RU2482504C2 - Способ аттестации собственных s-параметров устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников свч - Google Patents

Способ аттестации собственных s-параметров устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников свч Download PDF

Info

Publication number
RU2482504C2
RU2482504C2 RU2011119094/28A RU2011119094A RU2482504C2 RU 2482504 C2 RU2482504 C2 RU 2482504C2 RU 2011119094/28 A RU2011119094/28 A RU 2011119094/28A RU 2011119094 A RU2011119094 A RU 2011119094A RU 2482504 C2 RU2482504 C2 RU 2482504C2
Authority
RU
Russia
Prior art keywords
parameters
load
reflection coefficients
microwave
values
Prior art date
Application number
RU2011119094/28A
Other languages
English (en)
Other versions
RU2011119094A (ru
Inventor
Константин Станиславович Коротков
Антон Сергеевич Левченко
Дмитрий Николаевич Мильченко
Игорь Николаевич Шевченко
Original Assignee
ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "НАУЧНО-ПРОИЗВОДСТВЕННАЯ КОМПАНИЯ "РИТМ" (ОАО "Компания "Ритм")
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "НАУЧНО-ПРОИЗВОДСТВЕННАЯ КОМПАНИЯ "РИТМ" (ОАО "Компания "Ритм") filed Critical ОТКРЫТОЕ АКЦИОНЕРНОЕ ОБЩЕСТВО "НАУЧНО-ПРОИЗВОДСТВЕННАЯ КОМПАНИЯ "РИТМ" (ОАО "Компания "Ритм")
Priority to RU2011119094/28A priority Critical patent/RU2482504C2/ru
Publication of RU2011119094A publication Critical patent/RU2011119094A/ru
Application granted granted Critical
Publication of RU2482504C2 publication Critical patent/RU2482504C2/ru

Links

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

Изобретение относится к области радиоизмерений и может быть использовано при аттестации и контроле собственных S-параметров устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников СВЧ. Техническим результатом является повышение точности измерений испытуемых четырехполюсников СВЧ. Для повышения точности измерений предлагается способ, заключающийся в том, что измеряют эталонные согласованную нагрузку, нагрузку короткого замыкания и нагрузку холостого хода, присоединяя их один раз непосредственно к аттестуемому измерительному порту, а второй раз через линию передачи калиброванной длины, используя эталонные, измеренные значения коэффициентов отражений трех эталонных нагрузок и расчетное значение коэффициента передачи линии передачи калиброванной длины получают зависимости остаточных S-параметров, характеризующих эквивалентный четырехполюсник погрешностей, через которые вычисляют истинные величины коэффициентов отражений эталонных нагрузок холостого хода, и согласованной нагрузки, которые затем используют для вычисления истинных собственных S-параметров аттестуемого измерительного порта измерителя комплексных коэффициентов передачи и отражения четырехполюсников СВЧ, которые используют при измерениях испытуемых четырехполюсников СВЧ. 1 ил.

Description

Изобретение относится к области радиоизмерений и может быть использовано при аттестации и контроле собственных S-параметров устройств для измерения комплексных (модуля и фазы) коэффициентов передачи и отражения четырехполюсников СВЧ.
Такие устройства часто именуют анализаторами цепей. Так как четырехполюсник есть только элемент цепи с характеристиками, подлежащими измерению, то в дальнейшем, для краткости, устройства для измерения комплексных (модуля и фазы) коэффициентов передачи и отражения четырехполюсников СВЧ будем называть измерителями характеристик четырехполюсников СВЧ.
Известно, что собственные S-параметры измерительных портов измерителей характеристик четырехполюсников СВЧ входят составляющими в величины измеряемых с их помощью коэффициентов передачи и отражения и должны учитываться (Абубакиров Б.А., Гудков К.Г., Нечаев Э.В. «Измерение параметров радиотехнических цепей» М., Радио и связь, 1984, с.145). Измерительный порт включает в себя входной разъем и связанный с ним внутренний тракт измерителя характеристик четырехполюсников СВЧ. Для определения (измерения и вычисления) собственных S-параметров применяют режим аттестации (калибровки). Аттестация измерителя характеристик четырехполюсников СВЧ заключается в вычислении собственных S-параметров его измерительных портов как комплексных величин, характеризуемых модулем и фазой. Для аттестации применяют эталонные нагрузки короткого замыкания (КЗ), холостого хода (XX) и согласованную нагрузку (СН), зависимости модуля и фазы коэффициентов отражения которых от частоты известны, и занесены в их калибровочные таблицы (паспортные величины).
Все известные способы определения собственных S-параметров измерителей характеристик четырехполюсников СВЧ основаны на использовании известного уравнения, связывающего коэффициенты отражения одной пары полюсов четырехполюсника с коэффициентом отражения нагрузки, присоединенной к другой паре его полюсов через собственные S-параметры этого четырехполюсника (Фельдштеин А.Л., Явич Л.Р., Смирнов В.П. «Справочник по элементам волноводной техники» Изд. 2-е. М., Советское радио, 1967, с.17);
Figure 00000001
в котором Гвх - результат измерения, а Гн - величина коэффициента отражения нагрузки, присоединенной к зажимам четырехполюсника. Измеряя три эталонные нагрузки КЗ, XX, СН, поочередно присоединяемые к разъему аттестуемого измерительного порта измерителя характеристик четырехполюсников СВЧ, на основании измеренных с его помощью коэффициентов отражений нагрузок
Figure 00000002
,
Figure 00000003
и
Figure 00000004
, и используя паспортные, известные значения коэффициентов отражений эталонных нагрузок
Figure 00000005
,
Figure 00000006
и
Figure 00000007
, составляют три уравнения, для расчета трех неизвестных собственных S-параметров аттестуемого измерительного порта: S11 - его направленности, S22 - коэффициента отражения измерительного порта и произведения S12S21 - коэффициентов передачи измерительного порта, решая которые находят численные величины собственных S-параметров измерительного порта. В формулу (1) и ее модификации параметры S12 и S21 всегда входят в виде произведения S12S21, поэтому знание их порознь не принципиально, что позволяет составлять три уравнения для нахождения S11, S22 и S12S21.
Известны способы для определения собственных S-параметров, в которых используют одну из нагрузок XX или СН и нагрузку КЗ, присоединяя их поочередно к разъему аттестуемого измерительного порта один раз непосредственно, а другой раз через меру волнового сопротивления (МВС), представляющую собой линию передачи в четверть длины волны или кратную ее длине на частоте измерений с коэффициентом передачи, равным единице. В связи с тем, что коэффициент отражения нагрузки КЗ может быть рассчитан, а сама нагрузка изготовлена с точностью, превышающей влияние ее разъемного соединения, считают, что она имеет практически идеальный коэффициент отражения. Это позволяет в двух из трех уравнений для вычисления собственных S-параметров применить более точные величины эталонных коэффициентов отражений и тем самым снизить погрешность определения собственных S-параметров. Численные значения собственных S-параметров каждого из аттестуемых измерительных портов измерителя характеристик четырехполюсников СВЧ используют в процессе его эксплуатации для коррекции результатов измерений испытуемых четырехполюсников СВЧ.
Наиболее близким аналогом заявленному способу является способ калибровки анализаторов цепей, заключающийся в измерении калибруемым анализатором цепей нагрузки короткого замыкания при ее непосредственном присоединении к одному из его входов и присоединении через отрезок регулярного волновода (по сути МВС), с помощью которого дополнительно измеряют произвольную нагрузку, присоединяя ее к входному разъему анализатора цепей один раз непосредственно, а другой раз через отрезок регулярного волновода. Полученные результаты измерений используют для расчета собственных S-параметров S11(l00), S21(l01), S22(l11) (а.с. СССР №943603, МПК G01R 27/32, Опубл. 15.07.82, Бюл. №26). В процессе калибровки производят дополнительные измерения для определения собственного коэффициента передачи: один раз непосредственно соединяя друг с другом его выходные разъемы (вход-выход), второй раз соединяя их через отрезок регулярного волновода, а третий раз в их разомкнутом состоянии, но нагруженными на согласованные нагрузки.
Однако применение произвольной нагрузки или одного из входов анализатора цепей в качестве таковой, электрические параметры которых до измерений неизвестны, приводит к большим ошибкам определения собственных S-параметров. При таких способах аттестации, как показано в работе Dong Rytting "Advances in microwave error correction techniques", Hewlett Packard, Santa Rosa, California 95401, 1987, р.34-37, возникают ошибки, связанные с отличием коэффициента отражения нагрузки XX от единицы, а коэффициента отражения нагрузки СН от нуля, и ошибки, связанные с погрешностью аттестации численных величин самих коэффициентов отражения этих эталонных нагрузок. Измеритель комплексных коэффициентов передачи и отражения четырехполюсников СВЧ определяет эти коэффициенты с погрешностями, которые вызваны погрешностью определения численных величин собственных S-параметров его измерительных портов, которые, в свою очередь, возникают из-за погрешности определения численных величин коэффициентов отражения эталонных нагрузок холостого хода и согласованной нагрузки, используемых для определения собственных S-параметров в процессе их аттестации. Известные способы определения численных величин собственных S-параметров измерительных портов устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников СВЧ эти погрешности не устраняют, что снижает точность измерений.
Технической задачей предлагаемого способа аттестации собственных S-параметров является повышение точности измерений испытуемых четырехполюсников СВЧ.
Для решения технической задачи предлагается способ аттестации собственных S-параметров устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников СВЧ, заключающийся в том, что дважды измеряют коэффициенты отражений трех эталонных нагрузок: короткого замыкания, холостого хода и согласованной нагрузки, присоединяя их один раз непосредственно к аттестуемому измерительному порту, а второй раз присоединяя каждую из них к аттестуемому измерительному порту через линию передачи калиброванной длины - меру волнового сопротивления с расчетными модулем и фазой ее коэффициента передачи. Используя измеренные значения коэффициентов отражений трех эталонных нагрузок, присоединяемых непосредственно к аттестуемому измерительному порту и через линию калиброванной длины, а также используя эталонные значения этих нагрузок и расчетное значение коэффициента передачи меры волнового сопротивления получают зависимости остаточных S-параметров, характеризующих эквивалентный четырехполюсник погрешностей, постоянно присутствующий между эталонным измерительным портом и нагрузкой. Путем приведения значений этих остаточных S-параметров к значениям параметров идеально согласованного по входу и выходу четырехполюсника без потерь находят расчетные зависимости величин коэффициентов отражений эталонных нагрузок холостого хода и согласованной нагрузки в диапазоне частот измерителя комплексных коэффициентов передачи и отражения четырехполюсников СВЧ. Выбирают значения коэффициентов отражений эталонных нагрузок в окрестности частот, где электрическая длина меры волнового сопротивления кратна четверти длины волны, исключая окрестности особых точек ее кратности половине длины волны, и по выбранным значениям аппроксимируют амплитудно-частотные и фазочастотные зависимости коэффициентов отражений каждой из эталонных нагрузок холостого хода и согласованной нагрузки, В результате аппроксимации получают истинные величины коэффициентов отражений эталонных холостого хода и согласованных нагрузок, которые затем используют для вычисления истинных собственных S-параметров аттестуемого измерительного порта измерителя комплексных коэффициентов передачи и отражения четырехполюсников СВЧ, которые используют при измерениях испытуемых четырехполюсников СВЧ.
Заявленный способ отличается от прототипа тем, что коэффициенты отражения трех эталонных нагрузок короткого замыкания, холостого хода и согласованной нагрузки измеряют дважды. Первый раз - непосредственно поочередно присоединяя их к аттестуемому измерительному порту устройства для измерения комплексных коэффициентов передачи и отражения четырехполюсников СВЧ. Второй раз измеряют коэффициенты отражения трех эталонных нагрузок, присоединяя каждую из них к аттестуемому измерительному порту через линию передачи калиброванной длины - меру волнового сопротивления с расчетными модулем и фазой ее коэффициента передачи. Измеренные значения коэффициентов отражений трех эталонных нагрузок, присоединяемых непосредственно к аттестуемому измерительному порту и через линию калиброванной длины, а также эталонные значения этих нагрузок и расчетное значение коэффициента передачи меры волнового сопротивления используют для получения зависимости остаточных S-параметров, характеризующих эквивалентный четырехполюсник погрешностей, постоянно присутствующий между эталонным измерительным портом и нагрузкой. Путем приведения значений этих остаточных S-параметров к значениям параметров идеально согласованного по входу и выходу четырехполюсника без потерь, находят расчетные зависимости величин коэффициентов отражений эталонных нагрузок холостого хода и согласованной нагрузки в диапазоне частот измерителя комплексных коэффициентов передачи и отражения четырехполюсников СВЧ. Выбирают значения коэффициентов отражений эталонных нагрузок в окрестности частот, где электрическая длина меры волнового сопротивления кратна четверти длины волны, исключая окрестности особых точек ее кратности половине длины волны, и по выбранным значениям аппроксимацией находят истинные величины коэффициентов отражений эталонных холостого хода и согласованных нагрузок, которые затем используют для вычисления истинных собственных S-параметров аттестуемого измерительного порта измерителя комплексных коэффициентов передачи и отражения четырехполюсников СВЧ.
На чертеже представлена блок-схема устройства для измерения комплексных коэффициентов передачи и отражения четырехполюсников СВЧ - измерителя характеристик четырехполюсников СВЧ. Устройство содержит генератор СВЧ 1 испытательных сигналов, присоединенный к переключателям 2 и 3, к каждому из которых подсоединена одна согласованная нагрузка 4 и 5 соответственно, а также по одному рефлектометру 6 и 7 соответственно, один рефлектометр состоит из встречно включенных направленных ответвителей (НО) 8 и 9, а второй - из встречно включенных НО 10 и НО 11, сигналы с детекторов направленных ответвителей поступают на соответствующие входы 12, 13, 14, 15 векторного вольтметра 16, испытуемый четырехполюсник СВЧ 17, имеющий два разъема 18 и 19, подключается между двух рефлектометров 6 и 7.
С помощью такого устройства способ осуществляется следующим образом. Для измерения коэффициента передачи испытуемого четырехполюсника СВЧ 17 со стороны его разъема 18 переключатели 2 и 3 ставят в положение 2 их подвижных контактов, нагружая первичный канал НО 10 через переключатель 7 на согласованную нагрузку 5, а испытательный сигнал от генератора СВЧ 1 через переключатель 2 подают через первичные каналы НО 8 и НО 9, на входной разъем 18 испытуемого четырехполюсника СВЧ 17, с выхода 19 которого этот испытательный сигнал СВЧ через первичные каналы НО 11 и НО 10 и переключатель 3 поступает на согласованную нагрузку 5. Коэффициент передачи измеряют как отношение сигналов на входах 15 и 12 векторного вольтметра 16, которые поступают со вторичных каналов НО 11 и НО 8. Векторный вольтметр 16 реагирует на амплитуду и на фазу сигналов. Для измерения коэффициента отражения испытуемого четырехполюсника СВЧ 17 со стороны его разъема 18 векторным вольтметром 16 измеряют отношение сигналов на его входах 13 и 12, которые поступают со вторичных каналов НО 9 и НО 8.
Измерение коэффициента передачи и отражения испытуемого четырехполюсника СВЧ 17 со стороны его разъема 19 производят аналогично вышеописанному. Для этого переключатели 2 и 3 ставят в положение 1 их подвижных контактов, изменяя тем самым направление подачи испытательного сигнала на противоположное. Для измерения коэффициента передачи испытуемого четырехполюсника СВЧ 17 со стороны его разъема 19 измеряют отношение сигналов на входах 13 и 14 векторного вольтметра 16, а коэффициент отражения как отношение сигналов на его входах 15 и 14.
Аттестация измерителя характеристик четырехполюсников СВЧ заключается в поочередном определении (измерении и вычислении) собственных S-параметров, как комплексных величин характеризуемых модулем и фазой, его измерительных портов включающих в себя входной разъем и связанный с ним внутренний тракт измерителя характеристик четырехполюсников СВЧ. В основу аттестации измерительных портов положено уравнение (1). Для аттестации применяют эталонные нагрузки холостого хода (XX), короткого замыкания (КЗ) и согласованную нагрузку (СН), зависимости модуля и фазы коэффициентов отражения которых от частоты известны или находятся известным способом и занесены в их калибровочные таблицы (паспортные величины). Комплексные коэффициенты отражений для краткости называют просто коэффициентами отражений, имея в виду их комплексный характер. Истинные коэффициенты отражений для эталонных нагрузок XX и СН обозначают
Figure 00000008
и
Figure 00000009
соответственно. Паспортные коэффициенты отражений этих эталонных нагрузок
Figure 00000010
и
Figure 00000011
, которые отличаются от истинных на величину погрешности калибровки (на что указывает звездочка), получают путем их измерения на аппаратуре известными способами, а для нагрузки
Figure 00000012
расчетным путем, считая для нее расчетное значение идеально точным, не требующим коррекции. Поэтому дальнейшая задача состоит в устранении погрешностей калибровки паспортных значений только эталонных нагрузок XX и СН. Эталонные нагрузки поочередно присоединяют к аттестуемому измерительному порту измерителя характеристик четырехполюсников СВЧ и измеряют их коэффициенты отражений, которые обозначают как: для
Figure 00000013
, для
Figure 00000014
, для
Figure 00000015
во всех частотных точках их калибровочных таблиц. В дальнейшем целесообразно рассматривать аттестацию только для одной частотной точки, имея в виду, что в остальных она аналогична. По формуле (1) составляют уравнения, связывающие измеряемые и измеренные коэффициенты отражений через собственные S-параметры: S11, S22, S12S21, аттестуемого измерительного порта измерителя характеристик четырехполюсников СВЧ в виде:
Figure 00000016
Figure 00000017
Figure 00000018
Решая систему уравнений (2), (3), (4) относительно собственных S-параметров находят выражения для них в общем виде
Figure 00000019
Figure 00000020
Figure 00000021
Figure 00000022
Подставляя в них численные значения
Figure 00000023
,
Figure 00000024
,
Figure 00000025
,
Figure 00000026
,
Figure 00000027
,
Figure 00000028
находят численные величины
Figure 00000029
,
Figure 00000030
,
Figure 00000031
. В связи с тем, что в калибровочных таблицах
Figure 00000032
и
Figure 00000033
определены с погрешностями калибровки, рассчитанные S*-параметры отличаются от идеальных (без погрешностей) тем, что в них заключены погрешности калибровки, в виде остаточных S-параметров, которые обозначают как Sост. Остаточные S-параметры характеризуют эквивалентный четырехполюсник погрешностей, являющихся результатом погрешностей калибровки паспортных значений коэффициентов отражений эталонных нагрузок холостого хода и согласованной нагрузки, и, следовательно, постоянно присутствующих между ними и аттестуемым измерительным портом, влияя на точность определения собственных S-параметров аттестуемого измерительного порта. Затем измеряют коэффициенты отражений этих же эталонных нагрузок КЗ, XX и СН, но присоединяя их поочередно к разъему аттестуемого измерительного порта через линию передачи калиброванной длины - меру волнового сопротивления (МВС), единую для всех рабочих частот и эталонных нагрузок. Геометрическую длину - L МВС выбирают так, чтобы она была кратна четверти длины волны на нескольких частотах рабочего диапазона измерителя характеристик четырехполюсников СВЧ. В частности для диапазона 1÷18 ГГц длина МВС равна 73 мм, что кратно четверти длин волны на частотах 1, 3, 5, 7, 11, 13, 15, 17 ГГц. Фиксируют численные значения коэффициентов отражений этих эталонных нагрузок, измеренных совместно с МВС, которые в общем виде обозначают: для
Figure 00000034
, для
Figure 00000035
, для
Figure 00000036
. Коэффициенты отражений эталонных нагрузок, соединенных совместно с МВС, обозначают как: (
Figure 00000037
с МВС) -
Figure 00000038
, (
Figure 00000039
с МВС) -
Figure 00000040
, (
Figure 00000041
с МВС) -
Figure 00000042
. Для каждой эталонной нагрузки, используя уравнение (1), составляют уравнения, связывающие измеренные коэффициенты отражений эталонных нагрузок, соединенных совместно с МВС, с их коэффициентами отражений через собственные S-параметры в виде:
Figure 00000043
Figure 00000044
Figure 00000045
Из формул (9), (10), (11) получают выражения для нахождения коэффициентов отражений эталонных нагрузок, соединенных совместно с МВС, в виде:
Figure 00000046
Figure 00000047
Figure 00000048
Подставляют в выражения (12), (13) и (14) измеренные численные значения коэффициентов отражения
Figure 00000049
,
Figure 00000050
,
Figure 00000051
и численные значения
Figure 00000052
,
Figure 00000053
,
Figure 00000054
, находят численные значения эталонных коэффициентов отражения нагрузок КЗ, XX, и СН, соединенных вместе с МВС, -
Figure 00000055
,
Figure 00000056
и
Figure 00000057
соответственно.
Применяют формулу (1) для каждого типа эталонных нагрузок, подставляя в нее вместо результата измерения коэффициента отражения
Figure 00000058
,
Figure 00000059
и
Figure 00000060
; вместо
Figure 00000061
- выражения для этих же коэффициентов отражений в виде произведения коэффициентов отражения эталонных нагрузок на частоте измерений на комплексный коэффициент передачи МВС - М, а вместо S-параметров - остаточные Sост-параметры, получают выражения:
Figure 00000062
Figure 00000063
Figure 00000064
В идеальном случае отсутствия погрешностей калибровки
Figure 00000065
и
Figure 00000066
должны быть равны нулю, а произведение
Figure 00000067
должно быть равно единице и тогда (15), (16) и (17) превращаются в тождества. Решают уравнения (15), (16), (17) относительно остаточных Sост-параметров и получают выражения:
Figure 00000068
Figure 00000069
Figure 00000070
Figure 00000071
Подставляя в них численные значения
Figure 00000072
,
Figure 00000073
,
Figure 00000074
, значения эталонных коэффициентов
Figure 00000075
,
Figure 00000076
из калибровочных таблиц,
Figure 00000077
и расчетные значения комплексного коэффициента передачи
Figure 00000078
, который вычисляют по формуле:
Figure 00000079
в которой AG - потери испытательного сигнала СВЧ в MBС за счет скин-эффекта, который рассчитывают по эмпирической формуле:
Figure 00000080
Fa - частота измерений в [МГц], φ - сдвиг фаз, вносимый геометрической длиной МВС - L, на частоте измерения, рассчитывающийся по формуле
Figure 00000081
λ - длина волны испытательного сигнала на частоте измерений Fa, в свою очередь, определяемая по формуле
Figure 00000082
в которой 1,000649 - диэлектрическая проницаемость воздуха, F - частота испытательного сигнала в Гц.
В результате получаем численные значения
Figure 00000083
,
Figure 00000084
,
Figure 00000085
. При получении формул (15), (16), (17) считается, что в идеальном случае
Figure 00000086
,
Figure 00000087
,
Figure 00000088
. Следовательно, Sост - это параметры, отличающиеся от S-параметров идеально согласного по входу и выходу четырехполюсника без потерь (у которого в общем виде S11 и S22 равны нулю, а произведение S12S21 равно единице) на величину погрешностей аттестации, включающую: как величины погрешностей калибровки коэффициентов отражения эталонных нагрузок
Figure 00000089
,
Figure 00000090
и отличие расчетного коэффициента передачи МВС - М* от реального. Таким образом, величины, на которые параметры
Figure 00000091
и
Figure 00000092
отличаются от нуля, a
Figure 00000093
от единицы, являются погрешностями аттестации, которые в сложном виде содержатся в S-параметрах.
Если погрешности калибровки отсутствуют, то
Figure 00000094
и
Figure 00000095
должны быть равны нулю, а произведение
Figure 00000096
должно быть равно единице, что соответствует идеальному случаю отсутствия погрешностей калибровки.
На этом основании в формулы (12), (13) и (14) вместо S11, S22 и S12S21 подставляют их общие выражения (5), (6) и (7), выражая из которых
Figure 00000097
,
Figure 00000098
,
Figure 00000099
, получают уравнения:
Figure 00000100
Figure 00000101
Figure 00000102
В формулах (18), (19) и (20)
Figure 00000103
и
Figure 00000104
приравнивают к нулю, а произведение
Figure 00000105
приравнивают к единице (что эквивалентно минимизации погрешностей калибровки) и одновременно заменяют коэффициенты отражений
Figure 00000106
,
Figure 00000107
,
Figure 00000108
их выражениями из формул (24), (25) и (26), в результате чего получают системы уравнений:
Figure 00000109
Figure 00000110
Figure 00000111
в которых
Figure 00000112
,
Figure 00000113
,
Figure 00000114
представляют собой выражения согласно формулам (24), (25) и (26). В этой системе уравнений, согласно вышесказанному, присутствуют только следующие коэффициенты
Figure 00000115
,
Figure 00000116
,
Figure 00000117
,
Figure 00000118
,
Figure 00000119
,
Figure 00000120
,
Figure 00000121
,
Figure 00000122
,
Figure 00000123
, М, из которых принимают за известные все, кроме
Figure 00000124
,
Figure 00000125
и М. Если решать эту систему аналитически относительно трех неизвестных
Figure 00000126
,
Figure 00000127
и М, то в результате решения, исключая особые точки, получится двадцать четыре набора решений для каждой частотной точки. Только единственный из этих вариантов содержит истинные значения коэффициентов - отражений эталонных нагрузок
Figure 00000128
,
Figure 00000129
и коэффициента передачи МВС - М.
Для упрощения расчетов и сокращения времени определения искомых параметров численные значения
Figure 00000130
,
Figure 00000131
и М находят, решая систему уравнений (27), (28), (29), численными методами в окрестностях их эталонных значений
Figure 00000132
,
Figure 00000133
,
Figure 00000134
, взятых из калибровочных таблиц и расчетных величин модулей коэффициентов передачи и сдвигов фаз, вносимых МВС на частотах измерений.
Таким образом, находят расчетные истинные, численные значения коэффициентов отражений эталонных нагрузок холостого хода и согласованной нагрузки, в которых отсутствуют погрешности калибровки коэффициентов отражений эталонных нагрузок
Figure 00000135
,
Figure 00000136
, и погрешности вычислений коэффициентов передачи МВС -
Figure 00000137
.
В зависимости от ширины рабочего диапазона частот конкретного измерителя характеристик четырехполюсников СВЧ и количества частотных точек калибровки все вышеизложенные измерения и вычисления производят, например, для диапазона (1÷40) ГГц в 1700 точках; в результате получают зависимости расчетных численных значений истинных коэффициентов отражений эталонных нагрузок холостого хода
Figure 00000138
и согласованной нагрузки
Figure 00000139
от частоты, но в которых присутствуют погрешности, связанные с переходом фазы сигнала на частоте измерений через ноль. Каждая из этих зависимостей состоит из двух зависимостей амплитудно-частотного и фазочастотного сомножителей.
В связи с тем, что электрическая длина МВС содержит несколько полных периодов длин волн в рабочем диапазоне измерителя характеристик четырехполюсников СВЧ, амплитудные зависимости имеют разрывы функции в точках, когда электрическая длина МВС относительно длины волны становится равной
Figure 00000140
, где λ - длина волны на частоте измерений. Известно, что амплитудно-частотные зависимости истинных коэффициентов отражений эталонных нагрузок, холостого хода и согласованной нагрузки, описываются гладкими функциями.
Поэтому выбирают значения коэффициентов отражений эталонных нагрузок в окрестности частот, где электрическая длина МВС кратна четверти длины волны, исключая окрестности частот точек разрыва, где электрическая длина МВС кратна
Figure 00000141
. По выбранным значениям аппроксимируют амплитудно-частотные зависимости модулей коэффициентов отражений каждой из эталонных нагрузок холостого хода и согласованной нагрузки, подобно, но учитывая периодичность фазы, аппроксимируют фазочастотные сомножители.
Таким образом, получают окончательные значения истинных величин модуля и фазы коэффициентов отражений эталонных нагрузок XX и СН в каждой частотной точке калибровки измерителя характеристик четырехполюсников СВЧ, в которых отсутствуют рассмотренные ранее погрешности. Эти окончательные значения истинных величин модуля и фазы коэффициентов отражений эталонных нагрузок XX и СН, вместе с вычисленной истинной величиной комплексного коэффициента отражения эталонной нагрузки КЗ используют (вместо
Figure 00000142
,
Figure 00000143
,
Figure 00000144
соответственно) в формулах (5), (6), (7) для вычисления истинно собственных S-параметров в каждой частотной точке аттестуемого измерительного порта измерителя характеристик четырехполюсников СВЧ, которые затем заносят в память его контроллера и используют при измерениях испытуемых четырехполюсников СВЧ.
Используя измеренные значения коэффициентов отражений трех эталонных нагрузок, присоединяемых поочередно к разъему аттестуемого измерительного порта и через линию калиброванной длины, а также вычисленные истинные собственные S-параметры повторно вычисляют зависимости остаточных S-параметров аттестуемого измерительного порта, которые затем заносят в память его контроллера и используют при вычислении погрешностей измерений испытуемых четырехполюсников СВЧ.
Если аттестация производится с помощью волноводного тракта, то все вышеописанное справедливо и для него, за исключением того, что значения МВС -
Figure 00000145
рассчитываются для каждого типа волновода по соответствующей формуле.
Таким образом уменьшаются погрешности определения численных величин комплексных коэффициентов отражения эталонных нагрузок, холостого хода и согласованной нагрузки, используемых при определении собственных S-параметров измерительного порта устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников СВЧ, что, в свою очередь, повышает точность измерений испытуемых четырехполюсников СВЧ.

Claims (1)

  1. Способ аттестации собственных S-параметров устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников СВЧ, заключающийся в том, что измеряют нагрузку короткого замыкания и согласованную нагрузку один раз непосредственно, присоединяя их к аттестуемому измерительному порту, а второй раз через меру волнового сопротивления, отличающийся тем, что измеряют эталонные согласованную нагрузку, нагрузку короткого замыкания и нагрузку холостого хода, присоединяя их один раз непосредственно к аттестуемому измерительному порту, а второй раз присоединяя каждую из них к аттестуемому измерительному порту через меру волнового сопротивления с расчетными модулем и фазой ее коэффициента передачи, используя измеренные значения коэффициентов отражений трех эталонных нагрузок, присоединяемых непосредственно к аттестуемому измерительному порту и через линию калиброванной длины, а также, используя эталонные значения этих нагрузок и расчетное значение коэффициента передачи меры волнового сопротивления, получают зависимости остаточных S-параметров, характеризующих эквивалентный четырехполюсник погрешностей, постоянно присутствующий между эталонным измерительным портом и нагрузкой, путем приведения значений этих остаточных S-параметров к значениям параметров идеально согласованного по входу и выходу четырехполюсника без потерь, находят расчетные зависимости величин коэффициентов отражений эталонных нагрузок холостого хода и согласованной нагрузки в диапазоне частот измерителя комплексных коэффициентов передачи и отражения четырехполюсников СВЧ, выбирают значения коэффициентов отражений эталонных нагрузок в окрестности частот, где электрическая длина меры волнового сопротивления кратна четверти длины волны, исключая окрестности особых точек ее кратности половине длины волны, и по выбранным значениям аппроксимируют амплитудно-частотные и фазочастотные зависимости коэффициентов отражений каждой из эталонных нагрузок холостого хода и согласованной нагрузки, в результате чего получают истинные величины коэффициентов отражений эталонных холостого хода и согласованных нагрузок, которые затем используют для вычисления истинных собственных S-параметров аттестуемого измерительного порта измерителя комплексных коэффициентов передачи и отражения четырехполюсников СВЧ, которые используют при измерениях испытуемых четырехполюсников СВЧ, используя измеренные значения коэффициентов отражений трех эталонных нагрузок, присоединяемых непосредственно к аттестуемому измерительному порту и через линию калиброванной длины, а также вычисленные истинные собственные S-параметры, повторно вычисляют зависимости остаточных S-параметров аттестуемого измерительного порта, которые используют при вычислении погрешностей измерений испытуемых четырехполюсников СВЧ.
RU2011119094/28A 2011-05-12 2011-05-12 Способ аттестации собственных s-параметров устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников свч RU2482504C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011119094/28A RU2482504C2 (ru) 2011-05-12 2011-05-12 Способ аттестации собственных s-параметров устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников свч

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011119094/28A RU2482504C2 (ru) 2011-05-12 2011-05-12 Способ аттестации собственных s-параметров устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников свч

Publications (2)

Publication Number Publication Date
RU2011119094A RU2011119094A (ru) 2012-11-20
RU2482504C2 true RU2482504C2 (ru) 2013-05-20

Family

ID=47322874

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011119094/28A RU2482504C2 (ru) 2011-05-12 2011-05-12 Способ аттестации собственных s-параметров устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников свч

Country Status (1)

Country Link
RU (1) RU2482504C2 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2635840C2 (ru) * 2016-05-05 2017-11-16 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт связи" ФГУП ЦНИИС Способ измерения частотных характеристик параметров передачи протяженных электрических цепей в режиме холостого хода и короткого замыкания
RU2673781C1 (ru) * 2017-12-13 2018-11-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Способ калибровки двухканального супергетеродинного приемника в измерителе комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты
RU2753828C1 (ru) * 2020-09-24 2021-08-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Способ калибровки и определения собственных систематических погрешностей векторного анализатора цепей

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113777547B (zh) * 2021-07-29 2024-02-23 中国电子科技集团公司第十三研究所 在片s参数测量系统校准判断方法、装置及终端

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604528B1 (fr) * 1986-09-25 1989-05-12 France Etat Procede et dispositif de determination numerique de l'amplitude de la fonction de transfert entree-sortie d'un quadripole
SU1617385A1 (ru) * 1988-01-07 1990-12-30 Предприятие П/Я В-8574 Панорамный измеритель S-параметров
UA7267U (en) * 2004-11-15 2005-06-15 Univ Vinnytsia Nat Tech Method for measuring irregular s-parameters of a quadripole
RU2377591C1 (ru) * 2008-09-10 2009-12-27 Открытое акционерное общество "Научно-производственная компания "Ритм" Способ аттестации амплитудно-фазовой погрешности устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников свч

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2604528B1 (fr) * 1986-09-25 1989-05-12 France Etat Procede et dispositif de determination numerique de l'amplitude de la fonction de transfert entree-sortie d'un quadripole
SU1617385A1 (ru) * 1988-01-07 1990-12-30 Предприятие П/Я В-8574 Панорамный измеритель S-параметров
UA7267U (en) * 2004-11-15 2005-06-15 Univ Vinnytsia Nat Tech Method for measuring irregular s-parameters of a quadripole
RU2377591C1 (ru) * 2008-09-10 2009-12-27 Открытое акционерное общество "Научно-производственная компания "Ритм" Способ аттестации амплитудно-фазовой погрешности устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников свч

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2635840C2 (ru) * 2016-05-05 2017-11-16 Федеральное государственное унитарное предприятие "Центральный научно-исследовательский институт связи" ФГУП ЦНИИС Способ измерения частотных характеристик параметров передачи протяженных электрических цепей в режиме холостого хода и короткого замыкания
RU2673781C1 (ru) * 2017-12-13 2018-11-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Способ калибровки двухканального супергетеродинного приемника в измерителе комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты
RU2753828C1 (ru) * 2020-09-24 2021-08-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Кубанский государственный университет" (ФГБОУ ВО "КубГУ") Способ калибровки и определения собственных систематических погрешностей векторного анализатора цепей

Also Published As

Publication number Publication date
RU2011119094A (ru) 2012-11-20

Similar Documents

Publication Publication Date Title
RU2524049C1 (ru) Устройство для измерения абсолютных комплексных коэффициентов передачи и отражения свч-устройств с преобразованием частоты
US4602338A (en) Impedance measurement in 4-wire to 2-wire converters
RU2482504C2 (ru) Способ аттестации собственных s-параметров устройств для измерения комплексных коэффициентов передачи и отражения четырехполюсников свч
US7885779B2 (en) Measurement error correcting method and electronic component characteristic measurement device
RU2687850C1 (ru) Устройство для измерения и способ определения комплексных коэффициентов передачи СВЧ-смесителей
CN112698257B (zh) 矢量网络分析仪硬件指标对测量精度影响的分析方法
US10203361B2 (en) Method and apparatus for electrical impedance measurements
US20080265911A1 (en) Power Sensing Module with Built-In Mismatch and Correction
US10145931B2 (en) Tester
RU2621368C1 (ru) Способ определения угла сдвига фаз СВЧ-устройства с преобразованием частоты
RU2753828C1 (ru) Способ калибровки и определения собственных систематических погрешностей векторного анализатора цепей
US10151822B2 (en) Tester
RU2648746C1 (ru) Устройство для измерения абсолютных комплексных коэффициентов передачи СВЧ-смесителей
Patel et al. Importance and estimation of mismatch uncertainty for RF parameters in calibration laboratories
Fezai et al. Measure of reflection factor s 11 high frequency
Danaci et al. Automatic RF Power Sensor Calibration with Direct Comparison Transfer Method at Millimeter Wave Frequencies
RU2673781C1 (ru) Способ калибровки двухканального супергетеродинного приемника в измерителе комплексных коэффициентов передачи и отражения СВЧ-устройств с преобразованием частоты
GB2409049A (en) Measuring complex reflection coefficient of an RF source
RU2653569C1 (ru) Способ измерения S-параметров четырехполюсников СВЧ, предназначенных для включения в микрополосковую линию
RU2253874C2 (ru) Способ панорамного измерения модуля коэффициента отражения свч двухполюсника
Singh et al. Comparison of Vector Network Analyser (VNA) calibration techniques at microwave frequencies
Fezai et al. Characterization of reflection and attenuation parameters of device under test by vna
Kishikawa et al. 1-port Vector Network Analyzer Calibration Technique Using Three Lines
RU2774501C1 (ru) Устройство для измерения комплексных коэффициентов передачи и отражения четырехполюсников СВЧ
Shcherbyna et al. Parameter Meter of Transmission Line