, что ведет к ухудшению функциональных характеристик биоимплантата и развитию местной воспалительной реакции; возможна хроническая травматизация тканей реципиента в зонах крепления конструкции к кости из-за различной плотности материалов.
Известны способы получения биоинженерных конструкций для замещения костных дефектов, в основе которых лежит насыщение культурой аутологичных мультипотентных клеток, выделенных из костного мозга, пористых матриксов из гранулированных биокерамических материалов на основе гидроксиапатита или из натуральных кораллов Acropora sp., Porites sp. [Vaccaro A.R. The Role of the Osteoconductive Scaffold in Synthetic Bone Graft // Orthopedics, 2002, V.25, №5, Suppl., P. s571-s578; Louisia S., Stromboni M., Meunier A., Sedel L, Petite H. Coral grafting supplemented with bone marrow // J Bone Joint Surg [Br], 1999; V.81-B, №4, P.719-724]. Однако установлено, что такой подход имеет значимые недостатки. В частности, биокерамические материалы в организме плохо рассасываются, и их остатки оказываются замурованными в костную ткань, что делает ее менее прочной [Сергеева Н.С., Франк Г.А., Свиридова И.К., Кирсанова В.А., Ахмедова С.А., Антохин А.И. Роль аутогенных мультипотентных мезенхимальных стромальных клеток в тканеинженерных конструкциях на основе натуральных кораллов и синтетических биоматериалов при замещении костных дефектов у животных. // Клеточная трансплантология и тканевая инженерия, 2009, т.IV, №4, с.56-64]. Кроме того, керамику на основе гидроксиапатита можно использовать только для замещения участков костей, не несущих значительных механических нагрузок, что обусловлено хрупкостью материала и его высокой чувствительностью к коррозии под напряжением в физиологических жидкостях организма, приводящей к разрушению имплантата [Баринов С.М. Керамические и композиционные материалы на основе фосфатов кальция для медицины. // Успехи химии, 2010, 79(1), с.15-32]. Высокая порозность естественных корралов обусловливает хрупкость материала. По этой причине подобные конструкции рекомендовано использовать либо для восстановления дефектов губчатой костной ткани, либо в сочетании с металлическими пластинами, несущими опорную функцию [Demers С., Hamdy С.R., Corsi К., Chellat F., Tabrizian M., Yahia L. Natural coral exoskeleton as a bone graft substitute: A review // Bio-Medical Materials and Engineering, 2002, V.12, №1, P.15-35].
Наиболее близким к заявляемому изобретению (прототипом) является способ получения трансплантата "Био-матрикс имплант I" для стоматологии [патент РФ 2136298). Этот способ предусматривает деиммунизацию донорской кости, включает предварительное распиливание кости на блоки размером 3×2×1 см, получение сквозных отверстий размером от 0,1 мм до 10 мм в каждой плоскости блока, не менее одного отверстия на 1 см2, обработку блоков смесью ферментов, состоящей от 0,1-1% раствора трипсина и 0,125-0,3% раствора папаина, взятых в соотношении 1:1. Затем в смеси 1% раствора перекиси водорода и 1% раствора этанола, взятых в соотношении 1:1, отмывают и заполняют каждое отверстие блока материалом, состоящим из солей двух- и/или трехвалентных металлов, коллагена, алкилпроизводных, или карбоксилалкилпроизводных, или гидроксиалкилпроизводных целлюлозы, сульфатированных гликозаминогликанов и воды, после чего костный блок замораживают, лиофилизируют и стерилизуют облучением дозой 2,5 Мград.
Недостатки прототипа: 1) при использовании имплантата, полученного указанным способом, возможно замещение костных дефектов только небольшой площади (не более 3×2×1 см), что ограничивает его применение в области стоматологии и челюстно-лицевой хирургии; 2) длительный процесс фиксации и репарации имплантата в организме реципиента.
Задачей изобретения является разработка способа получения биоинженерной конструкции для замещения костных дефектов значительных по площади, обеспечивающего сохранение физических и анатомических особенностей донорской кости, высокую прочность, быструю фиксацию в зоне имплантации и репарацию тканью реципиента, отсутствие реакции отторжения имплантата.
Задача решается тем, что в качестве основы биоинженерной конструкции используют донорскую кость, которую деиммунизируют с помощью хлорсодержащих окислителей, затем наносят гетерогенный имплантируемый гель и колонизируют мультипотентными мезенхимальными стромальными клетками (ММСК).
Заявляемый способ получения биоинженерной конструкции осуществляют следующим образом. Кость человека или животного очищают от мягких тканей. При толщине стенки кости более 5 мм ее перфорируют. Затем кость помещают в деиммунизирующий 5-10% раствор, приготовленный из сухой смеси хлорита натрия, перхлората натрия, натрия хлорида в соотношении 7:2:1 и дистиллированной воды. Кость полностью погружают в приготовленный раствор и выдерживают в темноте от 1 до 4 месяцев в зависимости от размеров и толщины стенки кости. Костно-мозговой канал промывают раствором указанного состава 1 раз в 3 суток. Деиммунизированную кость хранят при t=-70°C в смеси диметилсульфоксида и 6% раствора декстрана в соотношении 1:9 в 0,9% растворе хлорида натрия. Затем деиммунизированную кость последовательно промывают в дистиллированной воде и стерильном 0,9% растворе хлорида натрия, поверхность покрывают гетерогенным имплантируемым гелем, таким как «Сферогель» или «Матригель». Для получения ММСК у реципиента производят забор костного мозга. Мононуклеарные клетки выделяют на градиенте фиколл-урографин (плотность 1,077) центрифугированием при 900 g. Затем клетки дважды отмывают от фиколла, центрифугируют при 600 g в среде RPMI 1640. Из полученной суспензии методом иммуномагнитной сепарации выделяют мезенхимальные CD 271+ клетки, которые культивируют в среде MACS NH Expansion Medium (Miltenyi Biotec), содержащей 10% фетальной телячьей сыворотки, L-глутамина 2 мМ, пенициллина G 100 МЕ/мл, стрептомицина 100 мкг/ мл, в пластиковых культуральных флаконах при t 37°C и 5% CO2 в течение 2-3 пассажей. Затем среду с взвешенными клетками удаляют и фракцию, способную к адгезии, культивируют в течение 3-6 пассажей в среде указанного состава. Оценивают фенотип клеток методом проточной цитометрии. Клетки равномерно распределяют по поверхности конструкции сразу после нанесения геля. Для заселения конструкции используют суспензию клеток, содержащую не менее 85% CD271+ клеток. Конструкцию помещают в среду RPMI 1640, содержащую 10% фетальной телячьей сыворотки, L-глутамина 2 мМ, пенициллина G 100 МЕ/мл, стрептомицина 100 мкг/ мл, и инкубируют при 37°C в течение 3-10 суток.
Прочность полученной биоинженерной конструкции изучали на сжатие по показателям «предел текучести», «модуль упругости» и «предел прочности» в соответствие с ГОСТ 4651-82 на участке деформационной кривой от 10 до 30 МПа. Для проведения исследований использовали лучевые и плечевые кости пяти взрослых собак, подвергнутых эвтаназии вследствие получения травм, несовместимых с жизнью. Средний возраст животных 9±1,2 года. Кости очищали от мягких тканей, из костно-мозгового канала удаляли остатки костного мозга. Для сравнительного анализа использовали диафизарные фрагменты костей цилиндрической формы высотой 20 мм. Подготовленные фрагменты костей были разделены на две группы: контрольная и опытная (фрагменты костей обработаны по заявляемому способу). Испытания на сжатие проводились на универсальной испытательной машине Zwick/Roell z020. Результаты исследования представлены в таблице.
Кость Группа Предел текучести δ0,2, МПа Модуль упругости, МПа Предел прочности, МПа
Плечевая опытная 84±2,1 1740±353 89±2,1
контрольная 81±12,5 1602±102 90±5,2
Лучевая опытная 78±8,2 1720±233 87±16,3
контрольная 79±21,0 1852±212 94±18,6
Достоверных различий в группах сравнения не выявлено (p>0.05),
Реакцию острого отторжения биоинженерной конструкции и ее репарацию клетками донора изучали на мышах линии СВА. Для получения биоинженерной конструкции по заявляемому способу использовали бедренные кости мышей. Далее выполняли гетеротопную сингенную имплантацию полученной биоинженерной конструкции мышам линии Balb/c под кожу на спине. Через 3 месяца после имплантации биоинженерную конструкцию извлекали и проводили морфологическое исследование.
Изобретение иллюстрировано фигурами 1-4.
Фиг.1 - продольный срез биоинженерной конструкции из бедренной кости мыши через 3 месяца после гетеротопной сингенной имплантации. Ув.100.
Фиг.2 - продольный срез биоинженерной конструкции из бедренной кости мыши с сохранением структуры губчатого вещества костно-мозгового канала через 3 месяца после гетеротопной сингенной имплантации. Ув.200.
Фиг.3 - реколонизация клетками поверхности биоинженерной конструкции из бедренной кости мыши через 3 месяца после гетеротопной сингенной имплантации. Ув.400.
Фиг.4 - реколонизация клетками донорской ткани биоинженерной конструкции из бедренной кости мыши через 3 месяца после гетеротопной сингенной имплантации. Ув.900.
Через 3 месяца после гетеротопной сингенной имплантации признаки механической и ферментативной деградации макро- и микроструктуры биоинженерной конструкции не наблюдали (Фиг.1, 2). На фиг.3 и 4 представлена реколонизация бесклеточной костной основы имплантированной биоинженерной конструкции клетками реципиента. На поверхности конструкции - формирование клеточного слоя, морфологически сходного с тканью надкостницы (Фиг.3), и соединительно-тканного слоя (Фиг.2).
Технический результат
Заявляемый способ обеспечивает замещение костных дефектов, значительных по площади, высокую прочность, быструю фиксацию и репарацию конструкции в зоне имплантации, не приводит к развитию реакции отторжения.

Claims (1)

  1. Способ получения биоинженерной конструкции для замещения костных дефектов, основой которой является деиммунизированная костная ткань, отличающийся тем, что кость, анатомически соответствующую замещаемой, деиммунизируют в 5-10%-ном растворе, приготовленном из сухой смеси хлорита натрия, перхлората натрия, натрия хлорида в соотношении 7:2:1 и дистиллированной воды; покрывают гетерогенным имплантируемым гелем и колонизируют мультипотентными мезенхимальными стромальными клетками, выделенными из костного мозга реципиента методом иммуномагнитной сепарации.
RU2012120883/15A 2012-05-22 2012-05-22 Способ получения биоинженерной конструкции для замещения костных дефектов RU2482881C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2012120883/15A RU2482881C1 (ru) 2012-05-22 2012-05-22 Способ получения биоинженерной конструкции для замещения костных дефектов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2012120883/15A RU2482881C1 (ru) 2012-05-22 2012-05-22 Способ получения биоинженерной конструкции для замещения костных дефектов

Publications (1)

Publication Number Publication Date
RU2482881C1 true RU2482881C1 (ru) 2013-05-27

Family

ID=48791824

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2012120883/15A RU2482881C1 (ru) 2012-05-22 2012-05-22 Способ получения биоинженерной конструкции для замещения костных дефектов

Country Status (1)

Country Link
RU (1) RU2482881C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644828C1 (ru) * 2017-02-07 2018-02-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации Способ закрытия дефекта в кости

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136298C1 (ru) * 1998-10-22 1999-09-10 Иванов Сергей Юрьевич Способ получения трансплантата "био-матрикс имплант i" для стоматологии
RU2385740C1 (ru) * 2008-09-17 2010-04-10 Учреждение Российской Академии Наук Институт Физики Прочности И Материаловедения Сибирского Отделения Ран (Ифпм Со Ран) Биоактивное покрытие на имплантате из титана и способ его получения
RU2416434C1 (ru) * 2009-12-24 2011-04-20 Анатолий Алексеевич Кулаков Биоинженерная конструкция для закрытия костных дефектов с восстановлением в них костной ткани и способ получения указанной конструкции

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2136298C1 (ru) * 1998-10-22 1999-09-10 Иванов Сергей Юрьевич Способ получения трансплантата "био-матрикс имплант i" для стоматологии
RU2385740C1 (ru) * 2008-09-17 2010-04-10 Учреждение Российской Академии Наук Институт Физики Прочности И Материаловедения Сибирского Отделения Ран (Ифпм Со Ран) Биоактивное покрытие на имплантате из титана и способ его получения
RU2416434C1 (ru) * 2009-12-24 2011-04-20 Анатолий Алексеевич Кулаков Биоинженерная конструкция для закрытия костных дефектов с восстановлением в них костной ткани и способ получения указанной конструкции

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2644828C1 (ru) * 2017-02-07 2018-02-14 Федеральное государственное бюджетное образовательное учреждение высшего образования "Рязанский государственный медицинский университет имени академика И.П. Павлова" Министерства здравоохранения Российской Федерации Способ закрытия дефекта в кости

Similar Documents

Publication Publication Date Title
Griffin et al. Evolution of bone grafting: bone grafts and tissue engineering strategies for vascularized bone regeneration
Khaled et al. Suppl 2: tissue engineering for bone production-stem cells, gene therapy and scaffolds
EP2854883B1 (en) Biomatrix hydrogels and methods of use thereof
Pieri et al. Dose-dependent effect of adipose-derived adult stem cells on vertical bone regeneration in rabbit calvarium
Yoshimi et al. Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering
KR102248576B1 (ko) 세포 및 조직 성장을 촉진하기 위한 고체 기질
CN1973910B (zh) 一种组织工程骨
Zhao et al. The study of the feasibility of segmental bone defect repair with tissue-engineered bone membrane: a qualitative observation
CN107854732A (zh) 改进空隙及孔隙促进细胞黏附率的复合支架及制备方法
JP2003235953A (ja) フォスフォフォリンを含む複合生体材料
Giannoudis et al. Mesenchymal stem cells and skeletal regeneration
RU2482881C1 (ru) Способ получения биоинженерной конструкции для замещения костных дефектов
CN114302748A (zh) 衍生自有孔虫的骨移植材料
Hamajima et al. Osteoanagenesis after transplantation of bone marrow-derived mesenchymal stem cells using polyvinylidene chloride film as a scaffold
Baranovskii et al. Minimally Manipulated Bone Marrow-Derived Cells Can Be Used for Tissue Engineering In Situ and Simultaneous Formation of Personalized Tissue Models
JP5306831B2 (ja) 骨の移植、エンジニアリングおよび再生を目的としたフカン類の使用
Pathak et al. Bone tissue engineering: latest trends and future perspectives
Kahle et al. Embryonic stem cells induce ectopic bone formation in rats
Moran et al. Biofunctional materials for bone and cartilage tissue engineering
RU86455U1 (ru) Биоинженерная конструкция
CN109498841B (zh) 一种生物型骨膜修复材料及其制备方法
Beri et al. Tissue engineering in maxillofacial region from past to present
Trebunova et al. Biocompatibility of the human mesenchymal stem cells with bovine bone tissue at the cellular level in vitro
Favi Engineering Bacterial Cellulose Scaffold and its Biomimetic Composites for Bone and Cartilage Tissue Regeneration
Suh et al. Effects of co-culture of dental pulp stem cells and periodontal ligament stem cells on assembled dual disc scaffolds