RU2481675C2 - Конструкция и технология изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем - Google Patents

Конструкция и технология изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем Download PDF

Info

Publication number
RU2481675C2
RU2481675C2 RU2011119179/28A RU2011119179A RU2481675C2 RU 2481675 C2 RU2481675 C2 RU 2481675C2 RU 2011119179/28 A RU2011119179/28 A RU 2011119179/28A RU 2011119179 A RU2011119179 A RU 2011119179A RU 2481675 C2 RU2481675 C2 RU 2481675C2
Authority
RU
Russia
Prior art keywords
layer
formation
tin
electrode
movable electrode
Prior art date
Application number
RU2011119179/28A
Other languages
English (en)
Other versions
RU2011119179A (ru
Inventor
Николай Алексеевич Зайцев
Сергей Николаевич Орлов
Илья Алексеевич Хомяков
Андрей Владимирович Дайнеко
Original Assignee
Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон" filed Critical Открытое акционерное общество "НИИ молекулярной электроники и завод "Микрон"
Priority to RU2011119179/28A priority Critical patent/RU2481675C2/ru
Publication of RU2011119179A publication Critical patent/RU2011119179A/ru
Application granted granted Critical
Publication of RU2481675C2 publication Critical patent/RU2481675C2/ru

Links

Images

Landscapes

  • Micromachines (AREA)

Abstract

Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов микроэлектромеханических систем, в частности интегральных микромеханических реле и устройств на их основе: силовых переключателей, схем памяти, сенсорных датчиков, систем обработки информации и др. Способ изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем, состоящее из подложки, покрытой диэлектрическим слоем с нижним (неподвижным) электродом, и подвижного электрода, состоящего последовательно из нижнего токопроводящего слоя, диэлектрического слоя с высокими упругими свойствами, среднего токопроводящего слоя, пьезоэлектрического слоя, верхнего токопроводящего слоя, расположенного на поверхности вышеупомянутой подложки, осуществляется на поверхности кремниевых пластин. Создание интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем осуществляют в едином технологическом цикле при упрощенной технологии изготовления, совместимой с технологией производства интегральных схем, в которой формирование подвижного электрода возможно в виде консоли или в виде балки и включает операции: формирования на поверхности кремниевой подложки пленки Si3N4 методом пиролиза SiN4; напыление слоя TiN и формирование структуры «нижний электрод» методом проекционной фотолитографии и плазмохимического травления слоя TiN; осаждение слоя ФСС (фосфатно-силикатного стекла) методом химического осаждения из газовой фазы и формирование на его основе жертвенного слоя методом жидкостного химического травления; напыление первого слоя TiN; осаждение диэлектрического слоя Si3N4; напыление второго слоя TiN; осаждение пьезоэлектрического слоя ЦТС; напыление третьего слоя TiN; плазмохимическое травление слоев: третьего слоя TiN, слоя ЦТС, второго слоя TiN, слоя Si3N4, первого слоя TiN с формированием подвижного многослойного электрода и вскрытием жертвенного слоя ФСС, жидкостное химическое травление жертвенного слоя ФСС с образованием воздушного зазора между неподвижным и подвижным электродами. Технический результат: использование в качестве подвижного электрода микромеханического реле многослойной структуры с пьезоэлектрическим слоем на основе сегнетоэлектриков приводит к повышению надежности и к увеличению долговечности работы микромеханического реле. Использование микроэлектронной технологии для производства микромеханического реле позволяет минимизировать размеры устройства до 20-80 мкм и упростить технологию его производства. 2 з.п. ф-лы, 5 ил.

Description

Описание изобретения
Область техники
Изобретение относится к области электронной техники и может быть использовано при изготовлении приборов микроэлектромеханических систем, в частности интегральных микромеханических реле и устройств на их основе: силовых переключателей, схем памяти, сенсорных датчиков, систем обработки информации и др.
Уровень техники
Интегральное микромеханическое реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем может изготавливаться в виде балки, состоящей из неподвижного электрода и подвижного электрода - балки, закрепленной на опорах с двух сторон, выполненной в виде структуры с пьезоэлектрическим слоем, или в виде консоли, состоящей из неподвижного электрода и подвижного электрода - консоли, закрепленного на опоре с одной стороны, выполненной в виде структуры с пьезоэлектрическим слоем. Реле в виде консоли обеспечивает работу устройства при более низких рабочих напряжения, чем реле в виде балки с теми же размерами подвижного электрода. Эффективность работы интегрального микромеханического реле определяется обратным пьезоэлектрическим эффектом, вызывающим перемещение подвижного электрода, что в свою очередь зависит от материала подвижного электрода, приложенного напряжения и расстояния между электродами. Также эффективность работы микромеханического реле определяется гибкостью и прочностью подвижного электрода, которое обеспечивает использование в структуре подвижного электрода диэлектрических слоев с высокими упругими свойствами.
Хорошо известны пьезоэлектрические свойства сегнетоэлектриков, а именно ЦТС-19 (на основе свинца, цирконата, титаната). Для обеспечения высокой подвижности электрода он должен быть изготовлен из материала с хорошо выраженным обратным пьезоэлектрическим эффектом, который может обеспечить пленки сегнетоэлектрика, а именно ЦТС-19 (на основе свинца, цирконата, титаната).
Одним из способов получения устройства с подвижным элементом является устройство, показанное в патенте РФ №2193804, в котором описаны конструкция, способ изготовления и характеристики полупроводникового термомеханического микроактюатора, который предназначен для использования в конструкциях широкого класса микроманипуляторов, в том числе и микрореле, состоящего из основания, выполненного в виде рамы, электрического нагревателя и исполнительного элемента из кремнийсодержащего материала, подвешенного в окне рамы с помощью как минимум одной подвижной пластины с возможностью перемещения в плоскости, перпендикулярной плоскости рамы, в результате теплового расширения подвижной пластины под действием электрического нагревателя. Недостатками этого устройства являются ненадежность и низкая скорость срабатывания.
Еще один способ получения пьезоэлектрического реле показан в патенте №RU2391736. Пьезокерамическое реле содержит основание, закрепленный на нем консольно-биморфный пластинчатый пьезоэлемент с контактами цепи управления на неподвижном конце пьезоэлемента и с контактом коммутационной цепи, установленным на свободном конце пьезоэлемента, взаимодействующим при подаче напряжения на контакты цепи управления пьезоэлемента с другим контактом коммутационной цепи. Причем упомянутое реле дополнительно содержит механизм регулировки зазора между упомянутыми электрическими контактами коммутационной цепи, выполненный в виде установленного в корпусе цилиндрического торцевого кулачка, имеющего возможность поворота вокруг оси и подпружиненного рычага, один конец которого закреплен в упомянутом корпусе механизма регулировки зазора, а второй конец рычага находится в кинематической связи с упомянутым торцевым кулачком и содержит электрический контакт коммутационной цепи, взаимодействующий с другим упомянутым электрическим контактом, установленным на подвижном конце пьезоэлемента. Рабочее напряжение данного устройства 18 В с частотой 0-240 Гц. Недостатками вышеупомянутого устройства являются его большие размеры (18×8×4 мм) и сложность сборки устройства.
Наиболее близким техническим решением к предложенному изобретению является патент US 5.093.600, кл. 310/332. В этом изобретении заявляется пьезоэлектрическое реле, содержащее основание (корпус), закрепленный на нем консольный пластинчатый биморфный пьезоэлемент с контактами цепи управления на неподвижном конце и с электрическим контактом коммутационной цепи, установленным на свободном конце пьезоэлемента, взаимодействующим при подаче напряжения на контакты цепи управления пьезоэлемента с другим электрическим контактом коммутационной цепи, установленным в основании реле. Недостатки этого реле состоят в том, что для надежной работы и обеспечения воспроизводимости параметров реле требуется с высокой точностью (единицы микрон) выдержать зазор между контактами коммутационной цепи, что существенно усложняет технологический процесс производства и получение воспроизводимых параметров реле.
Целью изобретения является создание способа изготовления интегрального микромеханического реле с подвижным электродом на основе пьезоэлектрических пленок, которое, при упрощенной технологии изготовления, совместимой с технологией производства интегральных схем, обладало бы высокой стабильностью переключений при продолжительном ресурсе службы.
Поставленная цель достигается тем, что способ изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем, состоящее из подложки, покрытой диэлектрическим слоем с нижним (неподвижным) электродом, и подвижного электрода, состоящего последовательно из нижнего токопроводящего слоя, диэлектрического слоя с высокими упругими свойствами, среднего токопроводящего слоя, пьезоэлектрического слоя, верхнего токопроводящего слоя, расположенного на поверхности вышеупомянутой подложки, осуществляется на поверхности кремниевых пластин, отличается созданием интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем в едином технологическом цикле при упрощенной технологии изготовления, совместимой с технологией производства интегральных схем, в которой формирование подвижного электрода возможно в виде консоли или в виде балки и включает операции: формирования на поверхности кремниевой подложки пленки Si3N4 методом пиролиза SiH4; напыление слоя TiN и формирование структуры «нижний электрод» методом проекционной фотолитографии и плазмохимического травления слоя TiN; осаждение слоя ФСС (фосфатно-силикатного стекла) методом химического осаждения из газовой фазы и формирование на его основе жертвенного слоя методом жидкостного химического травления; напыление первого слоя TiN; осаждение диэлектрического слоя Si3N4; напыление второго слоя TiN; осаждение пьезоэлектрического слоя ЦТС; напыление третьего слоя TiN; плазмохимическое травление слоев: третьего слоя TiN, слоя ЦТС, второго слоя TiN, слоя Si3N4, первого слоя TiN с формированием подвижного многослойного электрода и вскрытием жертвенного слоя ФСС, жидкостное химическое травление жертвенного слоя ФСС с образованием воздушного зазора между неподвижным и подвижным электродами. Указанным способом возможно создание интегрального микромеханического реле с подвижным электродом в виде балки и в виде консоли. Причем формирование подвижного электрода в виде консоли производится методом дополнительного плазмохимического травления части балки до получения подвижного электрода, закрепленного на одной опоре. Микромеханическое реле с пьезоэлементом, изготовленное по вышеупомянутой технологии, обладает рядом преимуществ: микронные размеры, относительная простота в изготовлении с использованием стандартных операций, использующихся в производстве интегральных микросхем, низкая потребляемая мощность, высокое быстродействие, высокая надежность.
В предлагаемой технологии создание интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем происходит в едином технологическом цикле изготовления интегрального элемента, с формированием на поверхности подложки диэлектрического слоя; токопроводящего слоя, образующего неподвижный электрод; и жертвенного слоя, с последующим нанесением на упомянутые слои последовательно с целью формирования подвижного электрода: нижнего токопроводящего слоя; диэлектрического слоя с высокими упругими свойствами; среднего токопроводящего слоя, слоя сегнетоэлектрика; верхнего токопроводящего слоя; с удалением на финальном этапе жертвенного слоя с боковым подтравом, для образования подвижного электрода, закрепленного с одной стороны (консоль), или с двух сторон (балка). При таком технологическом маршруте уменьшается разброс расстояний между подвижным и неподвижным электродами. Использование пьезоэлектрических слоев и диэлектрических слоев с высоким коэффициентом упругости обеспечивает стабильную работу микромеханического реле, позволяет избежать электростатического «залипания» подвижного электрода с неподвижным.
Литература
1. Вардан В., Виной К., Джозе К. ВЧ МЭМС и их применение. М.: Техносфера, 2004.
2. Technical paper "Microengineering Space Systems" for The First Canadian Workshop on "MEMS Technology for Aerospace Applications". 2001 - P.49.
3. Majumder S., McGruer N.E., Adms G.G., Zavracky P.M., Morrison R.H., Krim J. Study of contacts in an electrostatically actuated microswitch // Sen-sors and Actuators - 2001 - №A93. - P.19-26.
4. Распопов В.Я. Микромеханические приборы. Учебное пособие - Тул. гос. университет. - Тула. 2002.
5. M.A.Michalicek. Introduction to micromechanical systems. URL: http://mems.colorado.edu.
Раскрытие изобретения
Задачей, на решение которой направлено настоящее изобретение, является получение технического результата, заключающегося в получении интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем, упрощении технического процесса его производства и получении воспроизводимых параметров пьезоэлектрического реле. Интегральное микромеханическое реле представляет собой устройство, состоящее из неподвижного и подвижного электрода, который, в свою очередь, состоит из токопроводящих слоев, слоев сегнетоэлектрика, диэлектрических слоев с высокими упругими свойствами, что позволяет использовать для переключения микрореле обратный пьезоэлектрический эффект и избежать «залипания» подвижного электрода после срабатывания реле.
Поставленная задача решается в конструкции микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем, включающего подложку, покрытую диэлектрическим слоем, и нижний токопроводящий слой, играющий роль неподвижного электрода, и подвижный электрод, состоящий последовательно из: нижнего токопроводящего слоя; диэлектрического слоя с высокими упругими свойствами; среднего токопроводящего слоя, пьезоэлектрического слоя; верхнего токопроводящего слоя; расположенный на поверхности вышеупомянутой подложки и контактной площадки. Между неподвижным электродом и нижним токопроводящем слоем подвижного электрода имеется зазор, обеспечивающий прерывание тока при отключении реле.
Таким образом, отличительным признаком изобретения является то, что формирование микромеханического реле производится в едином технологическом цикле по микроэлектронной технологии. В процессе формирования на поверхности подложки располагается диэлектрический слой и неподвижный электрод и, на вышеупомянутом диэлектрическом слое, в свою очередь, располагается подвижный электрод, состоящий последовательно из нижнего токопроводящего слоя, диэлектрического слоя с высокими упругими свойствами, среднего токопроводящего слоя, пьезоэлектрического слоя, верхнего токопроводящего слоя. Между неподвижным электродом и подвижным электродом имеется воздушный зазор, образующийся после ЖХТ травления жертвенного слоя, обеспечивающий прерывание тока при отключенном реле. Указанная совокупность отличительных признаков позволяет достичь технического результата, заключающегося в получении интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем, изготовленного по микроэлектронной технологии, а именно, в создании в едином технологическом цикле неподвижного и подвижного электродов методом последовательного осаждения токопроводящих, диэлектрических и пьезоэлектрических слоев на кремниевую подложку с применением методов ЖХТ травления, в том числе ЖХТ травления жертвенного слоя для образования воздушного зазора между неподвижным и подвижным электродами.
Краткое описание чертежей.
Изобретение иллюстрируется следующими чертежами:
Фиг.1 Формирование диэлектрического слоя на подложке.
Фиг.2 Формирование неподвижного электрода на диэлектрическом слое.
Фиг.3 Нанесение жертвенного слоя.
Фиг.4а Формирование многослойного подвижного электрода в виде балки.
Фиг.4б Формирование многослойного подвижного электрода в виде консоли.
Фиг.5а Жидкостное травление жертвенного слоя и формирование реле в виде балки.
Фиг.5б Жидкостное травление жертвенного слоя и формирование реле в виде консоли.
Обозначение слоев: 1 - подложка (Si); 2 - диэлектрический слой (Si3N4); 3 - нижний электрод токоведущий слой (TiN); 4 - первый токоведущий слой подвижного электрода (TiN); 5 - диэлектрический слой с высокими упругими свойствами (Si3N4); 6 - второй токоведущий слой подвижного электрода (TiN); 7- пьезоэлектрический слой (ЦТС); 8 - третий токоведущий слой подвижного электрода (TiN); 9 - жертвенный слой (ФСС).
Пример осуществления изобретения
Разработана технология изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем на поверхности кремниевых пластин диаметром 100 мм, включая следующие операции для получения микрореле в виде балки: формирование на поверхности кремниевой подложки (1) пленки Si3N4 (2) толщиной 0,25 мкм методом пиролиза SiH4; напыление слоя TiN толщиной 0,15 мкм и формирование структуры «нижний электрод» (3) при проведении проекционной фотолитографии и плазмохимического травления слоя TiN; осаждение слоя ФСС (фосфатно-силикатного стекла) толщиной 0,5 мкм методом химического осаждения из газовой фазы и формирование на его основе жертвенного слоя (9) методом жидкостного химического травления; напыление первого слоя TiN (4) толщиной 0,25 мкм; осаждение диэлектрического слоя с высокими упругими свойствами Si3N4 (5) толщиной 0,7 мкм; напыление второго слоя TiN (6) толщиной 0,25 мкм; осаждение пьезоэлектрического слоя ЦТС (7) толщиной 0,7 мкм; напыление третьего слоя TiN (8) толщиной 0,25 мкм; плазмохимическое травление слоев: третьего слоя TiN, слоя ЦТС, второго слоя TiN, слоя Si3N4, первого слоя TiN с формированием подвижного многослойного электрода и вскрытием жертвенного слоя ФСС, жидкостное химическое травление жертвенного слоя ФСС с образованием воздушного зазора (11) между неподвижным и подвижным электродами; для получения микрореле в виде консоли производится плазмохимическое травление части балки до получения подвижного электрода, закрепленного на одной опоре.
Полученные по описанной технологии интегральные микромеханические реле имеют микронные размеры 20-80 мкм, рабочее напряжение U=10 В при частоте 0-1000 Гц, обеспечивают высокую стабильностью переключений при продолжительном ресурсе службы.

Claims (3)

1. Способ изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем, состоящее из подложки, покрытой диэлектрическим слоем с нижним (неподвижным) электродом, и подвижного электрода, состоящего последовательно из нижнего токопроводящего слоя, диэлектрического слоя с высокими упругими свойствами, среднего токопроводящего слоя, пьезоэлектрического слоя, верхнего токопроводящего слоя, расположенного на поверхности вышеупомянутой подложки, осуществляется на поверхности кремниевых пластин, отличающийся тем, что создание интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем в едином технологическом цикле при упрощенной технологии изготовления, совместимой с технологией производства интегральных схем, в которой формирование подвижного электрода возможно в виде консоли или в виде балки и включает операции: формирования на поверхности кремниевой подложки пленки Si3N4 методом пиролиза SiN4; напыление слоя TiN и формирование структуры «нижний электрод» методом проекционной фотолитографии и плазмохимического травления слоя TiN; осаждение слоя ФСС (фосфатно-силикатного стекла) методом химического осаждения из газовой фазы и формирование на его основе жертвенного слоя методом жидкостного химического травления; напыление первого слоя TiN; осаждение диэлектрического слоя Si3N4; напыление второго слоя TiN; осаждение пьезоэлектрического слоя ЦТС; напыление третьего слоя TiN; плазмохимическое травление слоев: третьего слоя TiN, слоя ЦТС, второго слоя TiN, слоя Si3N4, первого слоя TiN с формированием подвижного многослойного электрода и вскрытием жертвенного слоя ФСС, жидкостное химическое травление жертвенного слоя ФСС с образованием воздушного зазора между неподвижным и подвижным электродами.
2. Способ по п.1, в котором формирование подвижного электрода производится в виде балки.
3. Способ по п.2, в котором формирование подвижного электрода производится в виде консоли методом дополнительного плазмохимического травления части балки до получения подвижного электрода, закрепленного на одной опоре.
RU2011119179/28A 2011-05-12 2011-05-12 Конструкция и технология изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем RU2481675C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011119179/28A RU2481675C2 (ru) 2011-05-12 2011-05-12 Конструкция и технология изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011119179/28A RU2481675C2 (ru) 2011-05-12 2011-05-12 Конструкция и технология изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем

Publications (2)

Publication Number Publication Date
RU2011119179A RU2011119179A (ru) 2012-11-20
RU2481675C2 true RU2481675C2 (ru) 2013-05-10

Family

ID=47322891

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011119179/28A RU2481675C2 (ru) 2011-05-12 2011-05-12 Конструкция и технология изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем

Country Status (1)

Country Link
RU (1) RU2481675C2 (ru)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2572051C1 (ru) * 2014-12-31 2015-12-27 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления интегрального микромеханического реле
RU2584267C1 (ru) * 2015-03-23 2016-05-20 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Способ изготовления электромеханического элемента памяти с подвижными электродами

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109436A1 (en) * 2000-11-30 2002-08-15 Cheng-Jien Peng Piezoelectrically actuated tunable electronic device
RU2193804C1 (ru) * 2001-10-22 2002-11-27 Санкт-Петербургский государственный электротехнический университет Полупроводниковый термомеханический микроактюатор
US20100064493A1 (en) * 2002-10-21 2010-03-18 Hrl Laboratories, Llc Piezoelectric actuator for tunable electronic components
RU2391736C1 (ru) * 2009-04-09 2010-06-10 Открытое акционерное общество "Научно-исследовательский институт "Элпа" с опытным производством" (ОАО "НИИ "Элпа") Пьезоэлектрическое реле и способ регулирования параметров реле

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020109436A1 (en) * 2000-11-30 2002-08-15 Cheng-Jien Peng Piezoelectrically actuated tunable electronic device
RU2193804C1 (ru) * 2001-10-22 2002-11-27 Санкт-Петербургский государственный электротехнический университет Полупроводниковый термомеханический микроактюатор
US20100064493A1 (en) * 2002-10-21 2010-03-18 Hrl Laboratories, Llc Piezoelectric actuator for tunable electronic components
RU2391736C1 (ru) * 2009-04-09 2010-06-10 Открытое акционерное общество "Научно-исследовательский институт "Элпа" с опытным производством" (ОАО "НИИ "Элпа") Пьезоэлектрическое реле и способ регулирования параметров реле

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2572051C1 (ru) * 2014-12-31 2015-12-27 Открытое акционерное общество "Научно-исследовательский институт физических измерений" Способ изготовления интегрального микромеханического реле
RU2584267C1 (ru) * 2015-03-23 2016-05-20 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский университет "Московский институт электронной техники" Способ изготовления электромеханического элемента памяти с подвижными электродами

Also Published As

Publication number Publication date
RU2011119179A (ru) 2012-11-20

Similar Documents

Publication Publication Date Title
JP4613165B2 (ja) 微小電気機械システムのスイッチ
EP1535297B1 (en) Diaphragm activated micro-electromechanical switch
US9018717B2 (en) Pull up electrode and waffle type microstructure
Czaplewski et al. RF MEMS Switches With $\hbox {RuO} _ {2} $–$\hbox {Au} $ Contacts Cycled to 10 Billion Cycles
US20050206243A1 (en) Microelectromechanical system able to switch between two stable positions
TWI466374B (zh) 電子元件、可變電容、微開關、微開關的驅動方法、以及mems型電子元件
US8054147B2 (en) High voltage switch and method of making
Badia et al. RF MEMS Shunt Capacitive Switches Using AlN Compared to $\hbox {Si} _ {3}\hbox {N} _ {4} $ Dielectric
JP5478060B2 (ja) スタンドオフ電圧制御が改善されたmemsスイッチ
KR101745722B1 (ko) 마이크로 전기기계 시스템 스위치
US7755459B2 (en) Micro-switching device and method of manufacturing the same
KR20030062074A (ko) 마이크로전자기계 액튜에이터
JP4731388B2 (ja) 変位デバイス及びそれを用いた可変容量コンデンサ,スイッチ並びに加速度センサ
US8207460B2 (en) Electrostatically actuated non-latching and latching RF-MEMS switch
Yoon et al. A highly reliable MEMS relay with two-step spring system and heat sink insulator for high-power switching applications
JP2009009884A (ja) Memsスイッチ及びその製造方法
RU2481675C2 (ru) Конструкция и технология изготовления интегрального микромеханического реле с подвижным электродом в виде структуры с пьезоэлектрическим слоем
US20230013976A1 (en) Movable piezo element and method for producing a movable piezo element
CN102822931B (zh) 集成式机电致动器
US20110062003A1 (en) Contact material, device including contact material, and method of making
Kim et al. 4 W power MEMS relay with extremely low contact resistance: Theoretical analysis, design and demonstration
JP2007259691A (ja) Memsの静電駆動法、静電アクチュエーター、及びマイクロスイッチ
Copt et al. Design and manufacturing of an electrostatic MEMS relay for high power applications
CN104241034B (zh) 微机电系统(mems)结构及设计结构
KR100773005B1 (ko) 격벽 작동형 마이크로 전기 기계 스위치